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ABSTRACT
We have used an unbiased proteomic profiling strategy to identify new potential 

therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). 
Towards this end, the proteomes of mammospheres from two breast cancer cell 
lines were directly compared to attached monolayer cells. This allowed us to 
identify proteins that were highly over-expressed in CSCs and/or progenitor cells. 
We focused on ribosomal proteins and protein folding chaperones, since they were 
markedly over-expressed in mammospheres. Overall, we identified >80 molecules 
specifically associated with protein synthesis that were commonly upregulated in 
mammospheres. Most of these proteins were also transcriptionally upregulated in 
human breast cancer cells in vivo, providing evidence for their potential clinical 
relevance. As such, increased mRNA translation could provide a novel mechanism 
for enhancing the proliferative clonal expansion of TICs. The proteomic findings 
were functionally validated using known inhibitors of protein synthesis, via three 
independent approaches. For example, puromycin (which mimics the structure of 
tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in 
both mammospheres and monolayer cultures, and was ~10-fold more potent for 
eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits 
mTOR and hence protein synthesis, was very effective at reducing mammosphere 
formation, at nanomolar concentrations. Finally, mammosphere formation was also 
markedly inhibited by methionine restriction, which mimics the positive effects of 
caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-
fold more sensitive to methionine restriction and replacement, as directly compared to 
monolayer cell proliferation. Methionine is absolutely required for protein synthesis, 
since every protein sequence starts with a methionine residue. Thus, the proliferation 
and survival of CSCs is very sensitive to the inhibition of protein synthesis, using 
multiple independent approaches. Our findings have important clinical implications, 
since they may also explain the positive therapeutic effects of PI3-kinase inhibitors 
and AKT inhibitors, as they ultimately converge on mTOR signaling and would block 
protein synthesis. We conclude that inhibition of mRNA translation by pharmacological 
or protein/methionine restriction may be effective strategies for eliminating TICs. Our 
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INTRODUCTION

Tumor-initiating cells (TICs) are known to be 
resistant to many conventional therapies, and have been 
implicated in disease recurrence and metastatic spread 
[1-3]. Residual TICs are linked to poor patient survival 
in multiple tumor types. As TICs are extremely rare and 
represent only a small fraction of the total cancer cell 
population, we still know very little about what allows 
them to survive and propagate, especially under the harsh 
conditions associated with chemo- and radio-therapy [1-
7]. 

Remarkably, TICs are thought to pheno-copy 
many of the characteristics of normal epithelial stem 
cells, such as immortalization, asymmetric cell division 
and resistance to stressors, such as DNA damage [2, 3, 
7]. Hence, the term cancer stem cells (CSCs) is now 
used virtually interchangeably with TICs [1-7]. Another 
hallmark of epithelial TICs is their ability to grow under 
anchorage-independent conditions, when cultured using 
low-attachment plates [8]. Under these anchorage-
independent growth conditions, CSCs/TICs spontaneously 
form 3D spheroid structures or “tumor-spheres”, that 
retain stem-like or progenitor cell properties. Conversely, 
under cell suspension conditions, most non-TICs undergo 
a form of apoptotic cell death, known as “anoikis”. It has 
been shown that each tumor-sphere is derived directly 
from the proliferative clonal expansion of a single TIC, 
and not from the aggregation of bulk cancer cells [8]. 
Furthermore, the enriched TIC population is more resistant 
to radiotherapy, showing enhanced DNA damage repair 
and lower levels of reactive oxygen species (ROS) [9]. 
As such, the preparation of tumor-spheres represents an 
efficient and convenient method to selectively enrich for 
TICs. When these tumor-spheres are specifically generated 
from primary breast cancer cells or cell lines, they are 
known as “mammospheres”. 

