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ABSTRACT
Resistance to chemotherapy is a major limitation of cancer treatments with 

several molecular mechanisms involved, in particular altered local drug metabolism 
and detoxification process. The role of drug metabolism and clearance system has 
not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma 
cell cancer for which a majority of patients escapes treatment. The expression of 
350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug 
Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM 
cells (MMCs) of newly-diagnosed patients in relation to their event free survival. 
MMCs of patients with a favourable outcome have an increased expression of genes 
coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their 
gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of 
patients with unfavourable outcome displayed a global down regulation of genes 
coding for xenobiotic receptors and the downstream detoxification genes but had a 
high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. 
Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM 
primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could 
open new perspectives to alleviate or reverse MM drug resistance.

INTRODUCTION 

Multiple Myeloma (MM) is a malignant plasma 
cell disease accounting for approximately 10% of 
haematological malignancies, with 25,000 new patients 
per year in the EU and a median survival of five years 
[1]. The disease develops primarily in the bone marrow 
and is associated with end organ damages including bone 
lesions, renal failure and anaemia [2]. Although significant 

advances have been made, the current treatment regimens 
do not cure the majority of patients who repeatedly 
relapse until they succumb to the disease [3]. Resistance 
to chemotherapy is a major hurdle limiting the efficacy of 
MM treatment. Anticancer drugs resistance can be innate 
–primary- or acquired over time following exposure to 
the drug and involves diverse molecular mechanisms, 
in particular, altered local drug metabolism and 
detoxification process is a major barrier that lies between 
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chemotherapeutic agents and their intended curative 
potential [4,5].

Drug metabolism and clearance (DMC) system is 
a defense system that imports, sensors, inactivates and 
excretes chemicals (xenobiotics) from a variety of sources 
including dietary components, environmental pollutants 
and drugs that can profoundly impair the structure and 
function of cells and tissues. After drug uptake, DMC 
system proceeds through enzymatic conversion of 
xenobiotics into more water-soluble metabolites that 
are better effluxed from the cell through membrane 
transporters and discharged into urinary and biliary 
systems [6,7]. 

Drug sensing is mediated by members of the 
superfamily of nuclear receptors including Pregnane 
X Receptor (PXR, NR1I2), Constitutive Androstane 
Receptor (CAR, NR1I3), Liver X Receptor (LXR, NR1H3) 
and the Farnesol X Receptor (FXR, NR1H4) as well as 
some cytosolic ligand-activated transcription factors, i.e., 
Hepatocyte Nuclear factor 4 (HNF4), Nuclear factor-
erythroid 2p45-related factor 2 (Nrf2), Hypoxia inducing 
factors (HIF1α, HIF3 α), Metal transcription factors 
(MTF1, MTF2) and the Aryl hydrocarbon Receptor (AhR). 
Theses xenobiotic receptors coordinately regulate the 
defense against nearly all xenochemicals and often share 
common properties particularly broad ligand specificity 
and diverse often-overlapping spectra of target genes [6,8]. 

After xenobiotic binding, these receptors translocate 
to the nucleus and govern the tandem expression of 
genes encoding for phase I and II Drug Metabolizing 
Enzymes (DMEs) and transporters. Phase I DMEs consist 
primarily of oxidases, reductases and dehydrogenases 
that detoxify xenobiotics by introducing, modifying or 
unmasking a polar functional group into xenobiotics, 
respectively. Cytochrome P450s (CYP450s) are the main 
Phase I DMEs detoxifying a vast number of xenobiotics, 
including 80% of drugs used in clinic [9,10]. Phase II 
DMEs subsequently conjugate highly polar endogenous 
ligands (glutathione, sulfate, glucoronide, amino-acid, 
methyl and acetyl) to phase I metabolites of xenobiotics, 
giving rise to more hydrophilic compounds, which can be 
excreted out of the cell. Glutathione S-transferases (GST), 
UDP-glucoronosyltransferase (UGT) and sulfotransferases 
(SULT) constitute the major routes of conjugation [11,12]. 
Both parental xenobiotics and their metabolites can finally 
be exported out of the cell through xenobiotic transporters 
(Phase III), which mediate translocation of chemicals into 
and out of cells. Drug transporters constitute a superfamily 
of specialized proteins that span cell membrane bilayers 
and mediate translocation of chemicals into and out 
of cells. Depending on the source of energy, these 
transporters belong either to the family of ATP binding 
cassette (ABC) transporters that utilizes ATP hydrolysis-
generated energy or to the subfamilies of Solute 
Carriers (SLC) driven by an exchange or cotransport of 
intracellular and/or extracellular ions with the substrate. 

ABC transporters comprise seven families with about 
20 carriers involved in drug transport and mediate only 
unidirectional efflux. The SLC comprise 52 families with 
many drug carriers involved in both drug uptake (Phase 
0) and efflux. The role of these xenobiotic transporters 
is crucial, dictating the circulating and cellular levels of 
drugs and subsequently their cytotoxic/therapeutic effects 
[13,14].

