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AbstrAct
Somatic Structural Variations (SVs) are a complex collection of chromosomal 

mutations that could directly contribute to carcinogenesis. Next Generation Sequencing 
(NGS) technology has emerged as the primary means of interrogating the SVs of the 
cancer genome in recent investigations. Sophisticated computational methods are 
required to accurately identify the SV events and delineate their breakpoints from 
the massive amounts of reads generated by a NGS experiment. In this review, we 
provide an overview of current analytic tools used for SV detection in NGS-based 
cancer studies. We summarize the features of common SV groups and the primary 
types of NGS signatures that can be used in SV detection methods. We discuss the 
principles and key similarities and differences of existing computational programs and 
comment on unresolved issues related to this research field. The aim of this article is 
to provide a practical guide of relevant concepts, computational methods, software 
tools and important factors for analyzing and interpreting NGS data for the detection 
of SVs in the cancer genome.

introduction

Tumors usually emerge from normal cells by 
accumulating tissue specific acquired mutations in their 
genome [1-3]. These somatic mutations are broadly 
divided into two major categories, Single Nucleotide 
Variations (SNVs) and Structural Variations (SVs) [4, 
5]. SVs were initially defined as genomic alterations 
that involve DNA segments larger than 1kb [6], then 
were widened to include any DNA sequence alteration 
other than SNVs [4, 7]. If somatic acquired SVs alter 
the expressions of oncogenes or tumor suppressor genes, 

they could directly contribute to carcinogenesis [8]. For 
examples, a somatic chromosomal rearrangement fusing 
two separate genes into a new one such as BCR-ABL, 
PML-RARα, EML4-ALK, TMPRSS2-ERG, or recurrent 
translocation of genes such as BRAF and CRAF, is known 
to be carcinogenic [9]. Therefore, detecting somatic SVs 
is an essential component in a comprehensive cancer 
genome analysis.

Traditionally, SVs in the cancer genome can 
be identified by cytogenetic approaches including 
fluorescence in situ hybridization (FISH) [6]. However, 
the relatively low resolution and throughput has limited 
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its detection power in complex genomes of epithelial 
cancers. Microarray-based approaches, including array 
comparative genomic hybridization (array CGH) and 
single-nucleotide polymorphism (SNP) arrays, have 
been widely used in detecting dosage-variant DNA Copy 
Number Variations (CNVs), a subtype of SVs [10-12]. 
However, they are not capable of detecting other types 
of SVs, especially balanced or dosage-invariant DNA 
sequence rearrangements. Furthermore, they have limited 
resolution to determine the breakpoint locations. While 
Sanger sequencing is capable of detecting various types 
of SVs at the nucleotide resolution, the low throughput 
and high reagent cost has prevented its adoption in large-
scale applications. 

The emerging Next Generation Sequencing (NGS) 
technology provides unprecedented opportunities to 
systematically screen SVs in the cancer genomes [13]. 
NGS is a technology that sequences massive amounts of 
short DNA strands in parallel from randomly fragmented 
copies of a genome [14, 15]. Comparing to the Sanger-
style sequencing, NGS is more financially affordable, less 
time consuming, and less labor-intensive. When NGS is 
applied to the whole human genome, it is called Whole 
Genome Sequencing (WGS). Since WGS can generate 
multidimensional information for SV discovery in a 
genome-wide scale, it has become the primary means of 
interrogating the SVs in recent investigations. 

The billions of short reads generated by a WGS 
run poses unique challenges for SVs detection, and 
sophisticated computational methods are needed in order 
to accurately identify the SV events and delineate their 
breakpoints. Although the NGS technology was only 
emerging during the past several years, a number of SV 
detection programs for NGS data have been developed [4, 
16-46], with several capable of detecting somatic SVs in 
cancer genome studies. These programs focus on different 
subsets of SV types, and use various strategies to detect 
sequencing signatures or diagnostic patterns indicative 
of different SV types. As would be expected, each SV 
caller has its own strength and weakness. In this review, 
we begin by briefly reviewing the major types of SVs and 
describing their breakpoint features. We then describe 
the primary types of NGS signatures that can be used 
in SV detections, followed by categorizing the existing 
computational programs into different groups based on 
the NGS signatures they require. For each group, we first 
summarize the principles underlying the SV detection, 
and then comment on the key similarities and differences 
between each computational program. We continue by 
providing discussion about the various challenges in 
somatic SV detection, and conclude with an outlook on 
the near future of this fast evolving field. The aims of this 
article are to serve as a timely and practical guide to NGS-
based somatic SV studies and to discuss the important 
factors that researchers need to consider when analyzing 
NGS data for somatic SV detection. 

sV types and their breakpoint features

sV types

There are multiple types of SVs [47], but in this 
review we focus on the six most basic and common 
ones detected: deletion, insertion, tandem duplication, 
inversion, intra-chromosomal translocation, and inter-
chromosomal translocation (Figures 1 and 2). 

