
Oncotarget8071www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 10

Systems biology network-based discovery of a small molecule 
activator BL-AD008 targeting AMPK/ZIPK and inducing 
apoptosis in cervical cancer

Leilei Fu1,*, Shouyue Zhang1,*, Lan Zhang1,2,*, Xupeng Tong1,3, Jin Zhang2, Yonghui 
Zhang1,4, Liang Ouyang1, Bo Liu1 and Jian Huang2

1 State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 
Chengdu, China
2 School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
3 School of Pharmacy, China Pharmaceutical University, Nanjing, China
4 Collaborative Innovation Center for Biotherapy, Department of Pharmacology & Pharmaceutical Sciences, School of 
Medicine, Tsinghua University, Beijing, China
* These authors contributed equally to this work

Correspondence to: Bo Liu, email: liubo2400@163.com

Correspondence to: Jian Huang, email: profhj@163.com
Keywords: Systems biology network, Apoptosis, AMPK, ZIPK, Dual-target activator (BL-AD008)
Received: January 16, 2015 Accepted: February 03, 2015 Published: March 10, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

AbstrAct
The aim of this study was to discover a small molecule activator BL-AD008 

targeting AMPK/ZIPK and inducing apoptosis in cervical cancer. In this study, we 
systematically constructed the global protein-protein interaction (PPI) network and 
predicted apoptosis-related protein connections by the Naïve Bayesian model. Then, 
we identified some classical apoptotic PPIs and other previously unrecognized PPIs 
between apoptotic kinases, such as AMPK and ZIPK. Subsequently, we screened a 
series of candidate compounds targeting AMPK/ZIPK, synthesized some compounds 
and eventually discovered a novel dual-target activator (BL-AD008). Moreover, we 
found BL-AD008 bear remarkable anti-proliferative activities toward cervical cancer 
cells and could induce apoptosis by death-receptor and mitochondrial pathways. 
Additionally, we found that BL-AD008-induced apoptosis was affected by the 
combination of AMPK and ZIPK. Then, we found that BL-AD008 bear its anti-tumor 
activities and induced apoptosis by targeting AMPK/ZIPK in vivo. In conclusion, these 
results demonstrate the ability of systems biology network to identify some key 
apoptotic kinase targets AMPK and ZIPK; thus providing a dual-target small molecule 
activator (BL-AD008) as a potential new apoptosis-modulating drug in future cervical 
cancer therapy.

INtrODUctION

Apoptosis is a complex but highly defined cellular 
program of demolition with numerous links to many 
pathological processes, such as cancer [1, 2]. Complexity 
of apoptosis may inspire systems biology approaches 
to uncover its inner mechanisms by some mathematical 
models, such as ordinary differential equations, Petri nets, 
Bayesian networks, and Boolean model [3, 4]. Hitherto, 
new emerging therapeutic strategies have been considered 

to mediate cell death by activating core apoptotic 
pathways, as well as to remodel the structure of apoptotic 
network [5]. Therefore, a comprehensive knowledge of 
protein-protein interaction (PPI) networks may provide 
a basic framework for better understanding of apoptosis 
as an integrated system [6, 7]. With increasing genome-
wide data of genetic, functional and physical interactions, 
a robust mathematical model which is well-suited for 
integrating disparate types of data, seems to be imperative 
for inferring the apoptotic process [8]. Moreover, 
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inactivation of pro-apoptotic proteins or up-regulation of 
anti-apoptotic proteins may result in unchecked growth of 
cells and thus ultimately leading to carcinogenesis [9-11]. 

Carcinogenesis is a multi-step process caused by 
genetic alterations involving mutations of some oncogenes 
or other tumor suppressors that may drive the progressive 
transformation of normal cells into malignant ones [12]. 
At systems level, genetic mutations may alter translated 
proteins and thus disrupting downstream signaling 
pathways and even the PPI network; ultimately resulting 
in resistance to apoptosis [13]. Recently, protein kinases 
has been reported to orchestrate the activation of signaling 
cascades in response to extracellular and intracellular 
stimuli to control cell growth, proliferation, survival and 
apoptosis [14, 15]. Hitherto, cancer drug discovery has 
significantly benefited from a rapid progress for further 
understanding how to target the key protein kinases 
with small molecule compounds in cancer therapy [16]. 
However, complexity of the apoptotic kinase network 
may inspire more systems biology approaches to uncover 
novel kinase targets for cancer drug design [16]. Thus, 
these findings would provide a key clue for the discovery 
of novel anti-tumor candidate drugs targeting some key 
apoptotic kinases.

In this study, we demonstrated the ability of systems 
biology network to identify some key apoptotic kinase 
targets, such as AMPK and ZIPK in cervical cancer, and 
thus provided a small molecule activator (BL-AD008) as 
a new potential anti-tumor drug in cervical cancer therapy.

rEsULts

construction of core apoptotic kinase network

Based upon some online databases, we 
computationally constructed the global PPI network. To 
construct the set of true-positive gene pairs, we manually 
derived physical PPIs. A total number of 85,083 unique 
PPIs among 13,128 proteins were prepared as data sources 
for our Golden Standard Positive (GSP) set. We generated 
a Golden Standard Negative (GSN) set that could be 
defined as all the possible pair-wise combinations, in 
which one protein is assigned to the plasma membrane 
and the other to the nucleus according to GO cellular 
component annotation, resulting in 23,169,177 pairs in our 
GSN (Table S1). Moreover, we integrated four different 
types of biological datasets and chose the likelihood 
ratio (LR) =117 as the reliability of individual dataset for 
inferring the apoptotic PPIs. Each dataset could be divided 
into several bins due to their intrinsic characters, and LR 
for each bin was calculated, indicating the corresponding 
results of cross-species interolog mapping (Figure 1A), 
gene co-expression profiles (Figure 1B), domain-domain 
interaction (DDI) (Figure 1C) and smallest shared 

biological process (SSBP) (Figure 1D), respectively. 
Subsequently, we used LR cutoff as 117 and achieved the 
global PPI network with 12,809 binary PPIs by combining 
the prediction set and the positive set (Figure 1E). Using 
the lunched Naïve Bayesian model, we found that STS 
containing 12,809 interacting protein pairs conformed 
by 4,818 unique proteins was input the network model, 
resulting the area under ROC curve (Figure 1F). As 
a result, we got the global PPI network, and further 
modified this network into the apoptotic PPI network 
(Figure 2A). We identified hub proteins implicated in 
core apoptotic pathways according to the four golden 
standards (the degree of each protein, the link number 
of apoptotic protein, network topology, and significance 
analysis of microarrays analysis). Thus, combination of 
the four standards that can be integrated into a well-suited 
approach to decrease the false-positive PPIs on some 
level; thereby, confirming apoptotic hub proteins (Figure 
S1).