Unsurprisingly, DMC system has been demonstrated 
to compromise the efficacy of cancer chemotherapy 
and lead to treatment failure through promoting the 
metabolism and the elimination of chemotherapeutic 
agents. Much attention has been directed toward the role of 
ABC transporters since numerous studies have established 
a causative link between high expression of ABC proteins 
and worse clinical outcome and refractory disease [15]. 
Similarly, the expression of phase I / II DMEs have also 
been proved to modulate chemotherapeutic efficacy [5]. 
More recently, several studies have thus shown that the 
activation of PXR, AhR, Nrf2, HIF1α or PPARs play a 
critical role in altering the therapeutic response through 
reducing active drug concentration within tumor cells 
[4,16]. Meanwhile, emerging evidences suggest that 
the activation of DMC system in response to cancer 
drugs could also enhance chemosensitivity. As such, the 
drug biotransformation through phase I DMEs does not 
always yield pharmacologically inactive metabolites and 
could instead produce highly active toxic metabolites 
in a common process referred to as bioactivation [17]. 
Moreover, xenobiotic receptors functions are tissue/
context-specific manner and their activation in different 
cancer settings have been reported to be pro-apoptotic, 
anti-proliferative and antitumoral [18].

Despite the relevance of DMC process for the 
effectiveness or failure of chemotherapy, its contribution 
to MM pathology and prognosis have been poorly 
investigated with much concern given to the study of 
single nucleotide polymorphism (SNP) of phase I and 
II enzymes, transporters and some xenobiotic receptors 
genes [19]. To this end, we have looked for the expression 
of 350 genes encoding for uptake carriers, xenobiotic 
receptors, phase I/II DMEs and efflux transporters in 
MM cells (MMCs) of patients with newly diagnosed 
MM, in relation with their clinical outcome (relapse 
and survival). This study shows that MMCs of patients 
with a better survival are metabolically competent and 
display an increased expression of genes coding for 
several xenobiotic receptors and their downstream target 
genes among influx and efflux transporters and phase I/
II DMEs. On the other hand, MMCs of patients with 
poor outcome exhibit global down regulation of DMC 
genes but overexpressed genes coding for Nrf2 and ARNT 
pathways and several members of ABC transporter family 
suggesting that Nrf2 and ARNT pathways are likely to be 
key players of MM primary resistance. 
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RESULTS

40 Drug Metabolism and Clearance genes are 
prognostic to EFS in MM patients

The expression of 40 genes among a consensus list 
of 350 genes coding for DMC system (Supplementary 
Table S1) was found to be prognostic for Event Free 
Survival (EFS) in patients of the HM cohort using a Cox 
analysis. Fourteen genes were associated with a good 
prognosis and 26 with a bad one. The 14 good prognostic 
genes encode for 4 xenobiotic receptors (RXRα, HNF1α, 
MTF1 and FXR), 4 phase I DMEs (CYP46A1, CYP1B1, 
NQO2, XHD), 2 phase II DMEs (SAT1, BAAT) and 4 
SLC members (SLC2A1, SLC2A3, SLC22A4, SLC22A15) 
(Table 1). The 26 bad prognostic genes encode for 12 
transporters (including 7 members of ABC family - 
ABCB1, ABCB2, ABCB10, ABCD1, ABCD2, ABCE1, 
ABCF3 - and 4 members of SLC family - SLC38A5, 
SLC16A1, SLCO5A1 and SLC19A2), the Aryl hydrocarbon 
Receptor Nuclear Translocator (ARNT), MTF2 and Keap1- 
the cytosolic regulator of Nrf2 (Table 2). 

The Drug Metabolism and Clearance score splits 
patients of two independent cohorts into three 
groups with different EFS and OS 

The prognostic information of these 40 DMC genes 
was summed within a single parameter - a DMC score - 

as indicated in the Methods section. DMC score ranged 
from -10.79 to 15.97 in the 206 MMCs of the patients 
of the HM cohort and the higher the DMC score is, the 
worse the outcome is. Running an unsupervised clustering 
of the 40 prognostic DMC genes along the 206 patients 
ranked according to increasing DMC score, genes were 
split into 2 clusters: a cluster comprising bad prognostic 
genes mainly overexpressed in MMCs with the highest 
DMC scores (bad prognosis) and a second cluster with 
the good prognostic ones overexpressed in MMCs with 
the lowest DMC scores (good prognosis). MMCs with 
intermediate DMC scores variably expressed both bad and 
good prognosis DMC genes (Figure 1). To delineate these 
3 patient groups, a k-means clustering (3 groups, 200 runs) 
was used splitting patients into a low DMC score group 
comprising 43% of the patients (-10.79 ≤ DMC score < 
-0.673), an intermediate DMC score group (40% of the 
patients, -0.673 ≤ DMC score < 4.24) and a high DMC 
score group (17% of the patients, 4.24 ≤ DMC score < 
15.97) (Figure 1). 

As illustrated in Figure 2, patients of the HM cohort 
from the 3 DMC groups had different EFS and Overall 
Survival (OS). The median EFS were 12.9, 32 and 47.6 
months for the high, intermediate and low DMC score 
groups, respectively (P = 5.2 x 10-12) (Figure 2). The 
median OS was 32.9 months for the high DMC score 
group and not reached for both intermediate and low DMC 
score groups (P = 9.4 x 10-5, Figure 2). 