Deletion. A deletion is an event that occurs when 
a DNA segment (one or more contiguous nucleotides) is 
excised from the genome and the two nucleotides adjacent 
to the two ends of the excised segment fuse. 

Insertion. An insertion is an event that occurs when 
the sequence of one or more nucleotides is added between 
two adjacent nucleotides in the genome. 

Tandem Duplication. A tandem duplication is a 
special insertion event, in which a DNA segment is copied, 
and then inserted to the position adjacent to itself. 

Inversion. An inversion is an event that occurs when 
a continuous nucleotide sequence is inverted in the same 
position. 

Intra-Chromosomal Translocation (ITX). An ITX is 
an event that occurs when a region of nucleotide sequence 
is translocated to a new position in the same chromosome 
with inverted orientation. 

Inter-Chromosomal Translocation (CTX). A CTX 
is an event that occurs when a region of nucleotide 
sequence is translocated to a new position in a different 
chromosome. 

Various combinations of the same or different 
SV types can lead to very complex chromosomal 
rearrangement events [48]. CNVs, including copy number 
gains and copy number losses, are generally regarded as 
a subtype of SVs. NGS-based CNV detection programs 
use signatures that are quite different from other SV types, 
and its application in cancer studies has been reviewed 
elsewhere [49].
breakpoint features

In a typical NGS study, the short sequence reads 
(~100 nucleotides in length) from a sample genome will 
be mapped to the reference genome, with SVs detected 
by identifying unique patterns (or “signatures”) created by 
the SV events. These diagnostic signatures are connected 
to the SV breakpoint features, including number of 
breakpoints, read orientations (also called strands), and 
coordinate relationships. Here, a breakpoint is a sample 
genomic position on the two sides of which the base pair 
coordinates or orientations mapped to a reference genome 
are not consistent. That is, assuming two continuous base 
pairs aNs and bNs in a sample genome have corresponding 
mapping coordinates aNr and bNr, with orientations sa and 
sb respectively, in the reference genome, then aNs and bNs 
define a breakpoint under any of the following conditions: 
1) bNr and aNr are not on the same chromosome, 2) bNr and 
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aNr are on the same chromosome but bNr – aNr ≠ 1 or sa ≠ sb 
. Orientation is the base pair coordinates order in a sample 
genome relative to reference genome. If the orientation in 
a sample genome is the same as that in reference genome, 
it is called “+” direction; otherwise, it is “-” direction. As 
the direction of a fragment relative to a sample genome 
is not known, the absolute orientation lacks biological 
meaning. The orientation only becomes interesting when 
it flips (from + to –, or from – to +) at a breakpoint, which 
might be captured in the sequencing data. Each type of SV 
has its own breakpoint signatures, which are summarized 
in Figure 1.

nGs signatures of sVs 

As shown in Figure 2, different types of SVs could 
have different NGS diagnostic signatures across the 
breakpoints. In this review, we only consider signatures 
from paired-end sequencing, as single-end sequencing 
has rarely been adopted in current applications. The 

accuracy of SV detection depends on the availability of 
NGS diagnostic signatures of different SV types, which 
is affected by both the sequencing platform and the 
alignment tools. Several platforms of NGS have emerged, 
and some of them are commonly used [14, 15, 50-52]. 
Likewise, multiple short reads alignment tools have 
been developed. [53-58]. Different alignment tools or 
different parameter settings of the same tool will result in 
different alignment results [59, 60], which will impact the 
performance of SV detections. There has been a thorough 
discussion of sequencing platforms and/or alignment 
tools in literatures. In this section, we focus on the basic 
elements of NGS signatures for SV detections, which 
consist of discordant read-pairs and splitting reads. 

Discordant read-pairs. Since the paired-end NGS 
technique sequences both ends of each DNA fragment with 
library insert sizes specific to a given library preparation 
method and size selection procedure, the two paired reads 
will be generated at an approximately known distance in 
the sample genome. A signature of a discordant read-pair 
is formed when the mapping span and/or orientation of the 

Figure 1: breakpoint signatures of sVs. (a) In each diagram, the up strands are from sample genome, and the lower strand are from 
reference genome. (b) Depending on the mapping of the inserted strand B, other relationships of coordinates in reference genome can be 
determined (details not shown). (c) Tandem duplication creates one or multiple breakpoints. NGS is able to detect either 1 (novel tandem 
duplication) or 0 (non-novel tandem duplication) breakpoint. 
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read-pairs crossing the breakpoint are inconsistent with the 
reference genome (read-pairs 1 in Figure 2). Specifically, 
both reads of the pair can be mapped to the reference 
genome, but they may map to different chromosomes or 
different orientations, or their coordinates may not agree 
with the insert size. 