Identification of two key apoptotic kinase targets 
AMPK and ZIPK

Then, we identified a few of apoptotic hub proteins 
and their relevant signaling pathways that could be further 
integrated into the predicted core apoptotic network 
which composed of 109 proteins (3,767 protein pairs) 
(Figure 2B) (Table S2). From the core apoptotic network, 
we identified not only classical hub proteins such as 
caspases (CASP1/2/3/8), DR family (FAS, TNFR1 and 
NGFR), Bcl-2 family (BAK, BCL2 and BCL2L1) and 
p53 family, but other previously seldom recognized/
unrecognized apoptotic proteins, such as AMPK, DAPK3 
(ZIPK), CDK7, MAPK11, β-ARK, MAPK3, RASK, and 
RFXK (The unrecognized standards were confirmed by 
the consensus results from GO annotation and PubMed 
search). Thus, the core apoptotic network involved in 
classical and novel hub proteins may provide not only 
a high-priority list of the key apoptotic regulators, but 
potential new drug targets (Figure 2B). Next, we identified 
several classical hub proteins such as caspases, DRs, Bcl-2 
family and p53 family that have been well-characterized 
to play their pivotal roles in apoptosis. According to 
different subcellular localizations, we could divide them 
into secreted, nucleus, cytoplasm, multiple and unknown 
localizations (Figure 2B). In addition, we found that these 
classical hub proteins could interact with some previously 
unrecognized (other) hubs in the context of apoptosis 
(Figure 2C). 

Besides the novel interactions among classical 
proteins, we focused on exploring the interactions between 
classical and other hub proteins (other hub proteins were 
defined by themselves with unexpectedly high levels of 
connectivity to apoptotic proteins) (Figure 2D). Based on 
757 apoptotic hub proteins, we demonstrated that AMPK 
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(the top one with the number of links to other hub proteins) 
could interact with 87 hub proteins and ZIPK (the top two 
with the number of links to other hub ones) could interact 
with 76 (see in Table S3 and Table S4). Interestingly, they 
could regulate the common 67 hub proteins (occupying 
about 72.04% of all the hub proteins they interact with) in 
the apoptotic kinase subnetwork (occupying about 12.29% 
of all hub proteins in the apoptotic kinase network), 
suggesting AMPK and ZIPK may be regarded as the 
common double targets in cancer.

Modeling, docking and anti-proliferative activities 
of candidate compounds targeting AMPK/ZIPK

We firstly constructed the molecular modeling 
of AMPK and ZIPK based upon their crystallographic 

structures. Then, we screened the structure-based candidate 
small molecules that could target AMPK and ZIPK based 
on the FDA-approved and ongoing experimental drugs 
from Drugbank and ZINC, respectively. Subsequently, 
we achieved the top ten small molecule compounds from 
Drugbank and ZINC that could bind their target AMPK 
stably (Figure S2). In addition, we achieved the top ten 
small molecule compounds from Drugbank and ZINC that 
could also bind their target ZIPK stably (Figure S3). Thus, 
we used the top ten compounds from Drugbank and ZINC 
for further analyses. Then, we obtained 10 compounds by 
the commercial purchase or chemical synthesis named 
A1-A10. Then, the MTT assay was carried out in the 
context of HeLa and C4-I cells. Amongst all the candidate 
small molecules, compound A1 bear remarkable anti-
proliferative activity toward these two types of cervical 
cancer cells in a dose-dependent manner.

Figure 1: Integration of biological data and network model evaluation. (A)Large-scale microarray datasets. (B)The homology 
analysis. (C) The SSBP for measuring the biological process similarity of a pair of proteins. (D) DDI confidence level from the database 
Pfam. (E) TP/FP ratios at different Likelihood cutoffs. (F) ROC curves for evaluating the performance of Naïve Bayesian model.
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Chemical synthesis of a novel dual-target 
activator (BL-AD008)

Through comparing the two receptor affinity, 
we found that the C3-position of indole ring needed 
more hydrophobic interaction. Therefore, the structural 
modification was mainly focused on the C-3 position 
of indole ring using bioisostere replacement strategy 

(Figure 3). The synthesis process of candidate compounds 
(AD001-BL-AD008) was described (see in Table S5). 
Substituted indolones could react with chloracetyl 
chloride in the presence of aluminum chloride, substituted 
indolones could react with chloracetyl chloride to produce 
Friedel–Crafts reaction product 5-(2-chloroacetyl) 
indolinones. And, the yielding product was condensed with 
sodium borohydride and trifluoroacetic acid to give the 
reduced products 5-(2-chloroethyl) indolinones in a total 

Figure 2: Network-based identification of classical and novel apoptotic (kinase) pathways. (A) The global PPI network 
in apoptosis. (B) Core apoptotic signaling subnetwork. (C) Predicted interactions amongst classical hub proteins in apoptosis. (D) Novel 
apoptotic kinase pathways involved in AMPK/ZIPK regulation in cancer.
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yield of 43-67%. The condensation of 5-(2-chloroethyl) 
indolinones intermediated with heterocyclic substituted 
piperidine derivatives in the presence of NaI and Na2CO3. 
In refluxing, dioxane gave the adduct, which was finally 
purified by silica-gel column chromatography using 
hexane and ethyl acetate as an eluent to obtain the 
final products AD001-AD005 (yield: 45-57%) (Figure 
S4, Scheme 1). The syntheses of AD006-BL-AD008 
were similar to the aforementioned steps with different 
starting materials (Figure S4, Scheme 2&3). The high 
degree of symmetry in these molecules enabled facile 
confirmation by NMR techniques. For example, in the 
1H-NMR spectrum, the aromatic ring proton generated 
was observed the resonance signal at 7.08-7.97(m) which 
was clearly distinguishable from the resonances arising 
from the carbon linkers at 2.64 (m) and 2.47 (m) ppm. 
The purity of all compounds was above 97.0% determined 
by HPLC normalization method (A Waters XTerra RP18 
column was eluted at flow rate of 1.0 mL/min. The mobile 
phase was a mixture of water and methanol containing 
0.1% triethyl-amine (60:40). The eluate was monitored in 
the absorption at 254 nm with a UV detector). Moreover, 
the molecular weight of the desired target structures was 