Using the cutoff points designed with the HM cohort 
(- 0.673 and 4.24), patients of the independent UAMS-
TT2 cohort were similarly split into high, intermediate and 
low DMC score groups comprising 12.5, 34% and 53.5% 

Table 1: Good prognostic genes for patients of the HM cohort. The value of the 
expression of each of the 350 DMC genes for predicting the EFS of the newly-
diagnosed patients of the HM cohort was looked for using a Cox univariate analysis. 
Data are the beta coefficients, the hazard ratios and P values of the Cox model. Genes 
are ranked according to increasing P values.

Probe set Name Beta Coefficient HR P value
202449_s_at RXRA -0.36 0.7 0.0011
210515_at HNF1A -0.29 0.75 0.0082
220331_at CYP46A1 -0.28 0.75 0.0086

203455_s_at SAT1 -0.26 0.77 0.013
201250_s_at SLC2A1 -0.25 0.78 0.016
202436_s_at CYP1B1 -0.3 0.74 0.024
206913_at BAAT -0.23 0.79 0.025

202499_s_at SLC2A3 -0.33 0.72 0.028
228497_at SLC22A15 -0.24 0.79 0.033

205322_s_at MTF1 -0.23 0.79 0.034
206340_at NR1H4 -0.22 0.81 0.037

203814_s_at NQO2 -0.24 0.79 0.038
205896_at SLC22A4 -0.27 0.76 0.042
210301_at XDH -0.19 0.82 0.049
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of patients, respectively. The median EFS of patients of 
the high DMC score group was 19.3 months, 3- and 3.5-
fold shorter than that of the low and intermediate DMC 
score patients, respectively (P = 9.8 x 10-7) (Figure 3). 
The median EFS of the intermediate and low DMC score 
groups were not significantly different. Furthermore, the 
median OS of UAMS-TT2 patients of the high DMC score 
group was 45 months and not-reached for the low and 
intermediate DMC score groups (P = 1.1 x 10-4) (Figure 3).

Drug Metabolism and Clearance profile in MMCs 
of patients with bad versus good prognosis

The above analysis shows that the 40 DMC 
prognostic genes could split patients of 2 independent 
cohorts into at least two groups with a different EFS and 

OS. We looked for a differential expression of all 350 
DMC genes between these groups. The intermediate 
DMC group was not considered because MMCs of these 
patients variably expressed both good and bad prognosis 
DMC genes. Using a SAM supervised analysis (2 fold 
change, FDR ≤ 0.05), 101 of the 350 DMC genes had an 
increased expression in low DMC score MMCs (good 
prognosis group) and only 14 in high DMC score MMCs 
(bad prognosis group) (Tables 3 and 4). The 101 genes 
whose expression is increased in the low DMC score 
group include genes coding for 7 xenobiotic receptors, 
particularly FXR (4.5-fold increase), HIF3α (4.1-fold 
increase), HNF4 α (4-fold increase), CAR (3.1-fold 
increase), MTF1 (2.7-fold increase). These 101 low DMC 
score group genes include 30 of the known 47 CYP genes 
including members of the CYP2 (CYP2B6, CYP2C9, 
CYP2E1 and CYP2D6) and CYP3 families (CYP3A4, 

Table 2: Bad prognostic genes for patients of the HM cohort. The value of the expression of each 
of the 350 DMC genes for predicting the EFS of the newly-diagnosed patients of the HM cohort was 
looked for using a Cox univariate analysis. Data are the beta coefficient, the hazard ratio and P value of 
the Cox model. Genes are ranked according to increasing P values.

Probe set Name
    

    Beta Coefficient
    
HR

    
 p-Value

203302_at DCK 0.32 1.4 1e-04
202854_at HPRT1 0.35 1.4 6e-04

223320_s_at ABCB10 0.29 1.3 0.00074
230619_at ARNT 0.25 1.3 0.00096
219565_at CYP20A1 0.30 1.4 0.0014

209646_x_at ALDH1B1 0.3 1.3 0.0016
224918_x_at MGST1 0.26 1.3 0.0021
234973_at SLC38A5 0.25 1.3 0.0022
205073_at CYP2J2 0.28 1.3 0.0026
206756_at CHST7 0.25 1.3 0.0028

202307_s_at TAP1 0.27 1.3 0.0039
202236_s_at SLC16A1 0.25 1.3 0.0066
201612_at ALDH9A1 0.24 1.3 0.0074

220984_s_at SLCO5A1 0.25 1.3 0.0081
201872_s_at ABCE1 0.25 1.3 0.0087
202180_s_at MVP 0.23 1.3 0.012
202850_at ABCD3 0.24 1.3 0.013
207583_at ABCD2 0.24 1.3 0.016
202417_at KEAP1 0.25 1.3 0.016
202589_at TYMS 0.19 1.2 0.017
236597_at UGT3A1 0.21 1.2 0.022
209681_at SLC19A2 0.2 1.2 0.026

202394_s_at ABCF3 0.22 1.2 0.029
202275_at G6PD 0.20 1.2 0.03
209993_at ABCB1   0.21 1.2 0.033

203345_s_at MTF2 0.2 1.2 0.049
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Figure 2: Kaplan-Meier curves of the EFS and OS of the 3 DMC score groups of patients of the HM cohort.