Splitting reads. A sequence read that spans a SV 
breakpoint is called a splitting read (see read-pairs 2 in 
Figure 2). If both splitting parts of a read can be mapped 
and its mate is uniquely mapped to the reference genome, 
the splitting read is further masked as a soft-clipped read 
by some mapping algorithms such as Burrow-Wheeler 
Alignment(BWA) tool [53]. Otherwise, it is categorized 
as an un-mapped read. The splitting reads used by current 
SV detection tools are all soft-clipped reads, and the term 
“splitting reads” is generally referred as soft-clipped reads. 
Therefore, a “splitting read” in the following sections 
refers to soft-clipped read if no further clarification. 

Together, discordant read-pairs and splitting reads 
can corroborate SV events, but they have different 
inherited strength and weaknesses for certain types of 
SVs. Generally, discordant read-pairs are more powerful 
than splitting reads at identifying large SV events, 
especially ITX and CTX, which are characterized by 
substantial difference from insert size and/or anomalous 
orientation. However, it has limited power to determine 
small SV events, such as small insertion and deletion, 
which are generally characterized by small deviation from 
the expected length. Furthermore, the breakpoints of small 
insertion or inversion events are less likely to be captured 
by discordant read-pairs. On the other hand, splitting 
reads for small events can still be mapped to the reference 
genome as soft-clipped reads or reads with internal gaps, 
which makes splitting reads more powerful in detecting 
small deletions, insertions, and inversions. Moreover, 
splitting reads are able to pinpoint the breakpoint to the 
nucleotide resolution while discordant read-pairs can only 
identify the approximate location of breakpoints. 

sV detection programs for WGs data

Sophisticated computational algorithms are crucial 
to accurately detect SVs from WGS data. Though mostly 
applied to cancer studies, a number of SV detection 
programs for NGS data have been developed during the 
past several years. Here, we describe 9 representative 
methods including PEMer [16], GASV [17], BreakDancer 
[4], HYDRA [18], SVDetect [19], CREST [20], DELLY 
[21], PRISM [22], and LUMPY [37]. They are listed 
in Table 1 by chronological publishing date. We also 
applied the selected SV detection programs to tumor–
normal Illumina Whole-genome sequencing of a bladder 
cancer patient. The computing performances, including 
memory usage and runtime statistics of these SV 
detection programs, are recorded and summarized in the 
Supplementary Material of this review. There are other 
excellent methods available and the methods included 
here are not exclusive, but they represent a fair survey of 
commonly used SV callings tools for WGS data. 

The selected SV detection programs can be roughly 
divided into three categories depending on the NGS 
signatures they used: 1) method based on discordant read-
pairs; 2) method based on splitting reads; and 3) method 
combining discordant read-pairs and splitting reads. 
discordant read-pairs based programs 

For programs based on discordant read-pairs, we 
describe PEMer, GASV, BreakDancer, HYDRA, and 
SVDetect in this section. The discordant read-pairs are 
usually selected based on program-specific criterion. The 
common framework of these programs is first to cluster 
or regroup the discordant read-pairs, with each cluster 
(usually supported by 3 or more consistent discordant 
read-pairs) representing a breakpoint or SV event. Then, 
the SV events are classified by their breakpoint features. 
Generally, these programs are more powerful in detecting 
large SV events than small SV events as described before. 
The only exception is BreakDancer, which designed a 
special mode for detecting small deletions and insertions 
with size of 10-100 nucleotides. As the clustering or 
regrouping of the full set of discordant read-pairs is a NP-

table 1: A list of selected programs for sV detection using nGs data
Signature 
reads/read 
pairs

Method Publishing 
Month-Year

Detectable SV type
small 
deletion

large 
deletion

small 
insertion

large 
insertion

small 
inversion

large 
inversion

tandem 
duplication ITX CTX

Discordant 
read pairs

PEMer[16] Feb-2009 √ √ √
GASV[17] Jun-2009 √ √ √ √ √
BreakDancer[4] Sep-2009 √ √ √ √ √ √ √
HYDRA[18] Mar-2010 √ √ √ √ √ √ √ √ √
SVDetect[19] Jun-2010 √ √ √ √ √

Splitting 
reads CREST[20] Aug-2011 √ √ √ √ √ √ √ √

Discordant 
read pairs 
and splitting 
reads

DELLY[21] Sep-2012 √ √ √ √ √ √ √
PRISM[22] Oct-2012 √ √ √ √ √ √ √
LUMPY[37] Jun-2014 √ √ √ √ √ √ √
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complete problem, heuristic methods are necessary for 
those programs. These programs differ from each other 
by their means of clustering the discordant read-pairs, as 
described below. 