Several mechanisms have been proposed to 
explain the increased resistance of TICs to clinical 
treatments. Firstly, both radiotherapy and the majority 
of chemotherapeutic treatments target rapidly dividing 
cells and it has been proposed that the resistance of 
TICs was due to them having a quiescent slow-cycling 
phenotype [10]. However, it has since been demonstrated 
that CSCs (at least in breast cancer) do cycle and their 
resistance to stress is not simply a function of quiescence 
[11, 12]. Furthermore, CSCs have a greater capacity to 
efflux chemotoxins due to an increased expression of 
ABC transporters possibly explaining their additional 
resistance to chemotoxins but obviously these cannot 
account radio-resistance [13]. CSCs have been shown to 
be resistance to apoptotic stimuli compared to their non-
stem cell counter parts and to have an increased capacity 

for DNA damage repair and this now seems to be the most 
likely mechanism of radio- and chemo-resistance [14, 
15]. Several studies have now shown that typical DNA 
damaging chemotherapeutic agents can even cause an 
upregulation of stem cell transcription factors and a direct 
conversion of cancer non-stem cells (bulk cells) into TICs, 
potentially increasing the TIC burden in patients rather 
than reducing it [16-19]. Thus, specifically targeting TIC 
populations in approaches that circumvent their resistance 
to DNA damaging therapy is a promising strategy for 
future cancer treatment.

To begin to understand the phenotypic behavior 
of TICs at a molecular level, we prepared large numbers 
of mammospheres from two different ER(+) breast 
cancer lines (MCF7 & T47D). The mammospheres were 
subjected to unbiased proteomic profiling to decipher 
their molecular composition and metabolic characteristics 
compared to the cells grown in monolayer. Based on 
proteomics analysis, we observed that mammospheres 
significantly upregulate molecules associated with protein 
synthesis, including ribosome-related proteins and protein-
folding chaperones, as well as specific molecules involved 
in mRNA translation initiation, polypeptide elongation, 
tRNA synthesis and amino acid uptake. We speculate that 
TICs are highly anabolic and increase their capacity for 
protein synthesis, to drive their clonal expansion via cell 
proliferation. Treatment with well-established inhibitors 
of protein synthesis (puromycin, rapamycin or methionine 
restriction) directly validated that mammosphere 
formation is strictly dependent on nacent protein synthesis. 
Thus, our results may also explain the anti-cancer health 
benefits of caloric restriction, intermittent fasting and the 
vegetarian diet, by systemically reducing protein synthesis 
in TICs. 

Currently, there is a tremendous need to identify 
a selective “Achilles’ Heel” to eliminate TICs. Our new 
results highlight that TICs are especially functionally 
dependent on augmented protein synthesis, for their 
successful survival and continued propagation. This study 
provides a strong rationale for therapeutically targeting 
protein synthesis in the CSC population. 

RESULTS

Greater than 70 ribosomal protein components, as 
well as an isoform of S6 Kinase (RPS6KB1), are 
upregulated in mammospheres

First, we performed unbiased label-free proteomic 
analysis on MCF7 cells, a commonly used ER-positive 
breast cancer cell line. Table 1 shows a non-redundant list 

data also indicate a novel mechanism by which caloric/protein restriction may reduce 
tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells. 
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of the 72 ribosome-related proteins that were selectively 
upregulated in MCF7 mammospheres, as directly 
compared with MCF7 cells derived from monolayers. 
Only proteins with a fold increase of ~1.5 or greater were 
selected for this analysis. Note that the expression levels 
of 21 large ribosomal proteins and 15 small ribosomal 
proteins were increased, as compared with monolayer 
cultures. Similarly, two large mitochondrial-specific 
ribosomal proteins were increased. A specific-isoform of 
ribosomal S6 kinase was also elevated (RPS6KB1) nearly 
15-fold. Finally, 34 proteins involved in mRNA translation 
initiation, polypeptide elongation, tRNA synthesis and 

amino acid uptake, were all selectively upregulated in 
MCF7 mammospheres.