confirmed by ESI-TOF high resolution mass spectrum 
(HRMS). Compound BL-AD008 (5-(2-(4-(benzo[d]
isothiazol-3-yl)piperazin-1-yl)ethyl)-3-benzylidene-6-
chloroindolin-2-one): 1H NMR (400 MHz, CDCl3) δ 8.89 
(s, 1H), 8.54 – 8.35 (m, 1H), 8.19 – 8.03 (m, 1H), 7.94 
– 7.13 (m, 10H), 3.88 (t, J = 10.2 Hz, 4H), 3.44 (t, J = 
10.2 Hz, 4H), 2.80 – 2.66 (m, 2H), 2.63 – 2.47 (m, 2H). 
13C NMR (100 MHz, CDCl3) δ 170.37, 157.23, 139.49, 
135.94, 134.92, 134.39, 130.73, 130.14, 129.62, 129.45, 
128.95, 128.45, 127.19, 125.88, 125.06, 122.87, 119.74, 
110.66, 56.15, 52.34, 47.77, 31.32. HRMS (ESI-TOF): 
calcd. for C21H21N4O2S ([M+H]+) 501.1516, obsd. 
501.1520. HPLC: 98.9%.

Molecular docking and molecular dynamic (MD) 
stimulations of BL-AD008 with AMPK/ZIPK

Molecular docking calculations were first performed 
for BL-AD008 without explicit active site water molecules. 
The ligand structures with the most favorable binding free 
energies and reasonable orientations were selected as the 
optimal docked conformations. 5ns MD simulations were 

Figure 3: Chemical structure modification strategies of from compound A1 to BL-AD008. The structural modification 
was mainly focused on C-3 position of indole ring using bioisostere replacement strategy. The synthesis process of candidate compounds 
(AD001-BL-AD008) is described as follows. The high degree of symmetry in these molecules enabled facile confirmation by NMR 
technique.
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successfully performed on AMPK–BL-AD008 and ZIPK-
BL-AD008 complexes (Figure 4A). To gauge whether the 
MD simulations were stable and whether they converged, 
energetic and structural properties were monitored during 
the course of MD simulation. The low root-mean-square 
deviation (RMSD) fluctuations and the convergence of 
the energies, temperatures, and pressures of the systems 
observed indicated well-behaved systems. The RMSDs 
between the complexes and ligand structures obtained 
during the trajectories and the initial structures were 
shown (Figure 4B). The averaged RMSD during the last 3 
ns for AMPK–BL-AD008 and ZIPK-BL-AD008 are 0.18 
and 0.16 nm, respectively, suggesting the overall stable 
structures after approximately 3 ns simulation. In this 
study, we showed that compound A1 could bind to AMPK 

stably. The benzene ring of compound form interaction 
with residue LYS-31, and also form hydrophobic 
interaction with VAL-11, LEU-18, PHE-90 and ILE-46. 
For compound BL-AD008, there are two hydrogen bonds 
formed by residue ASN-48 and LYS-31., Cl atom of BL-
AD008 could form interaction with PHE-90.. BL-AD008 
can form hydrophobic interaction with residue VAL-11, 
LEU-18, PHE-90, ILE-46 and VAL-24. Thus, the binding 
energy of BL-AD008 is much lower than A1 (Figure 4).

Moreover, we showed that compound A1could bind 
to ZIPK stably. And, there are two hydrogen bonds formed. 
The first one is N atom from compound A1 with carbonyl 
group of residue GLU-94, the other one is carbonyl 
group of compound A1 with N atom from main chain of 
residue VAL-96. A1 also form significant hydrophobic 

Figure 4: Modeling, docking and molecular dynamics (MD) simulations of BL-AD008 targeting AMPK and ZIPK.
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interaction with residue ILE-160, MET-146, VAL-27, 
VAL-96, LEU-93 and LEU-19. These residues form a 
hrdrophic pocket. BL-AD008, as the same as A1, two 
hydrogen bonds also could be found from BL-AD008 with 
carbonyl group of residue GLU-94 and carbonyl group of 
compound BL-AD008 with N atom from main chain of 
residue VAL-96. But comparing with A1, except form 
the hydrophobic interaction with the hydrophobic pocket 
formed by residue ILE-160, MET-146, VAL-27, VAL-96, 
LEU-93 and LEU-19, benzene ring of BL-AD008 formed 
additional more hydrophobic interaction with residue 
LEU-93 and LEU-68 (Figure 4). Further insights into 
the forces involved in substrate binding can be obtained 
by analyzing the MM/GBSA free-energy contributions. 
The binding free energies of two complex systems were 
calculated by MMPBSA.py program in AMBER 12 at the 
atomic level. A total of 300 snapshots were taken from 
the last 3ns of MD simulations for analysis. We present 
the predicted and experimental binding energies, together 
with their respective entropic contributions (Table S6). 
As displayed, the ranking of the predicted binding free 
energies are in good agreement with the experimental data. 
It should be noted that the binding free energies might not 
reproduce the absolute experimental values accurately, 
but they correlate with the experimental values well. The 
order of the preferentially favorable binding free energy 
contribution was AMPK > ZIPK, with the corresponding 

ΔGbind values -40.12 and -34.18 kcal/mol, respectively. In 
the two studied protein-ligand systems, the van der Waals 
( ) contributions and the nonpolar solvation energies (

) are main form for favorable binding free energies. 
The favorable Coulomb interactions within the systems 
are counteracted by the unfavorable electrostatics of 
de-solvation. The resulting balance of the electrostatic 
interaction contributions in vacuum and solvent, namely  

+  is unfavorable in binding for all the systems.