PEMer can detect large insertions, large deletions, 
and inversions. After the paired-end read-pairs are mapped 
to a reference genome, read-pairs with abnormal insert 
sizes, coordinate orders, or orientations are identified as 
discordant read-pairs. The discordant read-pairs that are 
likely originating from the same SV are combined into one 
cluster through a coverage-adjusted multi-cutoff scoring 
strategy. If there are multiple datasets from different 
paired-end mapping libraries or from different NGS 
platforms, the clusters could be merged. PEMer reports 
the merged clusters and computes statistical significance 
(i.e., E-values and P-values) for the different types of SVs 

identified. 
GASV represents each possible breakpoint region 

supported by a discordant read-pair as a polygon in a 
plane, and then it uses a plane-sweeping algorithm to 
identify the read-pairs that support the same breakpoint by 
computing intersections of polygons. The type of SV event 
is then classified by strand orientation and breakpoint 
coordinates. GASV can also be used for aCGH data, and 
cluster multiple measurements from different platforms in 
a single sample. 

BreakDancer has two modes, BreakDancerMax 
and BreakDancerMini, with the latter designed for calling 
insertion and deletions of 10-100 base pairs in size. In 
BreakDancerMax, the mapped read-pairs in WGS data are 
first classified into SV types (normal, insertion, deletion, 
inversion, ITX, and CTX) based on read-pairs separation 

Figure 2: diagram of sV types and nGs signatures, before and after mapping. A) Deletion; B) Insertion; C) Inversion; D) 
Tandem duplication; E Intra-chromosomal translocation (ITX); F) Inter-chromosomal translocation (CTX).
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distances and orientations, user-specified threshold, as well 
as the empirical insert size distribution estimated from 
the alignment of each fragment library. The algorithm 
then searches for genomic regions which anchor more 
discordant read-pairs than expected on average, and for 
each region a putative SV is derived from the signatures 
of the discordant read-pairs. The start and end coordinates 
are defined as the inner boundaries of the constituent 
regions that are closest to the predicted breakpoints. A 
confidence score is also calculated for each putative SV 
based on a Poisson model that takes into consideration 
the number of supporting discordant read-pairs, the size 
of the SV-anchoring region, and the sequencing coverage. 
BreakDancerMini uses a similar method to predict 
SVs as BreakDancerMax does, with the exception that 
BreakDancerMini classifies the read-pairs to normal and 
discordant pairs using a sliding window test that examines 
the difference of separation distances between read-pairs 
that are mapped within the window versus those in the 
entire genome. This strategy can discover additional 
discordant read-pairs that are missed by BreakDancerMax. 
One of the first algorithms developed for SV detection 
using NGS data, BreakDancer has been used in a number 
of cancer genome sequencing projects [61-67].

HYDRA is designed to localize SV breakpoints 
from discordant read-pairs by using a heuristic approach. 
It can detect events including deletions, duplications, 
inversions, insertions of arbitrary length, and large 
translocations. It aims to accurately map diverse classes 
of SVs, including challenging cases involving repetitive 
elements such as transposons and segmental duplication. 
It starts by comparing the mappings of discordant read-
pairs and identifies collections of discordant read-pairs 
with consistent patterns. Each collection is a group of 
discordant read-pairs whose mappings corroborate a 
common SV event. HYDRA employs a greedy approach 
to identify a list of SVs from the collections of discordant 
read-pairs. More specifically, for each putative SV, 
HYDRA examines the supportive mappings and chooses 
the single mapping (the “seed”) that is supported by the 
most other mappings. Subsequent mappings are integrated 
into the SV call in decreasing order of their overlap with 
the seed. The breakpoint of a SV is collectively defined 
as precise as possible by a collection of discordant read-
pairs. HYDRA usually does not classify variants or group 
multiple breakpoints into a single variant call, which 
reduces assumptions about variant structure and increases 
sensitivity, but necessitates a subsequent classification 
step. 

SVDetect can detect large insertion, large deletion, 
inversion, tandem duplication, and CTX. Similar to 
other programs using discordant read-pairs, the first step 
in SVDetect is to regroup all pairs that are suspected to 
originate from the same SV. It then uses a sliding-window 
strategy to identify groups of discordant pairs sharing a 
similar genomic location, and each pair of these genomic 

location windows is called a “link”. The identified links are 
filtered by using user-defined parameters such as minimum 
number of discordant read-pairs supporting a link, and the 
filtered links are clustered by their orientations and order 
of supporting reads, and insert sizes. The SV types of these 
clusters are predicted based on the breakpoint signatures. 