For comparison purposes, we also performed 
unbiased label-free proteomic analysis on a second 
independent ER-positive breast cancer cell line, namely 
T47D cells. Our results are summarized in Table 2. 
Note that 64 ribosome-related proteins were specifically 
over-expressed in T47D mammospheres, as compared 
with T47D monolayer cultures processed in parallel. 
Remarkably, 57 of these proteins overlapped with the 
proteins that were upregulated in MCF7 mammospheres 
(57/64 = 89% overlap). See the Venn diagram presented 
in Figure 1. 

Figure 1: Venn diagram highlighting the conserved 
upregulation of ribosomal-related proteins in both 
MCF7 and T47D mammospheres. Note that 57 ribosomal-
related proteins were commonly upregulated in both data sets. 
These include proteins involved in ribosomal biogenesis, 
translation initiation, polypeptide elongation, tRNA synthesis 
and amino acid uptake.

Figure 2: Venn diagram highlighting the conserved 
upregulation of heat shock proteins/molecular 
chaperones in both MCF7 and T47D mammospheres. 
Note that 11 heat shock proteins, involved in protein folding, 
were commonly upregulated in both data sets. 
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Figure 3: Puromycin: Structure and key features. Puromycin resembles the 3’ end of an aminoacylated tRNA, which interacts with 
the A-site of the ribosome. During protein synthesis, puromycin transfers to the growing polypeptide chain, leading to the generation of 
a puromycylated-peptide, which is prematurely released. As such, puromycin inhibits protein synthesis via a premature chain termination 
mechanism. 
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Heat shock proteins (HSPs)/protein-folding 
chaperones are upregulated in MCF7 and T47D 
mammospheres

Heat shock proteins are important for proper protein 
folding during protein synthesis. Table 3 shows a list of 
13 heat shock proteins that were selectively upregulated 
in MCF7 mammospheres, relative to MCF7 monolayers. 
Note that 2 of these heat shock proteins are mitochondrial-
specific chaperones (HSPA9 and HSPD1). Similarly, 11 
heat shock proteins were specifically over-expressed in 
T47D mammospheres, as compared with T47D monolayer 
cultures processed in parallel (Table 4). Importantly, all 
eleven proteins overlapped with the proteins that were 
upregulated in MCF7 mammospheres (11/11 = 100% 
overlap). See the Venn diagram presented in Figure 2. 

Taken together, our results predict that protein 
synthesis may be critical for the survival and propagation 
of cancer stem cells and/or progenitor cells. 

Functional effects of puromycin, a known 
inhibitor of protein synthesis, on mammosphere 
formation.

Next, to functionally validate the hypothesis 
that mammosphere formation strictly requires protein 
synthesis, we used a highly-specific inhibitor that mimics 
the nucleotide-polypeptide linkage that occurs in tRNAs, 
namely puromycin [20]. By mimicking the structure 
of tRNAs, puromycin competitively inhibits protein 
synthesis. Also, puromycin is physically transferred to the 
growing polypeptide chain, leading to the generation of 
puromycylated-peptides, which are prematurely released 
(Figure 3). Thus, puromycin inhibits protein synthesis via 
a premature chain termination mechanism [20].

Figure 4 shows the effects of increasing 
concentrations of puromycin on mammosphere 
formation, using an ER-positive breast cancer cell line 
(MCF7). Importantly, puromycin significantly reduced 
mammosphere formation, with an IC-50 of ~ 0.05 µg/ml 

and mammosphere formation was completed abolished at 
0.5 µg/ml.

In striking contrast, monolayer MCF7 cells were 
~10 times less sensitive to the effects of puromycin. 
Puromycin reduced both the i) proliferation and ii) 
viability of monolayer MCF7 cells, with an IC-50 of ~ 
0.5 µg/ml, a concentration 10-times higher than the IC-
50 for mammosphere formation (Figure 4). In addition, 
mammosphere formation was inhibited by >70% at a 
concentration of 0.1 µg/ml; this same concentration had 
no effect on the viability of monolayer MCF7 cells.