BL-AD008 induces apoptosis via the death 
receptor and mitochondrial pathways in cervical 
cancer cells

We found that BL-AD008 caused a remarkable anti-
proliferative effect on HeLa and C4-I cell growth in dose-
dependent manner, and the treatment with 600 nM BL-
AD008 for 24h resulted in almost 50% inhibition in the 
HeLa cells (Figure 5A). To characterize the BL-AD008-
induced HeLa cell apoptosis, we observed the morphologic 
changes in the cells. When the cells were cultured with 
600nM BL-AD008 for 24 h, the apoptotic alterations were 
also observed under the inverted microscopy. And, the 
marked apoptotic morphologic alterations were observed 
by Hoechst 33258 staining under fluorescence microscopy 
(Figure 5B). In addition, apoptosis was further evaluated 

Figure 5: BL-AD008 induces apoptosis in HeLa cells. (A) Cell viability was measured by the MTT assay in A1-treated and BL-
AD008-treated HeLa cells. (B) The cellular morphology was observed without or with BL-AD008 under the inverted microscopy and 
fluorescent microscopy, respectively. (C) Apoptosis was determined by the analyses of Annexin staining.
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by Annexin-V/PI double staining. BL-AD008 markedly 
induced the increase of apoptotic ratio in HeLa cells 
(Figure 5C).

To assess whether Fas-mediated pathway was 
activated in BL-AD008-treated HeLa cells, the levels of 
Fas, FasL, Fas-Associated protein with Death Domain 
(FADD) and caspase-8 were determined by Western 
blot analysis. The levels of Fas, FasL and FADD were 
markedly elevated and then there was obvious increase in 
the cleavage of caspase-8 after BL-AD008 administration 
(Figure 6A). Therefore, death receptor pathway is involved 
in BL-AD008-induced apoptosis. Next, we found that Bax 
expression was increased whereas Bcl-2 expression was 
decreased in HeLa cells. Moreover, we detected decrease 
of mitochondrial membrane potential by Rhodamin 123 
staining in BL-AD008-treated HeLa cells (Figure 6B). 
It clearly indicates that BL-AD008-induced apoptosis 
in HeLa cells is mediated by a mitochondrial pathway. 
Then, we investigated the involvements of caspase-9 and 
caspase-3 in BL-AD008-induced apoptosis. Caspase-9 
activation was determined by measurement of the active 
forms of caspase-9. The active form of caspase-3 was 
observed during BL-AD008 treatment (Figure 6B). These 
results suggest that mitochondrial pathway is also involved 
in BL-AD008-induced apoptosis. Moreover, we showed 

that the ratio of p-AMPK expression was increased in BL-
AD008-treared HeLa cell apoptosis, and the ratio of ZIPK 
expression was also increased in this context. Thus, these 
results suggest that BL-AD008-induced apoptosis can be 
mainly affected by AMPK and ZIPK in HeLa cells (Figure 
6C).

BL-AD008-induced apoptosis is mainly affected 
by AMPK and ZIPK

To examine whether BL-AD008 is targeted AMPK/
ZIPK activator, we showed that AMPK expression was 
remarkably decreased in BL-AD008+AMPK siRNA-
treated HeLa cells compared with BL-AD008-indcued 
HeLa cells. In addition, we examined the expressions of 
caspase-8, caspase-9 and caspase-3 between BL-AD008-
treated and BL-AD008+AMPK siRNA-treated conditions. 
Caspase-8, caspase-9 and caspase-3 expressions were 
partially decreased in BL-AD008+AMPK siRNA-treated 
than BL-AD008-treated HeLa cells. It suggests that 
AMPK activation may have more effects on the activation 
of caspase-8, caspase-9 and caspase-3 in BL-AD008-
induced apoptosis (Figure 7A).

Next, we showed that ZIPK was almost not 

Figure 6: BL-AD008 induces HeLa cell apoptosis via both death-receptor and mitochondrial pathways. (A) BL-AD008-
induced apoptosis is via death-receptor pathway. (B) BL-AD008-induced apoptosis is via mitochondrial pathway. (C) BL-AD008-induced 
apoptosis is regulated by AMPK and ZIPK.



Oncotarget8079www.impactjournals.com/oncotarget

expressed in BL-AD008+ZIPK siRNA-treated HeLa 
cells; whereas ZIPK was expressed in BL-AD008-indcued 
context. Then, we examined the different expressions 
of caspase-8, caspase-9 and caspase-3 between BL-
AD008-treated and BL-AD008+ZIPK siRNA-treated 
conditions. Caspase-8 expression abruptly decreased in 
BL-AD008+ZIPK siRNA-treated than BL-AD008-treated 
HeLa cells. This result is similar with BL-AD008+AMPK 
siRNA-treated HeLa cells (Figure 7B). Then, we found 
that caspase-8, caspase-9 and caspase-3 could not be 
expressed in BL-AD008+ZIPK siRNA + AMPK siRNA-
treated HeLa cells; whereas they could express in BL-
AD008-indcued HeLa cells, suggesting that BL-AD008 
may be a targeted AMPK/ZIPK activator (Figure 7C).

BL-AD008 displays a potent anti-tumor activity 
in vivo

Based upon the anti-proliferative efficacy of BL-
AD008 on HeLa cells in vitro, we proceeded to assess 
its efficacy on inhibiting tumor growth in an orthotopic 
xenograft mouse model of cervical cancer. In this 
experiment, we used three different doses of BL-AD008. 
Compared with the control group, high dose of BL-AD008 
can induce the significant body weight loss in nude mice. 
As a result, high doses of BL-AD008 induced 15.6% 
loss of mice weight during the 10 days of treatment. 
The toxicity of low and median dose BL-AD008 were 
not obvious (Figure 8A). At the end of the experiment, 
the tumor weights decreased remarkably in median and 
high dose groups (P<0.001). For more toxicity study, the 
liver weights decrease of mice in high dose group were 
measured (P<0.001). And spleen and kidney weights 
also affected by high dose of BL-AD008 (P<0.01), no 
other obvious toxicity was observed in low and median 
dose groups. We obtained identical results by directly 
measuring the tumor volumes. In all three BL-AD008 
groups, the tumor volumes were much smaller than the 
control group (Figure 8B). In according to the balance 
between anti-tumor efficacy and toxicity, the median dose 
was used as the optimum dose for treatment of tumor 
growth. To test whether BL-AD008-mediated inhibition 
of HeLa xenograft growth in vivo was associated with 
reduced cell proliferation and/or increased apoptosis, 
tumor tissues from control and BL-AD008-treated mice 
were processed for immunohistochemical analysis of Ki-
67 expression and TUNEL staining. Immunoreactivity 
for Ki-67, a marker of proliferation, was localized to the 
cell nuclei. BL-AD008 treatment significantly reduced 
the number of Ki-67-positive HeLa cells compared to the 
control treatment. In addition, BL-AD008 administration 
resulted in a statistically significant increase in number 
of apoptotic bodies in the tumor as visualized by TUNEL 
assay, suggesting that BL-AD008-induced tumor cell 
proliferation inhibition through an apoptosis pathway 

(Figure 8C). 