With respect to somatic SV detections in cancer 
genomes, GASV, BreakDancer, and SVDetect can 
compare SVs across multiple samples, and can call 
somatic SVs directly from tumor and matched normal 
samples. On the other hand, the current versions of PEMer 
and HYDRA do not have the functionality to call somatic 
SVs directly from tumor and matched normal WGS data, 
and requires a post processing step to eliminate germline 
SVs from tumor for somatic SV detection.
splitting reads based programs

As a representative program solely based on 
splitting reads to determine the positions of somatic SV 
breakpoints, CREST is the focus of this section. CREST 
identifies the first part of a breakpoint by the presence of 
splitting reads, and then detects its partner by an assembly-
mapping-searching-assembly-alignment procedure. This 
procedure includes the following steps: 1) assembling the 
unaligned portions of splitting reads clustered to the first 
part of a breakpoint to determine a contig (which is the 
sequence of the longest unaligned portion); 2) mapping 
the contig to the reference genome and searching the 
possible positions for the second part of the breakpoint; 
3) assembling the unaligned portions of soft-clipped 
reads clustered to the second part of a breakpoint to 
determine another contig; 4) aligning the second contig 
to the reference genome to see whether it confirms the 
position of the breakpoint’s first part. If both parts of the 
breakpoint are confirmed, CREST classifies SV event by 
the signatures in orientations and breakpoint coordinates. 

By using a splitting read signature, CREST can 
pinpoint the breakpoints of SVs to nucleotide resolution. 
Furthermore, as this algorithm uses information from both 
sides of a breakpoint to double check its accuracy, the false 
positive rate at detecting breakpoints is low, especially in 
regions with high mapping rates. Applying CREST to a 
human melanoma cell line identified 160 somatic SVs, and 
over 80% of them were validated by Sanger sequencing 
[20]. CREST has been adopted in a number of cancer 
genome sequencing projects [68-80]. The false positive 
calls are usually coming from mis-alignment, which could 
be reduced by manual review of the aligned splitting 
reads at the breakpoints. Specially designed for detecting 
somatic SVs, CREST can filter out germline events with 
overlapped splitting reads in tumor and normal WGS 
data. SVs in regions with low mappability, however, pose 
major challenges for CREST. Since it examines the whole 
reference genome for mapping the unaligned portion 
of soft clipped reads, the current version of CREST is 
relatively time consuming and memory demanding. 
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Programs combining discordant read-pairs and 
splitting reads

For programs combining discordant read-pairs and 
splitting reads, we describe DELLY, PRISM and LUMPY 
in this review. DELLY and PRISM use the two types of 
signatures in a stepwise manner, while LUMPY uses the 
two types of signatures in parallel and integrates the results 
by a probabilistic method. More specifically, DELLY and 
PRISM first cluster discordant read-pairs to determine 
SVs, and then refine the results with splitting reads to 
reach single-nucleotide breakpoint resolution by using 
a specially designed aligner. The two programs differ in 
the way of clustering discordant read-pairs and aligning 
splitting reads. LUMPY aligns discordant read-pairs and 
splitting reads independently, determines the breakpoint 
position intervals with probability at each position, and 
then clusters the overlapping intervals and integrates their 
probabilities to determine the SV types and breakpoints. 

DELLY sorts and bins the discordant read-pairs into 
an undirected, weighted graph which groups read-pairs 
supporting the same SV based on their orientations and 
coordinates. Each type of SV is analyzed separately and 
thus each deletion, inversion, tandem duplication, and 
translocation can be nested into a single complex event. 
DELLY does not support insertion detection. Following 
the discordant read-pairs analysis that identify breakpoint 
containing genomic intervals, the splitting reads analysis 
can refine the breakpoint to nucleotide resolution using a 
fast k-mer-based alignment algorithm. A special version 
of banded alignment is implemented by combining 
the alignment results from SV-containing reference 
regions, with the breakpoint determined by selecting the 
position that gives the highest combined score. Since its 
release, DELLY has been used in several cancer genome 
sequencing projects [77, 78, 81-83]

PRISM starts with identifying discordant read-pairs 
and splitting reads. The discordant read-pairs are clustered 
using a greedy algorithm that groups together pairs with 
similar mapping distance and orientation. Then, it uses a 
modified Needleman-Wunsch (NW) algorithm for split 
mapping of splitting reads. In the split mapping step, it 
first tries to align splitting reads in the concordant region, 
allowing for one insertion or deletion with fixed penalty. If 
there are discordant clusters within the concordant region, 
the splitting reads is aligned in a way that allows one part 
of it to map to the concordant region and the other part 
to the discordant region. Lastly, PRISM calls the SV loci 
and filters the initial list of SVs based on the number of 
supporting reads and the alignment score, with an option 
to set thresholds for sensitivity and specificity. PRISM is 
able to detect multiple SV types, including arbitrary-sized 
inversions, arbitrary-sized deletions, small insertions, and 
tandem duplications. The authors also developed a tool 
called PRISM-CTX to call CTX.