In addition, when monolayer MCF7 cells were pre-
treated with puromycin for 4 days and then trypsinized 
and plated for mammosphere assays (in the absence 
of puromycin), mammosphere forming activity was 
completely eliminated by puromycin pre-treatment at 0.5 
µg/ml (Figure 5). At this same concentration, ~50% of 
monolayer MCF7 cells still remain viable and proliferate 
(Figure 4). This indicates that protein synthesis inhibitors 
can preferentially target TICs, even in the presence 
of adjacent non-TIC cells, in the setting of an attached 
monolayer.

Thus, we conclude that TICs/CSCs are clearly more 
sensitive to the functional effects of inhibiting protein 
synthesis, directly supporting the results of our unbiased 
proteomics analysis. 

Functional effects of rapamycin and methionine 
restriction on mammosphere formation

To further validate that mammosphere formation 
is functionally dependent on protein synthesis, we next 
used a well-established FDA-approved drug that potently 
inhibits protein synthesis, namely rapamycin [21-23]. 
Figure 6 shows the effects of increasing concentrations 
of rapamycin on mammosphere formation. Note that 
rapamycin significantly reduces mammosphere formation 
in MCF7 cells, with an IC-50 < 100 nM. 

Complementary results were obtained with 
methionine restriction. Methionine is absolutely required 
for protein synthesis, since every new protein sequence 
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Figure 4: Puromycin significantly reduces mammosphere formation in MCF7 cells, without affecting MCF7 cell 
viability or proliferation. Increasing concentrations of puromycin inhibit mammosphere formation, using an ER-positive cell line 
(MCF7). Importantly, puromycin significantly reduces mammosphere formation, with an IC-50 of ~ 0.05 µg/ml.  However, mammosphere 
formation was completed abolished at 0.5 µg/ml. The vehicle-alone control was normalized to one. (*)p <0.05.

Figure 5: Puromycin pre-treatment of MCF7 cell monolayers completely prevents mammosphere formation. When 
monolayer MCF7 cells were pre-treated with puromycin for 4 days and then trypsinized and plated for mammosphere assays (in the 
absence of puromycin), mammosphere forming activity was completely abolished by puromycin pre-treatment at 0.5 µg/ml. At this same 
concentration, nearly 50% of the monolayer cells still remains viable and proliferate (See Figure 4).

Figure 6: Rapamycin significantly reduces mammosphere formation in MCF7 cells. Note that rapamycin also effectively 
reduces mammosphere formation in this cellular context, with an IC-50 of <100 nM. The vehicle-alone control was normalized to one. (*)
p <0.05.
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starts with a methionine residue [24-26]. Note that 
mammosphere formation was dramatically inhibited by 
methionine deprivation (Figure 7), which mimics the 
positive effects of caloric restriction in cultured cells. 
Importantly, mammosphere formation was functionally 
restored to normal levels by the dose-dependent re-
addition of methionine to the methionine-free culture 
media, with maximal effects occurring at 0.01 mM 
(10 µM). It should be noted that mammosphere media 
normally contains 0.1 mM methionine (100 µM). 

Remarkably, mammosphere formation appeared to 
be >18-times more sensitive to the effects of methionine 
deprivation and replacement, when compared directly with 
MCF7 cell monolayers (Figure 7). More specifically, the 
re-addition of 0.001 mM methionine stimulated MCF7 
mammosphere formation by 22-fold; in contrast, the 
same concentration of methionine only stimulated MCF7 
monolayer proliferation by 1.2-fold (Figure 7). Similar 
results were also obtained at higher concentrations of 
methionine (0.01 and 0.1 mM), with mammospheres again 

showing a >10-fold increase relative to monolayers.
In addition, MCF7 cell monolayers were pre-

treated with methionine at different concentrations (0, 
0.001, 0.01 and 0.1 mM) for 4 days and then trypsinized 
and re-plated for mammosphere assays (in the presence 
of normal levels of methionine (0.1 mM)). Under 
these conditions, mammosphere-forming activity was 
significantly reduced by up to 3-fold (Figure 8; compare 
0 vs. 0.1 mM). Importantly, methionine restriction did not 
affect MCF7 monolayer viability (as seen in Figure 7). 
Thus, methionine restriction is also effective at reducing 
“stemness” in the context of MCF7 cell monolayers. 

