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ABSTRACT
Glioblastoma (GB) is a highly invasive primary brain tumor that almost 

systematically recurs despite aggressive therapies. One of the most challenging 
problems in therapy of GB is its extremely complex and heterogeneous molecular 
biology. To explore this heterogeneity, we performed a genome-wide integrative 
screening of three molecular levels: genome, transcriptome, and methylome. We 
analyzed tumor biopsies obtained by neuro-navigation in four distinct areas for 
10 GB patients (necrotic zone, tumor zone, interface, and peripheral brain zone). We 
classified samples and deciphered a key genes signature of intratumor heterogeneity 
by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. 
At the genome level, we identified common GB copy number alterations and but a 
strong interindividual molecular heterogeneity. Transcriptome analysis highlighted 
a pronounced intratumor architecture reflecting the surgical sampling plan of the 
study and identified gene modules associated with hallmarks of cancer. We provide 
a signature of key cancer-heterogeneity genes highly associated with the intratumor 
spatial gradient and show that it is enriched in genes with correlation between 
methylation and expression levels. Our study confirms that GBs are molecularly highly 
diverse and that a single tumor can harbor different transcriptional GB subtypes 
depending on its spatial architecture.

INTRODUCTION

Glioblastoma (GB) is the most frequent and 
most aggressive malignant primary brain tumor [1, 2]. 
The current treatment strategy consists of surgery 
and concurrent adjuvant radiotherapy in combination 
with alkylating agents such as temozolomide, but GB 
prognosis remains extremely poor with a median survival 

of 12 to 15 months [3]. This uniformly poor prognosis 
of the disease is however associated with a notable 
variability at the histological level - as the ‘multiforme’ 
component of its former name implies - and by a striking 
molecular heterogeneity [4]. This heterogeneity has great 
significance for the general outcome of the malignancy 
as it intrinsically contributes to tumor aggressiveness 
and constitutes a clear issue for the design of 
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effective therapies [5]. During recent years, many efforts 
were made to characterize GB molecular interpatient 
heterogeneity, and comprehensive profiling studies have 
identified underlying genomic and epigenomic aberrations 
that are associated with GB initiation and progression 
[6–10]. These molecular subclasses and signatures are 
however far from homogeneous and the question of their 
clinical relevance remains [11].

The clinical hallmarks of GB are its aggressive 
growth and inexorable recurrence despite multimodal 
therapy. Complete surgical resection of these infiltrative 
tumors is virtually impossible and GB almost 
systematically recurs after therapy, mainly at the margin of 
the resection cavity in the peritumoral brain zone [12, 13]. 
Deciphering GB intratumor heterogeneity at the molecular 
level is needed to understand this systematic recurrence. 
Intratumor heterogeneity, which refers to the presence 
of multiple, different cell subpopulations within a single 
tumor [14], contributes to tumor growth, progression and 
treatment failure [15]. In cancer, two complementary 
mechanisms have been proposed to explain this diversity 
in tumor cell populations: varying degrees of ‘stemness’ 
within cancer stem cells and clonal evolution [16–19]. 
In GB, the histopathologically observed coexistence of 
morphologically heterogeneous areas [20] has already 
been associated at the molecular level with different 
cells of origin [8], area-specific chromosome aberrations 
[21], mutations [22] and gene expression patterns 
[23, 24]. Comprehensive studies of GB intratumor 
heterogeneity are however rare and a better understanding 
of this heterogeneity will be essential to design effective 
therapies.

The Grand Ouest Glioma Project: ‘from the core 
to beyond the margin’ (GOGP) is a translational program 
based on a multimodal analysis of GB areas [25–28]. 

This project aimed to provide insights on the origin 
of GB recurrence by characterizing GB intratumor 
heterogeneity. This intratumor heterogeneity was 
spatially defined from the core to the periphery: the 
necrosis, the tumor mass, the margin (interface between 
tumor and parenchyma, with decreasing tumor cells 
density), and isolated infiltrated cells in the normal 
parenchyma. While tumor mass and margin have been 
recently studied [24], necrotic and peripheral brain zones 
have been particularly neglected.

Here, we collected fragments in the four tumor 
zones for ten GB patients by means of computer-assisted 
neurosurgery. Our study presents an integrated genome-
wide analysis of GB intratumor heterogeneity at three 
molecular levels: genome, transcriptome, and methylome. 
We show that GB intratumor heterogeneity is linked to 
genome variations and we highlight a strong modularity in 
the GB transcriptome. We then characterized a key cancer-
heterogeneity genes signature linked to GB intratumor 
architecture. Our results confirm that tumor fragments 
from the same patient may be classified into different GB 
molecular subtypes.