Figure 1: Heatmap of supervised clustering of the 40 prognostic genes for EFS along the 206 patients of the HM cohort 
ranked according increasing DMC score. A k-means function was used to identify the -0.673 and 4.24 cutoff points to split patients 
into 3 groups with a low, intermediate and high DMC score.
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CYP3A5 and CYP3A7), 19 genes coding for SLC members 
and 11 genes for ABC transporters (Table 3). The 14 genes 
whose expression is up-regulated in the high DMC score 
group comprise genes coding for the ARNT transcription 
factor, Keap1 the co-regulator of Nrf2, 3 ABC members 
(ABCD3, ABCE1, ABCB2/TAP1), 1 SLC member 
(SLC16A1) and 1 CYP450 (CYP20A1) (Table 4). 

As illustrated by the supervised clustering of the 
expression of these 115 genes in MMCs of patients of 
the HM cohort ranked according to increasing DMC 
score (Figure 4), this data emphasizes that MMCs of 
the low DMC score group have higher abilities for 
biotransformation and detoxification of xenobiotics 
including drugs with regard to the high expression of a 
majority of xenobiotic receptors and of their downstream 
target genes (30% of DMC genes overexpressed) 
compared to MMCs of the high DMC score group 
(only 5% of DMC genes overexpressed). This is further 
evidenced by an Ingenuity Pathway Analysis which 
reveals an enrichment of genes coding for PXR/CAR 
pathways in the low DMC group and for Nrf2 pathway 
in the high DMC group (data not shown). In addition, the 
expression of PXR/CAR target genes was higher in low 
DMC score MMCs compared to high DMC score ones 
and the reverse for Nrf2 target genes (Figures 5A and 5B).

Whole genome molecular portrait of MMCs of 
patients with bad versus good prognosis

In order to get a better insight of the biological 
pathways delineating MMCs with low and a high DMC 
score, we looked for the differential expression of 12684 

genes (variance ≥ 100) using a SAM supervised analysis 
(fold change ≥ 2, FDR ≤ 0.05, 1000 permutations) in 
MMCs of patients with low versus high DMC score (good 
versus bad prognosis). 2026 genes had their expression 
up regulated in low DMC score MMCs and 544 in high 
DMC score ones. Using Ingenuity Pathway Analysis, low 
DMC score MMCs showed an enrichment for pathways of 
the DMC system including LXR, PXR, FXR, Cytochrome 
P450 pathways, together with an enrichment for cytokine 
pathways (hyper cytokinemia, hyper chemiohinema and 
atherosclerosis signaling pathways) with TREM1, STAT3, 
Rel A, CREB and ILβ as upstream regulators (Figure 
6A). High DMC score MMCs displayed prominently an 
enrichment for DNA Replication, Damage and Repair, 
Mitochondria dysfunction and oxidative stress response 
pathways (Figure 6B). Using the C2 Kegg collection 
(c2.cp.kegg.v.4.0) of the Gene Set Enrichment Analysis 
(GSEA) software, two modules of gene sets were enriched 
in high DMC score MMCs, the first one includes oxidative 
stress, mitochondrial dysfunction, unfolded protein 
response and proteasome deregulation with ubiquitin 
mediated proteolysis (Parkinson’s disease, Oxidative 
Phosphorylation, Alzheimer disease, proteasome, 
Huntington disease) and the second module includes DNA 
repair, mismatch repair and base excision repair gene sets. 
The low DMC score MMCs showed enrichment for drug 
and xenobiotic metabolism, cytokine-cytokine receptor 
interaction, retinol and lipid metabolism and calcium 
signaling pathways. 

DISCUSSION 

The current study shows that MMCs of patients with 

Figure 3: Kaplan-Meier curves of the EFS and OS of the 3 DMC score groups of patients of the UAMS-TT2 cohort.
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Table 3: Genes up regulated in low DMC Score group. The 
expression of the 350 DMC genes in MMCs of patients of the 
two low versus high DMC score groups (HM cohort, -10.79 
≤ DMC score < -0.673 and 4.24 ≤ DMC score ≤ 15.97) was 
compared using a SAM supervised analysis (2 fold change, FDR 
≤ 0.05). Data are the list of the 101 genes whose expression in 
increased in MMCs of patients with low DMC score and their 
fold change in expression between low and high score MMCs. 

Probe set Name Fold Change
207225_at AANAT 2.24
210082_at ABCA4 2.01
217504_at ABCA6 2.23

219577_s_at ABCA7 2.17
242541_at ABCA9 4.1

1569072_s_at ABCB5 4.87
1554911_at ABCC11 3.82

1553410_a_at ABCC12 2.29
239217_x_at ABCC3 3.89
210245_at ABCC8 2.47

208462_s_at ABCC9 2.75
207593_at ABCG4 2.41
234197_at ACSM1 2.91
207820_at ADH1A 2.22

223781_x_at ADH4 2.87
210505_at ADH7 2.96
227113_at ADHFE1 2.88

210962_s_at AKAP9 2.16
240435_at ALDH1A2 2.75

211004_s_at ALDH3B1 2.1
204942_s_at ALDH3B2 2.27
205082_s_at AOX1 2.33
206955_at AQP7 2.23
223652_at AS3MT 2.8
206913_at BAAT 3.86
205627_at CDA 2.08