Therefore, pharmacological inhibition of protein 
synthesis and methionine depletion (as a mimetic 
of caloric restriction) may be effective strategies for 
eliminating cancer stem cells [22-28].

Figure 7: Methionine restriction significantly reduces mammosphere formation in MCF7 cells. Note that mammosphere 
formation was dramatically inhibited by methionine deprivation. Importantly, mammosphere formation was functionally restored to normal 
levels by the dose-dependent re-addition of methionine to the methionine-free culture media, with maximal effects occurring at 0.01 mM 
(10 µM). Mammosphere media normally contains 0.1 mM (100 µM). Parallel experiments with MCF7 cells grown as monolayer cultures 
are shown for comparison. Interestingly, mammosphere growth is 10-to18-fold more sensitive to the effects of methionine-restriction and 
replacement. (*)p <0.05.
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Relevance of protein synthesis related targets in 
human breast cancers

To assess the clinical relevance of our results, we 
also determined whether the proteomic targets that we 
identified in mammospheres were transcriptionally over-
expressed in human breast cancer cells in vivo. Towards 
this end, we exploited a clinical data set of tumor samples 
from 28 breast cancer patients [29, 30]. These tumor 
samples were subjected to laser-capture micro-dissection, 
to separate epithelial cancer cells from adjacent stroma. 
Tables 5 and 6 present a summary of these findings. 
Overall, 60 proteomic targets that we identified in 
mammospheres were also transcriptionally elevated in 
human breast cancer cells in vivo and the majority of these 

targets were also upregulated either in MCF7 and/or T47D 
mammospheres. As such, the new protein targets that we 
identified in mammospheres may be especially relevant 
for improving human breast cancer diagnosis and therapy. 

DISCUSSION

Here, using unbiased label-free proteomics analysis, 
we show that the cells of mammospheres (a population 
which is enriched for TICs and other progenitor cells) 
functionally overexpress numerous proteins, related to 
protein synthesis, including ribosomal biogenesis, mRNA 
translation initiation, polypeptide elongation, tRNA 
synthesis, amino acid uptake and protein folding. The 
potential clinical relevance of these targets was further 
validated using a previously published data set of human 

Figure 8: Pre-treatment of MCF7 cell monolayers with methionine restriction significantly reduces mammosphere 
formation. MCF7 cell monolayers were pre-treated with various concentrations of methionine (0, 0.001, 0.01 and 0.1 mM) for 4 days 
and then trypsinized and re-plated for mammosphere assays (in the presence of normal levels of methionine (0.1 mM)). Note that under 
these conditions, mammosphere-forming activity was significantly reduced by up to 3-fold (compare 0 vs. 0.1 mM). As such, methionine 
restriction is also effective at reducing “stemness” in the context of MCF7 cell monolayers. 
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breast cancer samples (N=28 patients), that were subjected 
to laser-capture microdissection, to separate the epithelial 
tumor cells from the adjacent tumor stroma. Thus, these 
novel anabolic targets reveal a metabolic “Achilles’ Heel” 
to allow the elimination of CSCs. In accordance with 
this idea, we demonstrate that the therapeutic targeting 
of protein synthesis in mammospheres (via puromycin, 
rapamycin or methionine-restriction) is indeed sufficient 
to prevent their proliferative expansion, as assessed 
using mammosphere formation as a functional assay 
(summarized schematically in Figure 9). In accordance 

with our results, a recent paper has shown that the mTOR 
inhibitor Torin-1 selectively targets human colon CSCs 
[31]. 