RESULTS

Histological characterization of GB areas 
defined by MRI

The histology analysis of GB areas – necrotic 
zone (NZ), tumor zone (TZ), interface (I), and 
peripheral brain zone (PBZ) – by the central committee 
of neuropathologists is presented in Table 1. Seventy 
percent of NZ and TZ biopsy specimens presented the 
full histological features associated with a necrotic or a 

Table 1: Histological characterization of GB areas defined by magnetic resonance imaging (MRI). 
Histological features are reported for each sample in terms of presence of necrosis, tumor tissue, 
infiltrating tumor cells and normal brain .. +++: > 80%, ++ around 50%, + ≤ 30%, - < 10%. Gray denotes 
samples with low pre-analytic RNA quality controls (RIN).
Patient ID MRI zone necrosis tumor tissue infiltrating 

tumor cells
normal brain Center

FT01

NZ +++

Angers
TZ − +++

I +++

PBZ + + +

FT02

NZ +++

Angers
TZ − ++ ++

I ++ ++

PBZ +++

(Continued )
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Patient ID MRI zone necrosis tumor tissue infiltrating 
tumor cells

normal brain Center

FT03

NZ +++

Angers
TZ +++

I +++

PBZ + +++

FT04

NZ − +++

Brest
TZ − +++

I +++

PBZ +++

FT05

NZ +++

Brest
TZ − +++

I +++

PBZ +++

FT06

NZ +++

Brest
TZ ++ ++

I + + +

PBZ + +++

FT07

NZ +++

Rennes
TZ + ++ ++

I +++ −

PBZ − ++ ++

FT08

NZ +++

Rennes
TZ +++

I + ++

PBZ ++ +

FT09

NZ + +++

Rennes
TZ + +++ −

I + +++

PBZ − + +++

FT13

NZ +++

Tours
TZ − +++

I − +++

PBZ − +++

tumor zone. Biopsies in interface areas were more difficult 
to perform and mainly corresponded to macroscopically 
normal brain (3 patients), tumor tissue (2 patients) or 
infiltrated normal brain (1 patient). An infiltration by 
tumor cells (at least 10%) was observed in five PBZ.

Genomic profiling confirms common 
GB alterations

We profiled genome-wide DNA somatic copy number 
levels for 33 tumor fragments from the ten patients of 
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the cohort. To investigate the global patterns of copy number 
alteration (CNA) within each patient, we took the union of 
CNAs that occurred in at least one of the sample biopsies 
(Supplementary File 1). We observed several frequent 
aberrations that have been reported in other GB cohorts, 
including loss/partial loss of chromosome 10 in all patients 
and the focal deletion of the CDKN2A/B locus in eight 
patients, as well as the frequently co-occurring deletion of 
MTAP. Polysomy of chromosome 7 was found in all patients. 
Focal high-level amplifications of EGFR were found in four 
patients. Moreover, we identified aberrations in several 
other known GB drivers, including focal amplification of 
PDGFRA (two cases), SOX2 (two case), MDM2 (one case), 
MDM4 (one case), and TERT (two cases).

Genome alterations and malignant clonal 
development

For each biopsy, we classified CNAs as ‘normal’, 
‘loss’, ‘gain’ or ‘amplification’ (Figure 1A). Samples with 
less than 1% of altered profile were considered potential 
normal brain zones or slightly infiltrated areas. For the 
other samples, we observed a strong heterogeneity in terms 
of percentage of altered profiles. This heterogeneity was 
mostly inter-individual as samples from the same patient 
showed a relatively stable percentage of altered profiles. 
FT02 and FT08 tumors were the most altered, with more 
than 30% of altered profiles and a high proportion of 
amplifications, whereas all FT05 samples presented only 

a small fraction of alterations (less than 10%). Samples 
classification based on CNAs profiles confirmed the 
distinction between altered and non-altered samples. 
Samples harboring more than 1% of altered profiles were 
grouped in one cluster separated from potential normal brain 
zones or slightly infiltrated areas (Figure 1B). This cluster 
highlighted very similar alteration profiles within samples 
originating from the same patient, particularly for FT04 and 
FT08. These similarities were associated with some patient 
specific and atypical alterations, on chromosome 12 for 
FT04 and on chromosome 15 for FT08 (Figure 1C).

Following the work of Sottoriva et al. on cancer 
evolutionary dynamics [24], we interrogated copy number 
alterations to explore intratumor temporal spectre of 
evolution based on our sampling plan. We inspected copy 
number alterations manually and with the TuMult algorithm 
[29]. We confirm that copy number alterations targeting 
chromosomes 7 and 10 are among the earliest events in 
GB tumor evolution, and particularly loss of CDKN2A/B 
and EGFR amplification. Other alterations such as 
amplifications of PDGFRA, MDM2 and MDM4 were also 
identified as important events occurring at different steps of 
tumor expansion depending on the patient.