LUMPY provides a framework based upon a general 
probabilistic representation of an SV breakpoint that 

allows any number of alignment signals to be integrated 
into a single discovery process. While the major types 
of signals are alignment of discordant read-pairs and 
splitting reads, other signals such as read depth calls and 
prior knowledge of breakpoint can also be incorporated. 
LUMPY aligns the discordant read-pairs and determines 
a pair of intervals upstream or downstream the mapped 
reads for possible breakpoint positions. The size of the 
intervals and the probability of observing a breakpoint 
at each position are based on the empirical size of the 
sample’s fragment library. LUMPY considers splitting 
reads with two or more splitting parts. It aligns each 
splitting part of a read to the reference genome, and aligns 
the adjacent splitting part to non-adjacent locations in the 
reference genome. To account for the possible errors in 
sequencing and alignment, each alignment pair maps to 
two breakpoint intervals centered at the middle point and 
decrease exponentially toward their edge. The size of the 
interval is a configurable parameter and is based on the 
quality of the sample and the specificity of the alignment 
algorithm. Once the evidence from different alignment 
signals is mapped to the breakpoint intervals, overlap 
intervals are clustered and the probabilities are integrated. 
A key difference between LUMPY and DELLY/
PRISM is that it simultaneously instead of sequentially 
integrates the multiple SV detection signals during SV 
discovery. Any clustered breakpoint region that contains 
sufficient evidence (user-defined argument) is returned 
as a predicted SV. The SV types identified by LUMPY 
include deletions, inversions, tandem duplications, and 
CTX. Identification of small insertions that are spanned 
by a discordant read-pair or contained by a splitting read is 
not explicitly supported by LUMPY, and a post-processing 
step is required. 

In terms of somatic SV detections in cancer study, 
DELLY and LUMPY can compare SVs across multiple 
samples, and can call somatic SVs directly from tumor 
and matched normal samples. A post processing step to 
eliminate germline SVs is required for PRISM, the current 
version of which does not have the mode to directly call 
somatic SVs from tumor and matched normal WGS data. 

challenges

While a number of computational tools have 
been developed for NGS-based SV calling in the cancer 
genome, none of them is comprehensive enough to 
include all SV types and reconstruct all the SV events at 
high accuracy. There are still many challenges in somatic 
SV detection, which are introduced by the limitations of 
NGS technologies, complexities of tumor samples, and 
difficulties of SV event reconstruction and SV mechanism 
inference. 
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Limitations of nGs technologies

While NGS has provided unprecedented power in 
SV detection as aforementioned, the short read length 
data generated also introduces the issue of read mapping 
ambiguity. This is especially problematic for reads from 
repetitive regions [84], which are known to be SV hotspots 
[21, 85]. When a read in a discordant pair or a part of a 
splitting read can be mapped to multiple locations in the 
reference genome, it becomes challenging to determine 
where the corresponding SV is from. While it might be 
possible to report multiple SV candidates with varying 
confidence scores, it will bring additional burdens for 
Sanger validation by including more potential false calls. 
Soft clustering, which allows the use of mate pairs with 
multiple good mappings, has been used to improve SV 
detection performance [86]. Many of the latest mapping 
programs have options to select the best mapped reads and 
to manage suboptimal ones, but few existing SV detection 
methods take full advantage of all the information 
available. 

The paired-end sequencing strategy commonly 
adopted in NGS technology provides an alternative way 
to increase effective read length and mapping accuracy. 
One of the major advantages of paired-end sequencing 
is that the mapping of one end will aid and improve the 
mapping quality of the other end. However, paired-end 
sequencing introduces additional issues such as the wide 
range of insert size for a specific sequencing library and 
the increase in cost associated when using multiple library 
sizes. Smaller insertion and deletion events introduce 
discordant reads that are often missed. Even if larger insert 
sizes and multiple sequencing libraries are used, the issue 
of multiple mappings remains for longer repeat elements 
that number in the millions in the human genome. Due 
to the countless combinations of possible SV event sizes 
and library insert sizes (Figure 3), and the fact that many 
complex SV events exist, some splitting reads may not 
be mapped. Therefore, the ability of short reads and 
read-pairs generated by NGS to accurately capture SV 

signatures relies on multiple factors, including the type, 
size and location of a SV event, the library insert size 
distributions, the mapping algorithms, and the chance of 
signature reads being mapped to correct reference position. 