Recently, we also reported that mitochondrial 
oxidative metabolism is also markedly amplified in 
mammospheres, as evidenced by i) unbiased proteomics 
analysis and ii) functional validation with inhibitors 
of mitochondrial OXPHOS [32]. Thus, enhanced 
mitochondrial energy production could help directly “fuel” 
increased protein synthesis in CSCs, thereby driving and 
maintaining the anabolic phenotype of TICs (Figure 10). 

Figure 10: Augmented mitochondrial OXPHOS may help fuel increased protein synthesis. Recently, we showed that 
mitochondrial oxidative metabolism is significantly amplified in mammospheres, as evidenced by i) unbiased proteomics analysis and 
ii) functional validation with inhibitors of mitochondrial OXPHOS. As such, enhanced mitochondrial energy production could help 
directly “fuel” increased protein synthesis in CSCs, thereby driving and maintaining the anabolic phenotype of TICs. Thus, inhibition of 
mitochondrial function and protein synthesis may both be beneficial.

Figure 9: Anabolic tumor-initiating cells require protein synthesis for clonal expansion. Activation of the PI3-kinase/AKT/
mTOR signaling pathway is known to converge on ribosomal biogenesis and protein synthesis. Thus, the therapeutic effects of PI3-kinase 
inhibitors and AKT inhibitors, may be explained by their ability to inhibit mTOR signaling and block protein synthesis in TICs. Similarly, 
direct pharmacological inhibition of protein synthesis and/or caloric restriction or protein restriction may have similar beneficial therapeutic 
effects. Thus, our current data provide a novel convergent mechanism by which inhibitors of PI3-kinase, AKT, mTOR, as well as caloric 
restriction, may all directly target tumor-initiating cells, by inhibiting protein synthesis.
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Deregulation of protein synthesis

Deregulation of protein synthesis is a relatively 
unexplored but emerging mechanism of cancer 
progression. Two of the better documented examples 
of this phenomenon are increased protein synthesis as 
a result of c-MYC and mTOR oncogenic signaling. 
Although better known for targeting genes involved in 
cell cycle regulation, it has been known for some time 
that c-MYC directly targets multiple components of the 
translational machinery including: RNA polymerases 
I, II and III; ribosomal proteins; translation initiation 
factors; elongation factors; and rRNA [33-38]. Until 
more recently, the consequence and importance of this 
protein synthesis up regulation has remained unknown 
and the complexity and breadth of c-MYC targets has 
made it a difficult question to address [39]. Specific 
ribosomal protein haploinsufficiency (L24+/− and L38+/−) 
have recently helped to address the role of c-MYC 
induced protein synthesis [40]. It was thus demonstrated 
ribosomal protein haploinsufficiency is able to rescue mice 
from increased rates of protein synthesis downstream of 
oncogenic Eμ-Myc signaling. In these mice, the growth 
of Myc-overexpressing B cells was returned to normal 
and remarkably this was coupled with the restoration of 
cell division rates to near wild-type levels [40]. These 
results imply that c-MYC directly couples cell growth 
and cell division, at least in part, by a deregulation of 
protein synthesis. Furthermore, the oncogenic potential 
of c-MYC was strongly impaired by ribosomal protein 
haploinsufficiency genetic backgrounds, with the onset 
of lymphomas being dramatically delayed Eμ-Myc;L24+/− 
and Eμ-Myc;L38+/− mice compared to Eμ-Myc [40]. This 
may be due to an increase in the apoptotic response to 
Myc oncogenic activity observed with ribosomal protein 
haplo-insufficiency genetic backgrounds.