Transcriptome profiling confirms strong 
intratumor heterogeneity

PCA and HCPC performed on the whole 
microarray dataset highlighted zone-specific profiles 

Figure 1: Genome profiling. A. Copy Number Alterations (type and percentage) detected in each sample (yellow: normal, green: loss, 
red: gain, black: amplification). Samples are grouped by patient. B. Samples classification based on CNAs profiles. PBZ: peripheral brain 
zone, I: interface, TZ: tumor zone, NZ: necrotic zone. C. Examples of patient specific and atypical alterations.
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with pronounced intra-tumor architecture: from 
the core to beyond the margin (Figure 2A). This 
classification reflected the surgical sampling plan of the 
study (Figure 2B), highlighting that the transcriptome 
heterogeneity was much more important within tumors 
than between patients. This classification was confronted 
with histological examinations performed by the central 
committee of neuropathologists and copy number 
alteration analyses. Clusters were enriched as follow: 
tumor and necrotic biopsies (HCPC #1), tumor and 
interface biopsies (HCPC #2), infiltrated peripheral 
brain zone (HCPC #3), and, reference control brain 
biopsies with peripheral brain zone biopsies (HCPC #4). 
All samples in the latter cluster were identified as   

non-tumorous zones by neuropathologists and presented 
less than 1% of altered profile.

Glioblastoma subtype depends on tumor area

We assigned each biopsy to one of four subtypes: 
Proneural, Neural, Classical, and Mesenchymal 
using the Verhaak classifier [10], which is based on an  
840-gene signature. Samples from peripheral brain zone 
(PBZ) and interface (I) biopsies showed the highest 
correlations with the Neural or Proneural subtypes. 
In contrast, tumor (TZ) and necrotic (NZ) biopsies 
showed the highest correlations with the Mesenchymal 
and Classical subtypes (Figure 3A). All samples in 

Figure 2: Transcriptome profiling. A. Principal Component Analysis (PCA) performed on the expression data for 41000 probes 
without a priori selection. Dots represent samples and are colored according to the neuro-navigation sampling: green (PBZ: peripheral 
brain zone), yellow (I: interface zone), red (TZ: tumor zone), and blue (NZ: necrotic zone). Gray dots represent normal brain reference 
samples. Dendrogram of the hierarchical clustering based on principal components (HCPC) is represented above the Individual factor map. 
HCPC clusters are represented on the factorial plan by colored ellipses reflecting the sampling plan of the study ‘from the core of the tumor 
to beyond the margin’: HCPC #4 (blue), HCPC #3 (red), HCPC #2 (yellow), and HCPC #1 (green). Samples with unaltered array-CGH 
profile are circled in black. Black arrows designate samples with non-concordant histological analysis (PBZ: non-infiltrated parenchyma, 
iPBZ: infiltrated parenchyma, I: interface, TZ x%: presence of a corresponding percentage of tumor cells, and NZ x%: presence of a 
corresponding percentage of necrotic cells). B. Areas for biopsy in the four GB zones defined on preoperative MRI: necrotic zone (blue), 
tumor zone (red), interface (yellow), and peripheral brain zone (green).
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HCPC #4 were classified as Neural. In the other HCPC 
clusters, we found that in 9 of 10 cases, biopsies from the 
same patient were classified into at least two different 
subtypes. Only FT07 was classified as Mesenchymal on 
both PBZ and TZ biopsies. FT02 was classified as Neural 
and Proneural indicating a strong Neural component in 
this tumor. In the other cases, we observed mainly the 
combination [(Neural or Proneural) and Mesenchymal] 
(6 cases), but also the [(Neural or Proneural) and 
Classical] combination (1 case). FT08 presented strong 
tumor heterogeneity with two Mesenchymal and two 
Classical biopsies (Supplementary File 2). Taken as a 
whole, the Verhaak GB classes were highly associated 
with the zone-specific profiles, as determined by the PCA 
performed on the whole transcriptome dataset (ANOVA, 

p = 9.10–9) (Figure 3B). This highlighted that the 
definition of GB subtype based on gene expression was 
related to the biopsy zone.

Transcriptome architecture of intratumor 
heterogeneity

We performed weighted gene co-expression network 
analysis to map genes and pathways onto the intra-tumor 
heterogeneity highlighted by PCA. We restricted this 
analysis to the 8000 most informative probes (see methods). 
It identified seven co-expression modules hierarchically 
organized into two distinct groups (Figure 4A and 
Figure 4B). The fist group gathered 60% of the genes and 
was composed of only two modules (turquoise and yellow) 

Figure 3: GB subtypes. A. Samples GB subtypes according to the Verhaak signature. Gene Set Enrichment Analysis enrichment scores 
of each samples are reported as a gray-based color gradient. B. Samples GB subtypes and zone-specific profiles determined by PCA. 
Samples are colored according to their GB subtype. Squares: barycenter of GB subtypes.
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whereas the second group was composed of five 
modules. The turquoise and yellow modules gathered 
the downregulated genes from the periphery to the center 
of the tumor (PBZ to TZ/NZ biopsies). The five other 
modules (black, blue, brown, green and red) gathered the 
probes upregulated from the periphery to the center of 
the tumor (Figure 4C). We identified modules related to  
the intratumor heterogeneity by computing a gene 
significance measure for each probe. This measure 
identified four significant modules: black, blue, brown and 
turquoise (Figure 4D). These modules are very coherent as 
they showed strong correlations between gene significance 
and module membership. Functional enrichments were 
performed to assess the biological significance of each 
module (Table 2 and Supplementary File 3). This analysis 