A commonly used strategy for improving SV 
detection is to use deeper coverage to compensate for 
shorter reads, as the accuracy of break-point detection 
will improve with increasing read depth. However, the 
nature of short read length of current NGS technologies 
poises challenges that coverage depth cannot always 
overcome, especially for SVs in low complexity regions. 
These limitations might be overcome by longer sequence 
reads generated from new sequencing technologies, such 
as Single Molecule Real Time (SMRT) sequencing from 
Pacific Biosciences (PacBio) [87]. While the current 
SMRT sequencing platform has higher sequence error 
rates, the long reads generated by this platform has 
provided tremendous advantages [88] in hybrid (correcting 
read errors by short reads) [89] or non-hybrid [90] de novo 
genome assemblies and in resolving genome complexities 
including SVs [91]. Recently, PacBio released their new 
P6-C4 chemistry that significantly decreases error rates 
and expands sequence length (median length >14 kb). The 
continuing improvements in sequencing technologies and 
their adoption in cancer genome sequencing are expected 
to improve our capacity to detect somatic SVs.
complexities of tumor samples

Another challenge in somatic SV detection comes 
from the complexities of tumor samples, including tumor 
purity and heterogeneity. Tumor samples are inevitably 
contaminated by normal tissues of unknown fraction. 
Tumor sample could contain multiple sub-clones that 
evolve due to tumor progression or tumor stem cell 
populations, and sub-clones are important to tumor 
evolution and cancer relapse [3]. With normal tissue 
intermixed in a tumor sample, the portion of signature 
reads supporting a somatic SV event is diminished, along 
with the number of supporting discordant read-pairs or 
splitting reads. This issue will need to be considered in 

Figure 3: An exemplary illustration of the impact of sV event sizes and library insert sizes on the nGs signatures. I: 
length of insertion event (purple strand); r: read length; s: length of un-sequenced part in a read-pair; insert size equals 2r+s, assuming reads 
are in same length.
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both study design [92, 93] and data analysis stages in order 
to achieve improved detection sensitivity and specificity. 
For example, SV detection programs usually specify 
the cutoff numbers of signature reads (e.g., CREST and 
DELLY) or score the supporting evidence (e.g., LUMPY) 
to make a detection call. An accurate cutoff or score will 
depend on tumor cell percentage and the sequencing read 
depth of the investigated sample. As the tumor purity 
in different samples might vary greatly and are often 
unknown, it is challenging to determine the proper cutoff/
score for accurate SV calling. Likewise, the SV events 
from a minor clone are difficult to identify due to the 
diminished signature reads. Some signature reads from 
a minor clone might even be filtered out as noise in the 
processing step. While increasing the sequencing depth 
can help capturing low-purity tumor SVs and/or sub-clonal 
SVs, the cost could become an issue in practice as higher 
coverage of sequencing inevitably requires higher costs. 
Furthermore, the sequencing coverage is not uniformly 
distributed across the genome, which creates substantial 
difficulties for SVs in regions with lower coverage. 
complexity of tumor genome

Compared with germline sample, tumor samples 
often display very different and highly rearranged 
genomes, resulting in complicated SVs [48, 94], which 
are hard to decipher. Complicated SV events are a series 
of SVs that happen within a small genomic range such 
that some of the signatures of those events are removed. 
Therefore, complicated SV event inference cannot be 
solely based on single breakpoint, and a comprehensive 
analysis of all breakpoints is necessary. For example, 
chromothripsis is a phenomenon in the cancer genome 
[94-97] that features massive inter-chromosome 
translocations between several chromosomes and 
confined segmental copy number status. Detection and 
inference of chromothripsis is still in the early stage of 
development with few analysis methods available [98, 
99]. As complicated SV events most likely happen in a 
stepwise manner, the study of cancer genome evolution [3, 
100-103] might help to reconstruct the SV events. 
reconstruction and Validation of sV events

Most SV detection methods identify breakpoints 
using the signatures mentioned in previous section and 
infer the SV types by breakpoint signatures. When a 
SV event has multiple breakpoints, those breakpoints 
could be characterized independently by splitting reads, 
discordant read-pairs, or both. Some breakpoint features 
are unique to a specific type of SV event, while others 
are shared by multiple events. For example, one of the 
two breakpoints in an insertion event with an inserted 
DNA segment from the same chromosome has a unique 
signature, while the other one has the same signature as 
the breakpoint of a deletion event (Figure 1). Furthermore, 
an insertion event with an inserted DNA segment from 
another chromosome may initially be identified as two 

CTX events. After characterizing all breakpoints, a post-
processing step is necessary to infer the SV events that 
generate those breakpoints. This procedure is generally 
lacking in existing SV detection methods. Furthermore, the 
intermixture of breakpoints from major and minor clones 
of a heterogeneous sample creates tremendous troubles 
in SV event inference. Given an imperfect list of SVs or 
breakpoints, reconstruction of the underlying chromosome 
or genome structure remains a great challenge. 