220446_s_at CHST4 2.63
221164_x_at CHST5 2.58
224400_s_at CHST9 4.34
205502_at CYP17A1 2.48
203475_at CYP19A1 2.36
205749_at CYP1A1 3.06

202436_s_at CYP1B1 2.68
206504_at CYP24A1 2.5
208327_at CYP2A13 2.04

211295_x_at CYP2A6 2.26
207718_x_at CYP2A7 2.15
206755_at CYP2B6 4.08
210272_at CYP2B7P1 2.28

208126_s_at CYP2C18 2.09
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216058_s_at CYP2C19 2.13
216025_x_at CYP2C9 3.75
217468_at CYP2D6 2.3
209975_at CYP2E1 3.5
220562_at CYP2W1 2.67
244407_at CYP39A1 2.43

205998_x_at CYP3A4 2.11
211440_x_at CYP3A43 2.24
214234_s_at CYP3A5 2.61
205939_at CYP3A7 2.29
220331_at CYP46A1 3.21

211231_x_at CYP4A11 2.27
1555497_a_at CYP4B1 2.23

206153_at CYP4F11 2.78
206539_s_at CYP4F12 2.87
210452_x_at CYP4F2 3.24
237395_at CYP4Z1 3.2
207386_at CYP7B1 3.22
232494_at CYP8B1 2.21
228268_at FMO2 3.55
206930_at GLYAT 5.33

205752_s_at GSTM5 2.74
222124_at HIF3A 4.14

208429_x_at HNF4A 4
204041_at MAOB 4.38

205813_s_at MAT1A 3.02
244122_at MGST3 2.85

205322_s_at MTF1 2.7
206797_at NAT2 2.18
202237_at NNMT 3.12
206410_at NR0B2 2.59
206340_at NR1H4 4.55
207007_at NR1I3 3.11

206345_s_at PON1 2.05
210367_s_at PTGES 2.89
208131_s_at PTGIS 2.17
205128_x_at PTGS1 2.32
204748_at PTGS2 3.46
217020_at RARB 2.1
207185_at SLC10A1 3.95
207095_at SLC10A2 2.78
240159_at SLC15A2 2.13
1552761_at SLC16A11 2
204462_s_at SLC16A2 2.59
220455_at SLC16A8 4.77
237799_at SLC22A12 2.1
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207444_at SLC22A13 2.64
232232_s_at SLC22A16 2
220554_at SLC22A7 3.52
231352_at SLC22A8 3.6
207560_at SLC28A1 3.06
216432_at SLC28A2 2.3
220475_at SLC28A3 3.15
1560149_at SLC29A2 3.28
242773_at SLC5A1 2.05
216603_at SLC7A8 3.03

220135_s_at SLC7A9 4.32
204368_at SLCO2A1 4.13
207601_at SULT1B1 2.01

219934_s_at SULT1E1 2.61
210301_at XDH 3.31

Table 4: Genes up regulated in High DMC Score 
group. The expression of the 350 DMC genes in MMCs 
of patients of the high versus low DMC score groups (HM 
cohort, -10.79 ≤ DMC score < -0.673 and 4.24 ≤ DMC 
score ≤ 15.97) was compared using a SAM supervised 
analysis (2 fold change, FDR ≤ 0.05). Data are the list of 
the 14 genes whose expression in increased in MMCs of 
patients with high DMC score and their fold change in 
expression between high and low score MMCs.

Probe set Name Fold Change

202850_at ABCD3 2.045

201872_s_at ABCE1 2.115

209646_x_at ALDH1B1 2.539

230619_at ARNT 2.017

202024_at ASNA1 2.059

219565_at CYP20A1 2.027

203302_at DCK 3.461

202275_at G6PD 2.832

202854_at HPRT1 2.114

202417_at KEAP1 2.196

202180_s_at MVP 2.28

202236_s_at SLC16A1 2.566

202307_s_at TAP1 2.317

209605_at TST 2.025
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Figure 4: Heatmap of the supervised clustering of genes differentially expressed between low and high DMC score 
MMCs of patients of the HM cohort. Patients are ranked according to increasing DMC score. 

Figure 5: Expression of the target genes driven by PXR/CAR and Nrf2 in low and high DMC score MMCs. Data are 
the mean Affymetrix signals interrogating the target genes driven by PXR/CAR activation (A) or by Nrf2 (B) activation in MMCs of the 
patients of the low or high DMC score groups designed in Figure 1. The horizontal bars indicate the mean values ± SD of the expression of 
all target genes in each MMC group and these mean values were compared using a student t-test.
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good clinical outcome, harvested prior to any treatment, 
overexpressed genes coding for several xenobiotic 
receptors (LXR, CAR, FXR and RXRA), and accordingly 
their downstream target genes coding for DMC actors 
(phase I/II DMEs, uptake and efflux transporters). On the 
contrary, MMCs of patients with bad outcome bear global 
down regulation of DMC system but highly expressed 
genes coding for the ARNT and Nrf2 pathways together 
with several members of ABC transporters suggesting a 
key role of these gene products in primary drug resistance 
of MM cells.