pointed out a clear distinction between the turquoise/yellow 
modules and the other modules. The turquoise and yellow 
modules were characterized by a strong composition of 
genes involved in the nervous system development and 
function. The five other modules were mainly characterized 
by genes involved in cellular growth and proliferation 
(3 modules), cellular development (3 modules), cellular 
movement (3 modules), and cell cycle (2 modules). 
Modules were highly coherent as core modules displayed 
functional enrichments similar to those of entire modules 
(Supplementary File 4). Based on the Verhaak signature, 
we found that the brown module was enriched with 
Mesenchymal genes (chi-squared test, p  < 1e-16) and 
that the turquoise module was enriched with Proneural 
(p = 0.002) and Neural (p = 0.02) genes.

Figure 4: Weighted gene co-expression network analysis. A. Cluster dendrogram and co-expression modules. B. Clustering of 
module eigengenes. C. Module eigengenes expression across the sampling plan. Boxplots are colored according to HCPC classification. 
The gray boxplot represents reference control brain samples (n = 4). The green boxplot includes HCPC1 samples minus reference control 
brain samples. D. Gene significance (mean and standard error) for each module. Above each bar is a scatter plot of gene significance (GS) 
versus module membership (MM). GS is based on p-values from the ANOVA performed between HCPC clusters (BH corrected p-values). 
Number of probes in each module is also reported.
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Table  2:  Enriched  functional  categories  best  associated  with  co-expression  modules. For each 
module are reported molecular and cellular functions, networks and upstream regulators significantly 
associated in the Ingenuity Pathways Analysis database.
Module Molecular and Cellular Functions Top Networks Top Upstream 

Regulators

turquoise

Molecular Transport

Cell-To-Cell Signaling and Interaction

Nervous System Development and 
Function

Cell Morphology

Neurological Disease, Developmental Disorder, 
Renal and Urological Disease
Infectious Disease, Cell Signaling, Vitamin and 
Mineral Metabolism
Cell-To-Cell Signaling and Interaction, Nervous 
System Development and Function, Cell 
Morphology
Cell-To-Cell Signaling and Interaction, 
Molecular Transport, Small Molecule 
Biochemistry

SBDS miR-
122–5p CASR 
SOAT1 FSH

black

Cell Cycle

Cellular Assembly and Organization

DNA Replication, Recombination, and 
Repair
Cellular Growth and Proliferation

Cellular Development

Cell Cycle, DNA Replication, Recombination, 
and Repair, Cancer
Cell Cycle, DNA Replication, Recombination, 
and Repair, Cellular Assembly and  
Organization
Cell Cycle, Cellular Assembly and 
Organization, DNA Replication, 
Recombination, and Repair
Cell Cycle, Cancer, Reproductive System 
Disease
Cell Cycle, Cell Death and Survival, DNA 
Replication, Recombination, and Repair

E2F4 CCND1 
CDK4 ERBB2 

CDKN1A

blue

Cell Cycle
Gene Expression

RNA Post-Transcriptional Modification
Cellular Movement

Connective Tissue Development and 
Function
Embryonic Development

RNA Post-Transcriptional 
Modification, Molecular Transport, 
RNA Trafficking
Embryonic Development, Organismal 
Development, Tissue Development
Hair and Skin Development and Function, Organ 
Morphology, Cell Morphology
Infectious Disease, Cellular Development, 
Embryonic Development
Cellular Assembly and Organization, Nervous 
System Development and Function, Cell 
Morphology

MYC mir-15 
FANCC LYL1 

E2F4

brown

Cellular Movement

Cell Death and Survival

Cellular Growth and Proliferation

Cell-To-Cell Signaling and Interaction

Cellular Development

Cancer, Organ Development, Respiratory 
Disease
Cancer, Gastrointestinal Disease, Cell Death and 
Survival
Infectious Disease, Cell Death and Survival, 
Antimicrobial Response
Cellular Movement, Hematological System 
Development and Function, Immune Cell 
Trafficking
Cellular Movement, Cardiovascular System 
Development and Function, Organismal 
Development

TNF IFNG 
MAPK1 TGFB1 

IFNA2

(Continued )
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Gene expression signature of intratumor 
heterogeneity is marked by correlation with 
methylation levels

PCA performed on the methylome data (27578 
CpG sites, 23 samples) showed the presence of particular 
intratumor architecture as observed at the transcriptome 
level (Supplementary File 5). There were an estimated 
3% (382 genes) of genes showing expression-methylation 
correlations (r < −0.6) in the whole dataset. To assess the 
importance of epigenetics mechanisms in the definition of 
intratumor heterogeneity, we analyzed the proportion of 
anti-correlated genes with respect to their contribution to 
the transcriptome PCA data structure. This proportion was 
compared to random samplings (n = 1000) of the genes. 
The percentage of anti-correlated genes significantly 
increased with the gene contribution to the PCA data 
structure. The highest percentage of anti-correlated 
genes (15%, 54 genes) was reached for the top 370 genes 
(Figure 5A).