BL-AD008 induces apoptosis in vivo

For better understanding of the mechanism of 
the therapeutic efficacy of BL-AD008 in our in vivo 
model, we examined the caspase-3, caspase-8, Bcl-2, 
Bax, p-AMPKα and ZIPK expressions in tumor samples 
immunoreactivity. Active form of caspase-3 and caspase-8 
were observed in the tumor. And, Bcl-2 was inhibited 
by BL-AD008 while Bax expression was increased 
(Figure 9A). They were determined in tumor xenografts 
as parameters for the apoptosis levels. Western blotting 
assay further demonstrated that all their expression 
in BL-AD008-treated tumor samples were consistent 
with immunohistochemical results and caspase cascade 
activating. And we also tested the p-AMPKα and ZIPK for 
their regulation by BL-AD008. In addition, DNA repairing 
protein PARP-1 were sheared significantly (Figure 9B). 
The increase of the expression levels of p-AMPKα and 
ZIPK confirmed the efficacy of BL-AD008 in tumor 
tissues. Moreover, immunohistochemical and western 
blotting results suggesting the apoptosis induced by BL-
AD008 in tumor tissues.

DIscUssION

Previous studies reported that the cancer-perturbed 
PPI network was well-characterized by a nonlinear 
stochastic model, maximum likelihood parameter 
estimation, and akaike information criteria for the 
discovery of novel apoptotic targets, based upon the gene 
co-expression profiling [17]. Other reports demonstrated 
that the central apoptotic pathways and their connections 
were built by a large-scale literature-based Boolean 
model, which may assume that the apoptotic pathways are 
either present or absent (on/off) [18]. These mathematics 
models can uncover some core pathways s in the apoptotic 
process; however, the PPI network is actually complex, 
non-linear and not simply composed of on/off connections 
or depends on solely biological evidence. The PPI network 
is typically complicated for its nature, with multiple 
connections amongst numerous signaling pathways; thus, 
it is necessary to represent this network by using the Naïve 
Bayesian model that can integrate disparate data types 
into an advantageous platform [19]. We developed Naïve 
Bayesian model, which was well-suited to integrate these 
high-throughput data such as SSBP, gene co-expression 
profiles, DDI and cross-species interolog mapping for 
predicting protein functional connections; thereby, 
constructing the apoptotic PPI network. Moreover, we 
used a multiple analysis method which could integrate 
four golden standards such as degree, GO annotation, 
network module and microarray analysis for identifying 
our apoptotic hub proteins. Compared to previous studies 
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Figure 7: BL-AD008 induces apoptosis by targeting AMPK and ZIPK. (A) BL-AD008-induced apoptosis is partly dependent 
on ZIPK. (B) BL-AD008-induced apoptosis is partly dependent on AMPK. (A) BL-AD008-induced apoptosis is mainly dependent on 
ZIPK and AMPK.

Figure 8: Anti-tumor effects of BL-AD008 in vivo. (A) Anti-tumor activities of BL-AD008 and its toxicity. The treatments began 
on day 1 after grouping (day 0), including vehicle, low dose of BL-AD008 10 mg/kg once a day, median dose of BL-AD008 20 mg/kg 
once a day and high dose of BL-AD008 40 mg/kg once a day for 10 days. Points, mean of tumors; bars, standard deviation. *, P <0.05; 
**, P <0.01; ***, P<0.001 compared with vehicle-treated tumors. (B) The inhibitory rate of tumor. Representative tumors from mice after 
vehicle and BL-AD008 treatment. (C) (a) Immunohistochemistry of proliferative marker KI67. Ki-67 expression in representative tumor 
section of a control mouse and a mouse of the median dose group (×100 magnification). (b) TUNEL immunohistochemistry. TUNEL 
immunohistochemistry in representative tumor section of a control mouse and a mouse of the median dose group (×100 magnification).
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Figure 9: BL-AD008 induces apoptosis in vivo. (A) Immunohistochemistry of cleaved caspase-3 and -8, Bcl-2, Bax, ZIPK, 
p-AMPKα. IHC staining of the mouse orthotopic tumor tissues. IHC was used to determine the expression levels of apoptosis markers, 
which are cleaved caspase-3 and -8, Bcl-2 and Bax. And the ZIPK, p-AMPKα levels increasing (×200 magnification). Tumor tissues 
excised from the median dose group treated mice; *, P <0.05; **, P <0.01; ***, P<0.001. (b) Western blot analysis of AMPK, ZIPK, ERK1, 
cleaved caspase-3, -8 and -9. Tumor tissues excised from the HeLa xenograft mice were lysed.
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for the discovery of novel apoptotic targets based on sole 
evidence [17, 18], we used our multiple analysis which 
may include more biological characteristics and thus 
being more accurate for apoptotic hub protein/target 
identification.

 Previous studies have demonstrated that a 
mechanistic mathematical model can describe the 
temporal evolution of caspase activation, indicating the 
key elements of receptor-modulated caspase activation 
[20, 21]. Another study has reported that prediction of 
caspase cleavage sites can be carried out by Bayesian 
bio-basis function neural networks [22]. In this study, 
we computationally predicted that caspase-3 and -8 were 
involved in the core apoptotic network, and subsequently 
confirmed that caspase-8, -9 and -3 played their roles in 
BL-AD008-treated HeLa cells. Apoptosis is triggered by 
the extrinsic (death receptor) or intrinsic (mitochondrial) 
pathway. Death receptor pathway can be initiated by 
stimulations of members of DR family such as CD95/
Fas, TRAIL, and TNF [20]. Previous studies have shown 
that a model can characterize apoptosis initiation at the 
CD95 DISC, considering activation of procaspase-8 

at the DISC and inhibition of procaspase-8 activation 
by c-FLIP proteins. CD95 signaling defines a threshold 
activation behavior, and the decisions to undergo apoptosis 
depend on the ratio between procaspase-8 and c-FLIP 
proteins [23]. Another model of the cross-talks between 
CD95-mediated apoptotic and non-apoptotic signaling 
have been reported that life/death decision is taken at 
the DISC and defined by DED protein concentrations 
and c-FLIP cleavage product generation [24]. Other 
studies have demonstrated that death receptors play the 
key roles in deciding the apoptotic network and adding 
to signal processing capabilities attributed to receptor 
clustering [25, 26]. Besides, caspases are linked to Bcl-2 
family which is the key regulator of apoptosis and often 
over-expresses in cancer [27, 28]. Therefore, we showed 
the close relationships among caspases, DRs and Bcl-
2 family, indicating that the apoptotic PPI network is 
high-dependable; thus, providing a basic framework of 
apoptosis. Recently, a model of mitochondrial pathways 
has been reported that apoptosome-dependent caspase 
activation depends on the concentration of XIAP, 
indicating the key roles of procaspase-9 and caspase-3, as 