Often an orthogonal experimental method is 
needed to validate predicted SVs from NGS data, and the 
commonly used approach is PCR amplification followed 
by Sanger Sequencing [20, 21, 39]. PCR amplification can 
confirm larger size events (bounded by maximum amplicon 
size) [21, 39] with carefully designed primers. The failure 
of PCR reactions may not reject the existences of SV 
candidates, as the failures might be caused by sequence-
specific experimental conditions such as thermocycle 
or primer designs. After PCR, Sanger sequencing is 
employed as the approach in validating SV breakpoints 
[20] and small insertions and deletions [39] at nucleotide 
resolution. When multiple breakpoints are within the range 
of Sanger sequencing, inference of complex SV events 
might be achieved by designing multiple groups of primer 
pairs corresponding to all possible events combinations. 
However, the aforementioned difficulty of reconstruction 
of SV events from a list of breakpoints also creates 
substantial challenges in confirming the predicted SV 
events. Furthermore, the increased costs of reagents, labor, 
and time in those experiments will set limits to the amount 
of SV candidates that can be evaluated. Therefore, in 
practice only a selected portion of predicted SV candidates 
will subject to validation. 

As an alternative approach, one can merge SV 
calls from multiple programs based on the assumption 
that common calls could raise their confidence level and 
increase overall sensitivity. Due to the aforementioned 
difficulties in reconstruction of SV events, it is more 
feasible to compare the predicted breakpoints from 
different tools, rather than to evaluate the predicted SV 
events. Since the programs based on discordant read pairs 
and splitting reads have different power in pinpointing the 
breakpoints, one can allow some margins (for example, 
±50 nucleotides) for two predicted breakpoints to be 
considered as concordant. It should be noted that the 
standard for evaluating SV calls from different programs 
is generally lacking, and there is a need for the community 
to have the rules set. 
inference of sV mechanisms

SVs might be triggered by replication or 
transcription errors, genotoxic or oxidative stress, 
or combinations of these [104]. Three main types of 
mechanisms are recognized to cause SVs [8, 105], 
including non-allelic homologous recombination (NAHR), 
non-replicative non-homologous repair, and replication-
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based mechanisms. While it remains challenging to 
infer SV mechanisms in the cancer genome, a closer 
examination of identified SVs can help to understand the 
underlying mechanism. For example, a SV in a region 
with loss of heterozygosity is likely caused be NAHR; 
SVs involving repetitive and transposable elements are 
likely caused by retro-transposition and microhomology-
mediated break-induced replication [106]; and ITX and 
CTX may result from random non-homologous end 
joining of fragments after chromothripsis [94]. Conversely, 
having prior knowledge of a SV mechanism would aid in 
selecting the best possible SV event from the candidates, 
and therefore improve the analysis accuracy in both SV 
detection and event reconstruction. 

concLusions And outLooks

The revolutionary advances of NGS technologies 
and their growing adoption in cancer research have made 
it possible to screen for somatic variations in cancer 
genomes on an unprecedented scale. As one of the most 
clinically important somatic aberrations, SVs in tumor 
genomes is believed to have high probability of harboring 
oncotargets. Sophisticated computational tools are 
required to couple with NGS methodologies to accurately 
detect somatic SVs from the massive amount of raw data 
generated for each sample. During the past several years, a 
number of computational methods have been developed to 
identify SVs based on their NGS signature. Each method 
has its own unique limitations and strengths, such as read 
mapping or clustering strategy, use of discordant read-
pairs and/or splitting reads, and focus on certain types of 
SVs. In this article, we reviewed nine methods to provide 
a guide of the analytical tools developed in this research 
field. 

Despite unprecedented progress in our ability to 
map and analyze SVs in the cancer genome, accurate and 
complete detection of somatic SVs remains challenging 
and we are far from understanding the causes and 
consequences of the SVs that are observed [107]. The 
challenges caused by the limitations of NGS technologies, 
complexities of tumor samples, difficulties of SV event 
reconstruction and SV mechanism inference remain. 
Nevertheless, the last 5 years has witnessed tremendous 
advances in this exciting field, and we expect new analysis 
methods built on improved sequencing techniques will be 
developed to tackle these challenges and provide better 
SV detection.
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