A signature of key cancer-heterogeneity genes 
highly associated with the intratumor spatial 
gradient

We focused on the difference between infiltrated 
brain zone and macroscopically normal brain (HCPC 
#3 and HCPC #4, respectively). We selected the 100 
most informative genes in terms of (i) importance in the 
PCA data structure, (ii) differential expression, and (iii) 
module membership (25 genes per significant module). 
Among these genes we found well-known GB genes 
such as: VEGF, CD44, GFAP, EZH2, CHI3L1, NES, and 
IGFBP2. Hierarchical clustering based on this selection 
conserved the inner structure of the data identified by 
PCA and the biological meaning of the coexpression 
modules (Figure 5B and Supplementary File 6). As for the  
co-expression analysis, this suggested that central 

genes drove the functional enrichment of each module. 
Particularly, we observed an enrichment of genes associated 
with cell cycle in the black module (13 genes, 87%) 
and genes associated with ECM and migration in the 
brown module (15 genes, 79%). We found 19 genes 
directly associated with neurogenesis (7 in the turquoise 
module). The angiogenesis process was also significantly 
enriched in this 100-gene signature (14 genes). Thirty-
four genes were also identified as strongly differentially 
expressed between GB and normal brain in our previous 
study [30] (Figure 5B). Sixteen genes presented an anti-
correlation between methylation and expression levels, 
and particularly in the blue and brown modules. As an 
illustration, Figure 5C presents expression and methylation 
levels for CHI3L1 (brown module) and NES (blue module).

External validations of the key cancer-
heterogeneity signature

We performed external validations of the key 
cancer-heterogeneity signature with two independent 
studies of GB intratumor heterogeneity [24, 31]: 
the Sottoriva et al. microarray study of 52 samples 
(10 patients) and the Gill et al. RNA-Seq study of 
92 samples (27 patients). In both studies, hierarchical 
clustering of the samples based on the key cancer-
heterogeneity signature showed a similar gene expression 
pattern (Supplementary File 7 and Supplementary File 8). 
It allowed a clear distinction between tumor biopsies 
and margin/macroscopically normal brain biopsies. In 
the Sottoriva et al. study, tumor biopsies clustered into 
two groups: one enriched in Proneural subtypes and the 
other in Classical/Mesenchymal subtypes. Most of the 
time, different tumor samples from the same patient were 
classified into these different subgroups. In both studies, 
our key cancer-heterogeneity signature showed that the 
Neural subtype was clearly associated with biopsies 
performed in the margin/non-enhancing tumor region.

Module Molecular and Cellular Functions Top Networks Top Upstream 
Regulators

green

Cellular Development

Cellular Growth and Proliferation

Cellular Movement
Hematological System Development and 
Function

Immune Cell Trafficking

Infectious Disease, Cellular Function and 
Maintenance, Cell-To-Cell Signaling and 
Interaction
Cellular Movement, Hematological System 
Development and Function, Immune Cell 
Trafficking
Cellular Function and Maintenance, Cellular 
Movement, Immune Cell Trafficking
Humoral Immune Response, Protein Synthesis, 
Cellular Development
Cell-To-Cell Signaling and Interaction, Cellular 
Growth and Prolif., Hematological System Dev. 
& Function

IFNG RFX5 
TNF IFN alpha/

beta SMC3
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DISCUSSION

The genomic profiling of the GB samples included in 
our study confirmed the presence of common glioblastoma 
alterations reported in previous studies [4]: loss/partial 
loss of chromosome 10, polysomy of chromosome 7, 
focal deletion of the CDKN2A/B and focal high-level 
amplifications of EGFR. Altered samples presented a 
strong heterogeneity, which was mostly interindividual. 
Core and interface biopsies presented a higher amount 
of genomic alterations compared to biopsies performed 
beyond the tumor margins. A study of intratumor temporal 
dynamics confirmed that copy number alterations targeting 

chromosomes 7 and 10 are among the earliest events in GB 
tumor evolution. It was however not possible to identify 
specific genomic copy number alterations characterizing 
the peripheral brain zone.

At the transcriptome level, we observed that the 
molecular heterogeneity was much more important 
within tumors than between patients. PCA-based analysis 
highlighted zone-specific profiles with pronounced 
intratumor architecture reflecting the surgical sampling plan 
of the study: ‘from the core to beyond the margin’. Our 
findings also support the implicit notion of coexpression 
network analysis that genes with similar expression 
behavior are related biologically. Indeed, the gene 