Figure 10: A schematic model of network prediction and experimental validation of a novel AMPK/ ZIPK activator 
BL-AD008 in cervical cancer. (A) We systematically constructed the global protein-protein interaction (PPI) network and integrated 
four different biological evidence to predict apoptosis-related protein connections by the Naïve Bayesian model; (B) Utilizing the Naïve 
Bayesian model and four golden standards, we identified some key apoptotic kinase targets, such as AMPK and ZIPK in cancer; (C) We 
screened many candidate compounds, synthesized some compounds and eventually designed a novel dual-target activator (BL-AD008) that 
induced the death-receptor and mitochondrial apoptosis, which was affected by AMPK and ZIPK in cervical cancer in vitro and in vivo.
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well as of a positive feedback loop between caspase-3 and 
caspase-9 [29]. In this study, we computationally predicted 
some death receptors and Bcl-2 family members that were 
both involved in the apoptotic subnetwork. Subsequently, 
we experimentally validated that BL-AD008-induced 
apoptosis was dependent on both death receptor and 
mitochondrial pathways.

Interestingly, we identified not only the 
aforementioned classical hub proteins such as caspases, 
DR family and Bcl-2 family that can be implicated in core 
apoptotic pathways, but some ‘novel’ hub proteins/targets, 
such as AMPK and ZIPK in core apoptotic pathways. 
Accordingly, we screened the above-mentioned hub 
proteins that may provide a ranked list of high-priority, 
new kinase targets. Previous study has reported that 
targeting PI3KCI/Akt/mTOR signaling with inhibitors 
such as ATP-competitive compounds can improve cancer 
therapeutic effect because the catalytic sites of PI3KCI 
and mTOR share a high degree of sequence homology 
[30]. In addition, other report has demonstrated that the 
dual PI3KCI/mTOR inhibitor PI-103 and the Mdm2 
inhibitor Nutlin-3 is a combination strategy aimed at 
inhibiting PI3KCI/Akt/mTOR signaling and activating 
p53 signaling in AML [31]. Moreover, a recent report 
has shown that ZD6474 can evaluate the feasibility and 
efficacy of combined VEGFR2 and EGFR in breast cancer 
cells, which may be an alternative approach to the ongoing 
conventional cancer radiotherapy [32]. Distinctive from 
these dual-target strategies, we decided to target both 
AMPK and ZIPK by systems biology network prediction, 
which provided the clue that the two kinase could interact 
with many apoptotic kinases and thus play their crucial 
roles in the apoptotic kinase subnetwork of cancer. It is 
well-known that AMP-activated protein kinase (AMPK) 
is a serine/threonine protein kinase, serving as an energy 
sensor, and its activation strongly suppresses cancer cell 
proliferation. Zipper interacting protein kinase (ZIPK), 
also known as death associated protein kinase 3, is a 
serine/threonine kinase that mediates apoptosis in cancer 
cells. Of note, resisting cell death and deregulating cellular 
energetics are the two hallmarks of cancer. Besides, they 
have high similarity (54.3%) in their kinase domains. 
But, there are differences in some amino acid sites 
which make their difference in the tertiary structures. 
Thus, simultaneously targeting the two kinases may be a 
promising avenue for killing two birds with one stone.

Based upon the two target identification and their 
similarity in kinase domains, we synthesized a series of 
candidate compounds and found a novel small molecule 
activator (BL-AD008), and identified this activator could 
induce cervical cancer cell apoptosis by the death-receptor 
and mitochondrial pathways. Moreover, in our study, we 
found that BL-AD008 bear the good anti-tumor activities 
without remarkable toxicities, and also induced apoptosis 
by targeting AMPK/ZIPK in vivo. In our study, we found 
that ZIPK may play more important role than AMPK by 

siRNA experiments, suggesting that apoptosis may be 
main target for BL-AD008 in cervical cancer therapy.

In conclusion, we demonstrate the ability of our 
Naïve Bayesian model-based network for identifying the 
key double targets AMPK and ZIPK, and provide the dual-
target activator (BL-AD008) as a potential new apoptosis-
modulating drug for cervical cancer therapy (Figure 10). 
Therefore, these findings would lead to a comprehensive 
mechanistic insights into identification of more ideal dual 
targets as well as discovery of more new kinase activators. 
Moreover, it would also provide a basis for developing 
more new systems biology network-based approaches and 
more promising strategies for future cancer therapeutics.

MATERIALS AND METHODS

Retrieving functional genomics data

Diverse sets of biological evidence were collected 
from several online databases to build the global PPI 
network. To predict pair-wise protein–protein relationship, 
all the data were preprocessed into pair-wise scores, 
reflecting the similarity between protein pairs. And, 
five online databases included protein interaction data 
from Human Protein Reference Database (HPRD) 
[33], Biomolecular Object Network Databank (BOND) 
[34], IntAct [35], HomoMINT [36] and BioGRID [37]. 

Thus, Gold Standard Positive (GSP) interaction set was 
constructed by these online databases. Gold Standard 
Negative (GSN) interaction set was defined through 
protein pairs in which one protein was from the plasma 
membrane cellular componentand the other was from the 
nuclear cellular component, as assigned by Gene Ontology 
(GO) Consortium. 23,169,177 unique pairs, in total, were 
identified except for 5,275 overlapping pairs with GSP. 
Additionally, the data in Standard Test Set (STS) were 
retrieved from Database of Interacting Proteins (DIP) [38] 
and matched randomly by these proteins, and apoptotic 
proteins were from GO annotation. Raw data were 
constructed by randomly matching amongst all the human 
proteins in UniProt database.