PXR, CAR, LXR and FXR activation may confer 
drug sensitivity to MMCs

The overexpression of genes coding for the main 
actors of the DMC system in MMCs of patients with a 
good outcome could appear somewhat surprising given 
the well established role of DMEs and transporters to 
promote the metabolism, elimination and detoxification 
of chemotherapeutic drugs leading to reduced therapeutic 
effectiveness and treatment failure. However, emerging 
reports have demonstrated that xenobiotic receptors as 
well as their transcriptional targets among DMEs and 
drug carriers could confer, in a context-dependent manner, 
either drug resistance or drug sensitivity.

Figure 6: Major Pathways enriched in low (A) or high (B) DMC score MMCs. The Ingenuity Pathway Analysis was used to 
identify the pathways encoded by the whole genome genes differentially expressed between low and high DMC score MMCs.
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RXRα

 RXRα (RXRA), − whose gene expression in 
MMCs is a good prognostic marker - is the permissive 
combinatory partner for PXR, CAR, LXR, and FXR 
heterodimerization and nuclear translocation after ligand 
binding. Its activation has been previously associated with 
good prognosis in different cancers and RXRα synthetic 
ligands, the rexinoids, have shown promising antitumor 
activity in preclinical and clinical studies in different 
cancer types [20]. In particular, bexarotene, a synthetic 
rexinoid, approved by FDA was found to induce a 50% 
overall inhibitory response in patients with refractory or 
persistent cutaneous T-cell lymphoma and to improve the 
overall survival [21]. Several studies have demonstrated 
that RXRA antitumor activity is attributable to enhanced 
apoptosis, cell cycle regulation and increased sensitivity to 
several chemotherapeutic drugs through down regulation 
of Nrf2 antioxidant pathway [22,23]. 

PXR

 PXR pathway is one of the major xenobiotic 
signalling cascades enriched in MMCs of low DMC 
score patients with good outcome. PXR is a major 
coordinator of the detoxification process; but its role 
in tumor cells is somehow controversial since PXR 
functions in a tissue-specific and/or ligand-promoter 
dependent manner and could play a key role in 
chemoresistance or chemosensitivity. The role of PXR in 
promoting chemoresistance is well documented in breast, 
endometrial, prostate, ovarian colon and colorectal [16]. 
However, others studies have shown that PXR could 
have anticancer activities, independently of its role in the 
DMC system, in colon, liver and breast cancers [24,25]. 
As such, in addition to its master role in drug metabolism 
regulation, PXR is thought to modulate cancer cell 
resistance or sensitivity through the control of several 
cellular processes including regulation of genes involved 
in cell proliferation, metastasis, pro-apoptosis, anti-
apoptosis and endocrine homeostasis as well as regulation 
of the oxidative stress response [18,26,27].

LXR

 In addition to PXR pathway, LXR pathway is also 
enriched in low DMC score MMCs. LXR, activated by 
naturally occurring oxysterols, small lipophilic molecules 
and xenochemicals, act as cholesterol sensors to regulate 
the transcription of gene products that control intracellular 
cholesterol homeostasis through biosynthesis, catabolism 
and transport. The role of LXR in cancer drugs response 
has not been investigated. However, recently, it have 
demonstrated that activation of LXR pathway induces 

inhibition of clonogenic MM growth, MM tumor initiating 
cells in vitro and in vivo [28]. 

SLC transporters

 A possible explanation of the transcriptomic profile 
with high drug metabolism and detoxification abilities 
in MMCs of patients with good outcome is likely due to 
the fact that high xenobiotic receptors expression trigger 
upregulation of uptake transporters, the SLC members. 
Indeed, in those low DMC score MMCs, the expression of 
19 SLC members was up regulated, suggesting that drugs 
might enter more efficiently into MMCs and induce cancer 
cell death. On the contrary, in high DMC score MMCs, 
the low expression of xenobiotic receptors and associated 
low expression of these intake transporters could lead to 
reduced drug internalization and chemotherapy inefficacy. 
In particular, low DMC score MMCs highly expressed 
genes coding for SLC7 family, SLC22 or SLC10, which 
are crucial for drug uptake [14], [7,29]. Moreover, 
SLC7A7 is a major influx transporter of melphalan [30,31], 
a main drug used to treat MM patients of the HM cohort 
used in this study. Previous work has shown that down-
regulation of SLC7A7 reduced the Melphalan uptake by 
58% and toxicity by 3.5-fold in hematopoietic tumor 
cells [32]. Further, Agnelli et al (2011) also reported that 
a high expression of SLC7A7 gene in MMCs positively 
correlated with a better prognosis [33]. 

CYP450

 The high expression of 30 out of the 47 known 
CYP450 coding genes in low DMC score MMCs could be 
an additional mechanism, which explains the association 
of active xenobiotic/drug metabolism in MMCs to 
favourable patients’ outcome. Although CYP450 generally 
leads to increased elimination of drugs and subsequently 
to therapeutic failure, an increase in CYP450 can also 
trigger drug biotransformation, generate more cytotoxic 
intermediate metabolites and have therapeutic benefit. 
This is particularly true for some drugs used in the 
treatment of the patients enrolled in this study, including 
Cyclophosphamide and Thalidomide. Cyclophosphamide, 
a nitrogen mustard alkylating prodrug, requires metabolic 
activation and undergoes CYP2B6/CYP2C9 mediated 
oxidation to induce DNA damage and cell death in target 
cancer cells [34,35]. 