Figure 5: Anti-correlated genes and master genes signature. A. Percentages of anti-correlated genes between expression and 
methylation levels. Genes are ranked according to their importance in terms of contribution to the PCA data structure and percentages 
are calculated for subsets of genes ranging from the 100 most important genes to the whole dataset (x-axis). Black: observed percentage. 
Gray: significativity of the percentage of anti-correlated genes estimated by bootstrapping (n = 1000). Median (solid line) and CI 99%  
(dotted) are presented. Vertical dashed line: maximum percentage obtained for 370 genes. B. Master genes signature. Heatmap and  
samples hierarchical clustering for transcriptome data. Samples are colored by HCPC cluster (see Figure 2a for details). Genes functional 
insights are represented by cluster colors. Left: coexpression modules. Right: anti-correlation between methylation and expression levels, 
statistically enriched Gene Ontology functional categories. Validated differential expression are also reported (*: transcriptome data, tumor 
versus normal; $: RT-qPCR data, tumor zone versus peripheral brain zone). C. Normalized expression levels and methylation beta-values 
across HCPC clusters for CHI3L1 (brown module) and NES (blue module). Means +/− standard errors for each HCPC cluster with normal 
brain control samples set apart (see Figure 4C for details).
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modules identified and their functional enrichments clearly 
evidenced modularity in the GB transcriptome, a feature 
already evidenced by Bredel and colleagues [32]. These 
modules could be associated with several hallmarks of 
cancer [33], highlighting a strong level of self-organization 
in the GB transcriptome: sustaining proliferative signaling 
and evading growth suppressors (black module), activating 
invasion and metastasis, inducing angiogenesis and 
resisting cell death (brown module), avoiding immune 
destruction and promoting inflammation (blue and green 
modules), promoting genome instability and mutation (as 
exemplified by CNA analysis). Co-expression modules 
were not specifically associated with a biopsy area. One 
reason could be a lack of power due to the small sample 
size of the study. This could have been improved by 
increasing the number of peripheral brain or interface 
zones, which is difficult in the context of human studies.

Our results confirmed that GB tumors are 
molecularly diverse but not randomly so. Indeed, we were 
able to identify a hundred key genes which expression was 
highly correlated with the surgical sampling plan: from 
the core to beyond the margin. In accordance with other 
molecular descriptions of GB intratumor heterogeneity 
[24, 31], our results confirmed that the core is an area 
of high proliferation and inflammation and that tumor 
margins are infiltrated brain areas which transcriptome 
is influenced by the presence of oligodendrocytes and 
neurons. This signature includes genes previously 
associated with GB cells infiltrative behavior. Chitinase 
3-like 1 (CHI3L1/YKL-40, brown module) is a 
mesenchymal marker that promotes tumor angiogenesis 
and malignancy [34]. It is a marker of prognosis and disease 
status in high-grade gliomas [6, 35–37]. Nestin (NES, blue 
module) is a stem cell marker that regulates the migration, 
invasion and growth of human gliomas [38]. In GB, its 
expression increases with tumor grade in both tumor cells 
and endothelial cells [39]. Nestin has also been proposed as 
a useful marker for examining the infiltration of malignant 
astrocytic tumors cells into the surrounding tissue [40].

Methylome and transcriptome studies captured a 
similar intratumor architecture depicting tumor spatial 
heterogeneity with 3% of the genes displaying an inverse 
correlation between promoter methylation and expression 
levels [7]. When focusing on the key genes signature 
the percentage of anti-correlated genes was five times 
higher than expected, indicating that their abnormal 
expression might be linked to cis-acting epimutations 
in their promoter. We hypothesized that these targeted 
epimutations could be a consequence of alterations 
affecting regulators of epigenetic gene silencing [41]. 
We found two such regulators coexpressed in the black 
module: UHRF1 and EZH2. It has been shown that 
they synergistically promote the inactivation of tumor 
suppressor genes in colorectal cancer [42]. This result is 
consistent with the fact that the disruption of the epigenetic 

machineries may precede the classical preliminary 
transforming events (mutations and genomic instability) 
and provoke aberrant gene expression patterns that give 
rise to all typical cancer characteristics [41].

Recent large-scale genomic analyses have revealed 
patterns of molecular changes within tumor subclasses 
that harbor distinct underlying biology, clinical prognosis, 
and pathogenic routes [10, 11, 43–46]. There remains 
no consensus on the number of clinically meaningful 
transcriptional GB subtypes but virtually all studies to date 
identify a key distinction between tumor subtypes with 
features that are described as Proneural and Mesenchymal 
[11, 47]. This lack of consensus has been mostly attributed 
to technical variation (e.g., platform, batch effect, sample 
size) and biological noise (variability among tumors) 
[47, 48]. It is however important to note that these 
molecular subclasses were defined on data obtained on a 
unique tumor sample per patient, from which percentage 
and type of tumor cells could vary. As a corollary, many 
tumors do not fit neatly into one group or another, as they 
may be composed of multiple and/or molecularly distinct 
subpopulations. Our results clearly evidenced that a single 
tumor can harbor different transcriptional GB subtypes 
depending on its spatial architecture and that the Neural 
subtype is associated with interface and peripheral brain 
zones. We confirmed that the Mesenchymal, Classical, and 
Proneural GB subtypes are robustly associated with GB 
tumor tissue but that the Neural subtype should be taken 
with caution because it is clearly associated with the tumor 
margin or non-enhancing region.