Unlike c-MYC, the oncogenic mTOR signaling 
pathway is readily associated with the control of protein 
synthesis, targeting mRNA translation and ribosome 
biogenesis [41-48]. The signaling cascade initiates 
with PI3-kinase producing phosphatidylinositol-3,4-
bisphosphate and phosphatidylinositol-3,4,5-triphosphate 
which act as second messages or as docking sites for the 
serine/threonine kinase Akt [49]. Recruitment of Akt to 
PI3-kinase products allows Akt-phosphorylation and thus 
activated, by the kinase PDK1. Activated Akt subsequently 
targets mTOR, in turn promoting translation via the 
activation of p70 S6 kinase (S6K) and the initiation factor 
4E [50, 51]. S6K phosphorylates ribosomal protein S6 and 
promotes the translation of translational machinery [52]. 

Methionine and calorie restriction

Methionine-free medium reduced the proliferation 
and viability of the cells in mammospheres. Reduction 

of methionine also reduces proliferation and increases 
apoptosis of embryonal stem cells (ESC) whilst 
apparently not affecting more differentiated cells [53]. 
ESC can be induced to form differentiated cardiac cells 
and a methionine free medium can be used to remove 
remaining ESCs which, if transplanted with cardiac cells 
form teratomas [54]. Our data is the first suggestion that 
epithelial TICs may be similarly sensitive to methionine 
depletion. It is well known that tumor cell lines and 
primary tumors in-vitro and when grown in-vivo in rodents 
are growth inhibited by methionine depletion whereas 
normal cells are unresponsive. Methionine restriction 
(MR) was shown to reduce the growth of sarcomas [55, 
56] [57], adenocarcinomas [25, 58] and mammary tumors 
in rodents [59], as well as of human tumor cell lines [60], 
human primary tumors in-vitro [61] and tumor growth in 
nude mice [62, 63].

Low methionine diets in rodents produce similar 
effects as calorie restriction [64]. Tumor formation and 
tumor growth is reduced and lifespan is increased although 
MR does not appear as potent as calorie restriction 
or general protein restriction [26]. MR may produce 
longevity effects, in part, acting through reduction of the 
formation of free radicals in mitochondria [64, 65] and, in 
part, by inhibition of protein synthesis in precursor cells 
as demonstrated in this report. Also, methionine restriction 
increases the stress tolerance of human fibroblasts, reduces 
senescence and increases their doubling time [66, 67]. In 
mammals, the effect of MR appears to be growth hormone 
dependent [68].

Vegans and vegetarians have relatively low intakes 
of methionine compared with meat eaters and some but 
not all recent studies suggest that vegans have lower 
cancer and cardiovascular disease risk [69-71]. It has been 
suggested that low-methionine vegan diets may be used as 
a feasible approach for life extension [72]. Ornish and his 
colleagues [73] were able to show that the concentration 
of prostate specific antigen (PSA) was reduced in men 
with prostate cancer treated only with lifestyle changes, 
which included a vegan diet and exercise. A recent phase 
I study demonstrated that methionine restriction was well 
tolerated for up to 17 weeks in patients with various solid 
tumors [74].

CONCLUSIONS

In conclusion, based on our current analysis using 
mammosphere cultures, we propose that inhibition 
of protein synthesis is a new therapeutic strategy for 
eradicating TICs, to potentially prevent tumor recurrence, 
metastasis and poor clinical outcome in breast cancer 
patients. This strategy might also be extended to other 
tumor types, as many of the phenotypic features of TICs 
are highly conserved between different epithelial cancer 
types. 
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MATERIALS AND METHODS

Materials

Breast cancer cell lines (MCF7 and T47D) were 
purchased from the ATCC. Puromycin, rapamycin, 
methionine and methionine-free media were obtained 
commercially from Sigma-Aldrich. Gibco-brand cell 
culture media (DMEM/F12) was purchased from Life 
Technologies. 