Multiple sources of biological data

Gene co-expression profiles: Proteins that can 
interact with each other often possess similar gene 
expression patterns; thereby, genes that can co-express 
should be more likely to interact than genes that cannot 
co-express. To identify genes that are co-expressed, we 
used microarray data of HeLa cells and primary human 
lung fibroblasts treated with 2.5mM DTT to measure the 
pair-wise co-expression level of related genes in apoptosis 
[39]. The co-expression level is calculated as Pearson 
Correlation Coefficient ρ
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Where X and Y are expression level data vectors of 

length n for two genes, X  and Y  are means, and σX and 
σY are the standard deviations.

Domain-domain interaction (DDI): Because 
protein interactions involve physical associations 
between protein domains, it is proposed that novel protein 
interactions may be predicted by identifying the pairs of 
domains enriched amongst known interacting proteins. To 
test this logic into the context of our GSP and GSN sets, 
domain-domain interaction relationships were downloaded 
from Pfam [40].

Cross-species interolog mapping: The human 
orthologs of model organism proteins often retain similar 
function; therefore, pair of human orthologs that interact 
in a model organism are likely to interact in human. Model 
organisms [Caenorhabditis elegans (4,649), Drosophila 
melanogaster (5,527), Saccharomyces cerevisiae (2,154), 
Rattus norvegicus (15,306), Mus musculus (16,376), and 
Escherichia coli (541)] were mapped into human protein 
pairs, by gene orthologs defined in the Inparanoid database 
by clustering into orthologous groups.

Smallest shared biological process (SSBP): 
Interacting proteins often function in the same biological 
process, and proteins functioning in small, specific 
processes should be more likely to interact than proteins 
functioning in large, general processes. The procedure 
was used to quantify functional similarity between two 
proteins: 1) to identify all biological process terms shared 
by two proteins; 2) to count how many other proteins 
were assigned to each of the shared terms; 3) to identify 
the shared biological process term with the smallest 
count. In general, the smaller and the more specific is 
the biological process term, which indicates the greater 
functional similarity between two proteins. Protein pairs 
were binned by this measure of functional similarity and 
then the degree of similarity was tested for its ability to 
predict PPIs.

Integration and evaluation of biological data into 
the Naïve Bayesian model

We develop a Naive Bayesian model to integrate 
diverse data and make the final interaction predictions in 
an integrated way [41]. Following the Bayesian theorem, 
we compute the posterior odds given n evidence as 
follows:
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Where positive means that two proteins are 

functional related while negative means not. We define
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then Oposterior = Oprior*LR. As Naive Bayesian 
model supposes that each of the evidence is 
conditional independent, we can simplify LR as 
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 As the prior odds is a constant, 

the composite LR corresponding to a type of specific 
biological evidence can be used to measure the predictive 
power or confidence degree for predicting functional 
links. A cutoff of likelihood ratio (LR cut) is represented 
as an indicator whether a protein pair bears the functional 
relation. Then, we filter the initial networks through Naïve 
Bayesian model by selecting the pairs with composite LR 
above the cutoff. A receiver operating characteristic (ROC) 
curve can elucidate the relationship between the sensitivity 
and specificity of a binary classifier system for different 
cut points [42]. The ROC curve can be represented 
equivalently by plotting the fraction of true positive rate 
(TPR) versus the fraction of false-positive rate (FPR). 
Sensitivity and specificity can measure the ability of a 
classifier to identify true positives and false positives in 
a test, and calculated as sensitivity= TP/positives, and 
specificity = 1 – (FP/negatives), where TP and FP are the 
number of true positives and false positives identified by a 
classifier, respectively; whereas positives and negatives are 
the total number of positives and negatives in a test. The 
area under the ROC curve is an indicator of the efficacy of 
the assessment system. Thus, the performances of different 
classifiers appear to be comparable by measuring the ROC 
curves, suggesting that the larger the ROC curve is; the 
better the performance is.

Hub protein identification in apoptosis

We identified hub proteins implicated in core 
apoptotic pathways according to the following four 
golden standards: 1) the degree of each protein: we 
selected the number of degrees which is bigger than or 
equal to 300. 2) The link number of apoptotic protein: 
we choose the number of links to other known apoptotic 
proteins that are bigger than or equal to 300 (the standard 
of classical hub proteins) or 200 (the standard of novel hub 
proteins) respectively. 3) Network topology: we suggest 
that hub proteins often enrich in the “dense area” rather 
than “sparse area” in cancer. 4) Significance analysis of 
microarrays (SAM) analysis is performed on data from 
expression microarray in apoptotic stress to identify genes 
with greatly divergent expressions between normal and 
cancer cells; thus, we indicated that the proteins, identified 
as divergent expression proteins that were extracted as 
functional hub protein.



Oncotarget8085www.impactjournals.com/oncotarget

Modeling, docking and molecular dynamics (MD) 
simulations

The initial three dimensional geometric coordinates 
of the X-ray crystal structure of AAPK1 (AMPK, PDB 
code: 2V8Q) and DAPK3 (ZIPK, PDB code: 3BHY) 
were downloaded from the Protein Databank (PDB), 
respectively. And, we constructed the screening library for 
them containing all the small molecule compounds from 
the latest version of Drugbank (http://www.drugbank.
ca/) and ZINC (http://zinc.docking.org/), respectively. 
The activators were constructed using the Accelrys 
Discovery Studio (version 3.5; Accelrys, SanDiego, CA, 
USA) molecular modeling software and were energy 
minimized with the CHARMm force field. Docking and 
MD simulation were performed according to our previous 
reports [43, 44]. The CDOCKER protocol was employed 
as docking approach to conduct semi-flexible docking. 
5 ns MD simulations were carried out for AMPK-BL-
AD008 and ZIPK–BL-AD008 complexes. The protein–
ligand binding free energy was calculated based on 300 
snapshots taken from 2 to 5 ns MD simulation trajectories 
of the complex.