PATIENTS AND METHODS

Patients and tissue samples

Twenty-six patients were enrolled between 2006 
and 2011 in the Grand Ouest Glioma Project (GOGP), 
a prospective and multicentric study. All patients were 
diagnosed for a de novo GB in one of the Neurosurgical 
Departments of the University Hospitals of Angers, Brest, 
Poitiers, Rennes or Tours (France). Approval by the local 
ethic committee of the entire project (CPP Ouest II; Angers, 
France) was obtained prior to the initiation of the study. 
Ten patients from the GOGP were included in the present 
study. Diagnosis of primary GB [20] was confirmed by 
a central committee of neuropathologists for all patients. 
Areas for biopsies were defined on preoperative T1 
gadolinium-enhanced 3D MRI in four different zones of 
the GB tumors. The sampling plan of these four zones 
was designed ‘from the core of the tumor to beyond the 
margin’: necrotic zone (NZ), tumor zone (TZ), interface 
(I), and peripheral brain zone (PBZ). Stereotaxic biopsies 
were performed in the operating theater, by computer-
assisted neurosurgery (BrainLAB®, La Défense, France). 
PBZ biopsies were all performed about 2 cm outside the 
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contrast enhancement, in the T2 hypersignal on MRI. In 
total, 40 biopsies (4 per patient) were immediately snap-
frozen in liquid nitrogen and kept at –80°C until used. 
Histological analysis was realized for each specimen 
on formalin-fixed paraffin-embedded sections. Four 
brain parenchyma biopsies obtained from patients who 
underwent cortectomy for epilepsy were used as reference 
samples. Blood samples were collected for each patient and 
used to extract reference DNA for CGH array analysis.

DNA and RNA isolation

DNA was extracted with the NucleoSpin Tissue 
Kit (Macherey Nagel) according to the manufacturer’s 
instructions. The quality of DNA biopsies was assessed 
by electrophoresis in a 1% agarose gel. Total RNA was 
isolated with the NucleoSpin RNAII Kit (Macherey-
Nagel). RNA integrity (RNA Integrity Number ≥ 8) was 
confirmed with an Agilent 2100 Bioanalyzer (Agilent 
Technologies). Pre-analytic RNA quality controls based on 
RNA integrity identified 7 low-quality samples. For these 
samples, genomic analysis was not performed (4 necrotic 
zones: FT02_NZ, FT05_NZ, FT06_NZ and FT07_NZ; 1 
tumoral zone: FT03_TZ; 2 interfaces: FT01_I and FT07_I).

Array CGH profiling and data analysis

Array CGH profiling was performed with the Human 
CGH 4x44K Microarray Kit (Agilent Technologies) 
according to the manufacturer’s recommendations. For 
each patient, each biopsy DNA and matching patient 
constitutional DNA were pooled and hybridized together 
to avoid false positives due to individual copy number 
variation. Genomic profiles were computed and compared 
using waviCGH software [49]. Normalization was 
performed by subtracting the weighted median from the log-
ratios for each array. Duplicated probes were merged by the 
median. Segmentation was performed using the HaarSeg 
method [50]. Each segment was assigned a probability of 
being lost (–1), normal (0), gained (+1) or amplified (+2) 
using the CGHcall method [51]. Minimal common regions 
(MCRs) were identified using a permutation method taking 
into account the frequency of calls in each sample and 
chromosome to calculate statistically significant MCRs. 
We used the TuMult algorithm [29] to reconstruct the 
lineage of tumor samples from the same patient, together 
with the sequence of chromosomal events occurring during 
tumorigenesis. Copy number arrays have been deposited 
in the Gene Expression Omnibus repository under the 
accession number GSEXXXXX.

Gene expression profiling and normalization

Gene expression profiling was carried out 
with the Agilent Whole Human Genome 4x44K 
Microarray Kit (Agilent Technologies). Total RNA was 

extracted, labelled and hybridized according to the kit 
manufacturer’s recommendations. Raw intensity data 
were log2-transformed and normalized (intra-array 
and inter-array scaling) using the R limma package. 
Expression arrays have been deposited in the Gene 
Expression Omnibus repository under the accession 
number GSEXXXXX.

DNA methylation profiling

DNA methylation profiling was performed with 
the Infinium HumanMethylation27 beadchip (Illumina 
Inc.). DNA from GBM samples and control brains 
were bisulfite-modified, using the EZ DNA methylation 
kit (Zymo Research) and hybridized according to the 
manufacturer’s instructions. For each interrogated CpG 
site, methylation status is calculated by dividing the signal 
from the methylated probe (M) by the sum of signals for 
both methylated and unmethylated (U) probes (Genome 
Studio 2008.1, Illumina Inc.): β-value = Max(M, 0)/ 
[Max(M, 0) + Max(U, 0) + 100]. This β-value provides 
a continuous and quantitative measurement of DNA 
methylation, ranging from 0 (completely unmethylated) to 
1 (completely methylated). Missing values were imputed 
by nearest neighbors averaging (impute R package). All 
samples were G-CIMP negative [9]. All samples were 
MGMT unmethylated [52] except FT06_TZ and FT06_I. 
Methylation arrays have been deposited in the Gene 
Expression Omnibus repository under the accession 
number GSEXXXXX.