Monolayer culture

50,000 cells were plated in normal medium 
(DMEM, 10% FCS, L-glutamine, supplemented with 
Pen-Strep) for 24hr, followed by treatment with increasing 
concentrations of a specific inhibitor (puromycin) or 
nutrient (methionine) for a further 4 days. Cells were 
then collected by trypsinization and centrifugation. To 
quantitatively determine cell growth, the number of cells 
after dtreatment was counted using an automatic cell 
counter (Biorad) and differences compared to untreated 
cells was calculated and expressed as fold-change. To 
assess cell viability, cells were incubated for 1 minute 
with Trypan Blue (Sigma, #T8145) using a 1:1 ratio. The 
number of Trypan Blue positive cells (non-viable) was 
measured using an automatic cell counter (Biorad) and 
compared to untreated controls. For puromycin treatments, 
cells were also plated into mammosphere culture to assess 
stem cell-like activity with no further drug treatment. All 
monolayer experiments were performed in triplicate, three 
times independently, such that each data point represents 
the average of 9 replicates. 

Mammosphere culture

To directly assess the effects of specific inhibitors 
(puromycin/rapamycin) or nutrients (methionine) on 
mammosphere formation, cultures were supplemented 
with increasing concentrations of puromycin, rapamycin 
or methionine, as indicated in a given experiment. A 
single cell suspension was prepared using enzymatic (1x 
Trypsin-EDTA, Sigma Aldrich, #T3924), and manual 
disaggregation (25 gauge needle) to create a single cell 
suspension [8, 32]. Cells were plated at a density of 
500 cells/cm2 in mammosphere medium (DMEM-F12/
B27/20ng/ml EGF/PenStrep) in non-adherent conditions, 
in culture dishes coated with (2-hydroxyethylmethacrylate) 
(poly-HEMA, Sigma, #P3932). Cells were grown for 4-to-
5 days and maintained in a humidified incubator at 37°C 
at an atmospheric pressure in 5% (v/v) carbon dioxide/air. 
After 5 days for culture, spheres >50 µm were counted 
using an eye piece graticule, and the percentage of cells 

plated which formed spheres was calculated and is referred 
to as percentage mammosphere formation, and was 
normalized to one (1 = 100 %MSF). All mammosphere 
experiments were performed in triplicate, three times 
independently, such that each data point represents the 
average of 9 replicates. 

Methionine restriction and replacement

For methionine restriction experiments, DMEM-F12 
was replaced with methionine-free DMEM (Gibco, 
#21013-24) and supplemented with 30mg/L cysteine 
(Sigma, #C7352-25G).

Label-free quantitative proteomics analysis

For proteomic analysis, mammospheres were 
collected by centrifugation at 800 rpm for 10 minutes. Cell 
lysates were prepared for trypsin digestion by sequential 
reduction of disulphide bonds with TCEP and alkylation 
with MMTS [32]. Then, the peptides were extracted and 
prepared for LC-MS/MS. All LC-MS/MS analyses were 
performed on an LTQ Orbitrap XL mass spectrometer 
(Thermo Scientific, San Jose, CA) coupled to an Ultimate 
3000 RSLCnano system (Thermo Scientific, formerly 
Dionex, The Netherlands). Xcalibur raw data files 
acquired on the LTQ-Orbitrap XL were directly imported 
into Progenesis LCMS software (Waters Corp., Milford, 
MA, formerly Non-linear dynamics, Newcastle upon 
Tyne, UK) for peak detection and alignment. Data were 
analyzed using the Mascot search engine. Five replicates 
were analyzed for each sample type (N = 5). Statistical 
analyses were performed using ANOVA and only fold-
changes in proteins with a p-value less than 0.05 were 
considered significant. 

Data mining

To firmly establish the clinical relevance of our 
results from the quantitative proteomics analysis of 
mammospheres, we re-analyzed the transcriptional 
profiles of epithelial breast cancer cells and adjacent tumor 
stromal cells that were physically separated by laser-
capture microdissection (from N=28 human breast cancer 
patients) [29, 30].
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