ABC transporters

 Low DMC score MMCs highly expressed genes 
coding for ABC transporters but these are exclusively 
members of ABCA and ABCC subfamilies. Conversely, 
high DMC score MMCs overexpressed genes encoding 
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for members of ABCB, ABCD, ABCDE and ABCF 
families. Several studies have reported the role of some 
ABC transporters in MM drug resistance, mainly that of 
ABCB1/MDR1/PgP [36-38]. However, a clinical trial with 
a potent and specific inhibitor to ABCB1 (Zosuquidar) 
did not show any benefit in progression free or overall 
survival suggesting additional transporters or mechanisms 
are involved in conferring drug resistance [39]. Our data 
suggest that several ABC transporters are involved in 
the primary drug resistance phenotype, which could 
justify at least in part the limited therapeutic success of 
monotargeted therapies and imply, in accordance with 
previous studies, that ABC transporter family could exhibit 
a high degree of functional redundancy [40,41]. Moreover, 
our data strongly suggest that in cancer drug resistant 
or sensitive phenotype, more concern should be given 
to the ratio of efflux (ABC transporters) versus influx 
transporters (SLC transporters) rather than considering 
efflux proteins solely. 

Although MMCs of patients with bad outcome 
display a global down regulation of DMC genes 
expression, they overexpressed genes coding for ARNT or 
Nrf2 pathways.

ARNT

 ARNT also designated as hypoxia-inducible factor 
HIF-1β, is a major transcription factor up regulated in high 
DMC score MMCs. ARNT serves as binding partner for 
several bHLH members and plays a key role in two distinct 
cellular signalling pathways – the AhR and HIF pathways - 
activated in response to environment stimulations and also 
largely involved in cancer cell biology. The HIF pathway 
mediates cellular adaptive responses to reduced oxygen 
supply. Under sufficient oxygen supply (normoxia), HIF1α 
is degraded after ubiquitination; under hypoxia, HIF1α 
accumulates, heterodimerizes with ARNT and translocates 
to the nucleus. The HIF1α/ARNT complex mediates 
the transcription of numerous target genes mediating 
adaptive response to low oxygen tension. HIF signalling 
has been shown to contribute to tumor progression by 
promoting invasion/metastasis, metabolic alterations and 
the induction of angiogenesis in numerous cancer types. 
HIF1α expression has been reported in about 35% of 
CD138+ cells isolated from MM patient’s samples [42]. 
In preclinical studies, the inhibition of HIF1α has been 
shown to enhance the sensitivity to melphalan and early 
down-regulation of HIF1α expression has been reported 
in MM cell lines sensitive to bortezomib and lenalidomide 
[42-44]. 

AhR, the second heterodimerization partner for 
ARNT, is a chemosensor responsive signalling cascade 
to a set of environmentally common immunosuppressive 
chemicals. After ligand binding, AhR undergoes a 
conformational change, forms a heterodimer with ARNT 
and activates the transcription of a wide range of phase I/

II DMEs and drug transporters. For several decades, AhR/
ARNT pathway has been studied largely because of its 
critical role in immunosuppression and as major regulator 
of xenobiotic-induced carcinogenesis [10]. Early studies 
have demonstrated a major role for the AhR in malignant 
B cell transformation including B lymphomas, leukaemia 
and multiple myeloma among other cancers [45]. More 
recently, increasing epidemiological and experimental 
data provided substantial support that AhR presumably 
activated by endogenous ligand(s) plays an important 
role in tumor promotion and progression [46]. As such, 
AhR was found to be over-expressed and constitutively 
active in a variety of cancers and its nuclear expression 
is frequently associated with bad prognosis and advanced 
histological grade [47,48]. In particular, many studies 
demonstrated elevated AhR levels and constitutive activity 
in a variety of cancer cell lines and B lineage malignancies 
including lymphomas, myelomas and T cell leukemia [45]. 
Microarray analysis of 1,036 human cancer cell lines 
revealed a significant role of AhR in myelomas and other 
B lineage cancer subtypes among other cancers [49]. In 
cancer cells, AhR is though to promote cell proliferation, 
cell motility and migration and oxidative stress through 
cross talk with ER, NFkB, p53 and Nrf2 pathways [50,51].

Using acute myeloid leukaemia cells, recent 
data pointed out increased antioxidants enzymes and 
Nrf2 transcripts and elevated intracellular glutathione 
concentration after ARNT up regulation [52]. Further, 
it have been demonstrated that the knockdown of 
ARNT in cancer cells reduced proliferation rate and the 
transformation ability and enhanced cisplatin-induced 
apoptosis [53].

Nrf2

The second major pathway found up regulated in 
the high DMC score group with the worst prognosis is 
Nrf2 signalling cascade. Nrf2 is at the crossroad between 
drug metabolism and oxidative stress responses. This 
was further confirmed by data from Ingenuity Pathways 
Analysis and GSEA analysis underlining oxidative stress 
as major component of high DMC score group signature. 