Chemical synthesis of candidate compounds

All reactions requiring anhydrous conditions were 
performed under an Ar or N2 atmosphere. Chemicals and 
solvents were either A.R. grade or purified by standard 
techniques. Thin layer chromatography (TLC): silica gel 
plates GF254; compounds were visualized by irradiation 
with UV light and/or by treatment with a solution of 
phosphomolybdic acid (20% wt. in ethanol) followed by 
heating. Column chromatography was performed by using 
silica gel with eluent given in parentheses. 1H NMR and 
13C-NMR analysis was determined on a Bruker Avance 
III 400MHz spectrometer and performed using CDCl3 or 
DMSO-d6 as a solvent at room temperature. The chemical 
shifts are expressed in relative to TMS (=0 ppm) and 
the coupling constants J in Hz. The purity of compound 
screened in biological assays was determined to be ≥97% 
by HPLC (Agilent 1100 HPLC system) analysis with a 
photodiode array detector, An atlantis C18 (150 mm × 4.6 
mm, i.d. 5μm) (Waters, Milford, Mass, USA) was used 
with a gradient elution of methanol and HPLC-grade water 
as mobile phase at a flow rate of 1 mL/min. HRMS data 
were obtained using Bruker micro-TOF-Q instrument or 
TOF-MS instrument.

cell culture

The HeLa and C4-I cells were purchased from 
American Type Culture Collection (ATCC, Manassas, 
VA, USA). They were routinely cultured in RPMI-1640 

or Waymouth’s MB 752/1 medium containing 10% 
fetal bovine serum, 100 U/ml streptomycin, 100 U/ml 
penicillin, and 2 mM L-glutamine in a humidified cell 
incubator with an atmosphere of 5% CO2 at 37 °C.

Cell viability assay

The HeLa and C4-I cells were dispensed in 96-well 
flat bottom microtiter plates at a density of 5×104 cells/
ml. After 24 h incubation, they were treated with different 
concentrations of A1 and BL-AD008 for the indicated 
time periods, respectively. Cell viability was measured by 
the 3-(4, 5-dimetrylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT) assay.

Apoptosis assay

The HeLa cells were seeded into 6-well culture 
plates with or without BL-AD008 and cultured for 24 h, 
then incubated with 500 μL hoechst 33258 or rhodamin 
123 staining solution in the dark at 37 °C for 30 min and 
observed under fluorescence microscope. Apoptotic ratio 
was measured by Annexin-V-FLUOS Staining Kit (Roche, 
Germany) according to the manufacturer’s protocol 
followed by FACScan flow cytometry analysis (Becton 
Dickinson, Franklin Lakes, NJ).

Western blot analysis

The HeLa cells were treated with 600nM BL-AD008 
for 0, 12, 24, 36 and 48h respectively. Both adherent 
and floating cells were collected, and then western blot 
analysis was carried out by the method as follow. The 
cell pellets were resuspended with lysis buffer consisting 
of Hepes 50 mmol/L pH 7.4, Triton-X-100 1%, sodium 
orthovanada 2 mmol/L, sodium fluoride 100 mmol/L, 
edetic acid 1 mmol/ L, PMSF 1 mmol/L, aprotinin 10 
mg/L and leupeptin 10 mg/L and lysed at 4°C for 1 h. After 
14,000×g centrifugation for 15 min, the protein content of 
supernatant was determined by the Bio-Rad DC protein 
assay (Bio-Rad Laboratories, Hercules, CA, USA). Equal 
amounts of the total protein were separated by 10-15 % 
SDS-PAGE and transferred to PVDF membranes, the 
membranes were soaked in blocking buffer (5 % skimmed 
milk). Proteins were detected using primary antibodies, 
followed by HRP-conjugated secondary antibody and 
visualized by using ECL as the HRP substrate. 

sirNA transfection

Small interfering RNAs (siRNAs) against human 
AMPK, ZIPK and control siRNA were purchased 
from Invitrogen (Carlsbad, CA). The HeLa cells were 
transfected with siRNAs at 100 nM final concentration 
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using Lipofectamine 2000 (Invitrogen) according to the 
manufacturer’s instructions. The transfected cells were 
used for subsequent experiments 24 h later.

Mouse experiments and tumor xenograft model

The Institutional Animal Care and Treatment 
Committee of Sichuan University approved all studies 
herein. 24 healthy female nude mice (BALB/c, 6–8 
weeks of age, non-fertile and 18–20 g each) were injected 
subcutaneously with HeLa cells (1×107cells/mouse). When 
the tumors reached 100 mm3 in volume (calculated as V = 
L×W2/2). The mice were divided into four groups. Three 
groups were treated with different dose groups of BL-
AD008 once a day by intraperitoneal injection for 10 days 
(low dose group, 10 mg/kg; median dose group, 20 mg/kg; 
high dose group, 40mg/kg), whereas the control group was 
treated with vehicle control (5% CMC-Na). Body weight 
was determined every day until the end of the study. At 
the end of the treatment, all mice were sacrificed. Tumor 
tissue, spleen, liver and kidney were harvested, weighed, 
photographed, prepared for immunohistochemistry or 
lysed for western blotting.

Immunohistochemical analysis and TUNEL assay

Tumor tissues obtained from in vivo studies 
were rinsed in PBS and fixed in 4% paraformaldehyde. 
Samples were dehydrated in gradient ethanol, paraffin 
embedded, and sectioned (4 μm). Deparaffinized sections 
were stained with primary antibodies. The samples 
were incubated overnight with biotinylated secondary 
antibodies. Detection was done with avidin-biotin-HRP 
complex (Thermo scientific, Fremont, CA) and DAB as 
chromogen. Nuclei were counterstained with hematoxylin. 
The positive cells were counted in six fields per tumor 
sample. Results are expressed as the average ± S.D. of 
tumors per group. For TUNEL assay, sections were 
permeabilized with 0.1% Trition X-100 plus 0.1% sodium 
citrate and then incubated with 50 ml TUNEL reaction 
mixture (Roche) at 37 °C for 60 min. After rinsing with 
PBS three times, 50 ml converter-POD was added and the 
tissue cells were incubated in a humidified chamber for 
30 min at 37 °C. DAB substrate was then added, followed 
by counterstaining with hematoxylin. The assay included 
negative controls (without terminal transferase). Apoptosis 
was quantified by counting the number of TUNEL-
positive cells in at least six non-overlapping high-power 
fields on each section and evaluated.

Statistical analysis

All the presented data and results were confirmed 
in at least three independent experiments. The data 

are expressed as means ± S.D. Statistical comparisons 
were made by Student’s t-test. P<0.05 was considered 
statistically significant.
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