Anti-correlated genes

Correlations between transcriptome and methylome 
data were computed on a gene basis for all the genes with 
available data on the two molecular levels (n = 13612). 
Anti-correlated genes were defined as genes presenting a 
negative correlation between expression and methylation 
levels (Pearson correlation coefficient less than –0.6).

Sample classification and gene selections

We used Principal Component Analysis (PCA) 
and Hierarchical Clustering on Principal Components 
(HCPC) to classify samples and select genes. PCA is 
a linear dimensionality reduction technique (factorial 
analysis) that seeks to identify a small number of 
components that capture most of the relevant structure 
in a dataset. HCPC is an agglomerative hierarchical 
classification method based on the principal components 
of the factorial analysis. PCA and HCPC were performed 
on transcriptome data with the FactoMiner R package 
and default parameters. Following the rationale of the 
experimental design of the study, we cut the hierarchical 
tree in order to obtain four clusters. We also used PCA 
to identify informative genes as done by Paschou et al. 
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[53] in the field of Populational Genetics. They have 
developed a method to select informative markers 
related to the data structure revealed by PCA. This 
selection algorithm first determines the number of 
significant principal components (and thus the number 
of informative eigenMarkers) in the data. Subsequently, 
a score is assigned to each marker, with higher scores 
corresponding to markers that correlate well with all 
informative eigenMarkers. The markers are ranked 
according to this score and the top scoring markers are 
selected for further analyses. When computing the scores 
we used the correlation with the first Principal Component 
only. The gene expression dataset was reduced to the top 
8000 genes for subsequent analyses.

Differential expression analysis

A one-way Welch’s anova was performed to 
compare the mean gene expression levels between HCPC 
clusters and to identify genes up- or downregulated in at 
least one cluster. Adjusted p-values were calculated by 
controlling for the FDR with the Benjamini & Hochberg 
(BH) procedure. Absolute fold-changes (FC) between two 
conditions were also computed. Genes were considered 
significantly differentially expressed between 2 conditions 
for an adjusted p-value lower than 0.001 and an absolute 
FC greater than 2.

Co-expression network analysis

We constructed a signed weighted gene  
co-expression network on the basis of the expression 
data of the most informative genes. Gene co-expression 
networks are increasingly used to explore the system-
level functionality of genes. The network construction is 
conceptually straightforward: nodes represent genes that 
are connected if the corresponding genes are significantly 
co-expressed across appropriately chosen tissue 
samples. In a weighted gene co-expression network, a 
connection weight is assigned to each gene pair. This 
weight reflects the co-expression measure between the 
two genes (correlation) and is based on the network 
spatial relationship between these genes (adjacency) 
[54]. Pearson correlation coefficients were calculated 
across all samples for all possible pairs of the variable 
genes. The correlation matrix was raised to the power 
12, thus producing a weighted network. This weighted 
network was transformed into a network of topological 
overlap (TO) — an advanced co-expression measure 
that considers not only the correlation of two genes with 
each other, but also the extent of their shared correlations 
across the weighted network. Genes were hierarchically 
clustered on the basis of their TO. Modules were 
identified on the dendrogram using the Dynamic Tree Cut 
algorithm [55]. Each gene’s connectivity was determined 

within its module of residence (intramodular connectivity) 
by summing up the TOs of the gene with all the other 
genes in the module. A module membership (MM) 
measure was defined for all input genes (irrespective 
of their original module membership) as the correlation 
of its expression profile with the module eigengene of a 
given module. The module membership measure being 
highly related to intramodular connectivity, it was used to 
identify hub genes (highly connected intramodular genes) 
displaying characteristic expression profiles for their 
module of residence. Gene significance (GS) measures 
the association (correlation) between a gene and external 
data. Here, GS was based on the adjusted p-values from 
the analysis of variance performed between HCPC 
clusters. All network analyses were performed using the 
WGCNA R package with default parameters except for the 
minModuleSize that was set to 175. Functional analyses 
were generated through the use of IPA (Ingenuity® 
Systems, www.ingenuity.com) and GOMiner [56]. For 
each co-expression module, functional enrichments were 
tested for the whole module and for a ‘core module’ 
defined as the upper quartile of the genes ranked on 
decreasing module membership.

Real-time quantitative PCR (Q-PCR)

Q-PCR reactions were done with the 7900HT 
Fast Real-Time PCR System using the SYBR TMGreen 
PCR Master Mix (Applied Biosystems). GAPDH 
(glyceraldehyde-3-phosphate dehydrogenase) and TBP 
(TATA box binding protein) RNAs were chosen as internal 
controls. Calibration was performed with FirstChoice 
Human Brain Reference Total RNA (Ambion). The 
relative amounts of the gene transcripts were determined 
using the delta-delta-Ct method. Primers are provided in 
Supplementary File 9.
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