In unstressed cells, Nrf2 is bound to Keap1, 
ubiquitinated and degraded by proteasome. Upon 
electrophilic stress, Nrf2 is released from Keap1, 
translocates into the nucleus and activates the transcription 
of genes coding for redox balancing proteins (heme-
oxygenase1), phase II detoxifying genes and drug 
transporters [54]. Growing evidences suggest that 
a Nrf2 constitutive up-regulation is associated with 
cancer development, progression and resistance to 
chemotherapy [55-58]. Constitutive activation of Nrf2 
is a major advantage for cancer cell for detoxification 
of ROS associated with cell cycle and growth. The 
oncogenes K-Ras, B-Raf, and Myc can stimulate Nrf2 gene 
transcription in cancer cells, leading to a reduction in the 
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intracellular ROS level and the promotion of oncogenesis. 
Interestingly, elevated activity of Nrf2 in cancer cells 
has been shown to decrease their sensitivity to common 
chemotherapeutic agents. This is particularly true for the 
proteasome inhibitor Bortezomib, a major line of MM 
treatment. In vitro and in clinical studies showed high 
expression of Nrf2 associated with poor responsiveness 
to Bortezomib treatment [59,60]. In accordance with 
other reports, our data underlined a key role of oxidative 
stress in MM prognosis with the involvement with several 
signalling pathways related to redox homeostasis [61-65].

The current study shows that the genes coding for 
xenobiotic receptors and their downstream DMC target 
genes are overexpressed in MMCs of patients with 
good outcome and only those coding for ARNT or Nrf2 
pathways in MMCs of patients with poor outcome. Above 
all, these data suggest that selectively targeting upstream 
regulators of the major PXR, FXR, LXR and Nrf2 pathways 
using a subset of synthetic antagonists or agonists for 
those xenobiotic receptors could provide a promising 
strategy to improve the efficacy of treatment in MM. A 
fine understanding of the DMC system in MM biology 
will help improving the use of drugs currently used in 
MM.

METHODS

Patient samples and gene expression data

206 patients with newly-diagnosed MM were 
enrolled in the current study after written informed 
consent at the University hospitals of Heidelberg 
(Germany) or Montpellier (France) (HM cohort). 
These patients underwent frontline induction treatment 
with Dexamethasone and various drugs, high-dose 
chemotherapy with 200 mg/m2 Melphalan and autologous 
stem cell transplantation according or in analogy to the 
GMMG-HD3-trial[66]. At relapse, various treatments 
regimens were applied including Bortezomib and 
immunomodulatory drugs (Thalidomide, Lenalidomide, 
Pomalidomide).

Bone marrow was harvested at diagnosis, MMCs 
were purified, gene expression profiling (GEP) assayed 
using Affymetrix U133 2.0 plus microarrays, and data 
normalized using the MAS5 Affymetrix algorithm with 
a scaling factor of 500 as described previously[67]. The 
.CEL and MAS5 files are deposited in the Array Express 
public database (http://www.ebi.ac.uk/arrayexpress/) 
under accession number E-MTAB-362. 

Publicly available MAS5 normalized GEP data 
(GEO, http://www.ncbi.nlm.nih.gov/geo/, accession 
number GSE2658) from purified MMCs of a cohort of 
345 patients were also used. These patients were treated 
with total therapy 2 protocol (UAMS-TT2 cohort) at the 

University of Arkansas for Medical Sciences (UAMS, 
Little Rock, USA)[68]. 

Identification of prognostic Drug Metabolism and 
Clearance genes (DMC genes) and DMC score 
building

Based on the review of literature and databases[69], 
a consensus list of 350 human genes coding for xenobiotic 
receptors and co-regulators (29 genes), phase I DMEs (107 
genes), phase II DMEs (90 genes) and uptake and efflux 
transporters (124 genes) was selected. The corresponding 
Affymetrix probe sets and gene ontology description are 
listed in the Supplemental Table S1. When several probe 
sets were available for a same gene, the probe set with the 
highest variance was chosen. 

Genes whose expression in MMCs could predict for 
patients’ Event Free Survival (EFS) were identified using 
a univariate Cox Model. A prognostic Drug Metabolism 
and Clearance score (termed DMC score) was built by 
computing the mean of the standardized Affymetrix 
signals of the prognostic genes weighted by their Cox 
Beta Coefficient. Then patients were ranked according to 
increased DMC score and split into 3 groups according to 
their expression of the prognostic DMC genes in MMCs 
using the k-means function. 

Data Analysis

The analyses were done with R (http://www.r-
project.org/) and Bioconductor (http://www.bioconductor.
org/) softwares. Survival curves were plotted using 
the Kaplan-Meier method. Gene expression data were 
visualized using Cluster (v2.11) and Tree View (v1.6, 
Eisen laboratory, Berkeley, USA). Ingenuity Pathway 
Analysis (IPA) software was carried out using a false 
discovery rate (FDR < 0.05) with at least 5 genes for one 
pathway. Gene set enrichment analysis was performed 
using the GSEA Software (http://www.broadinstitute.org/
gsea/index.jsp, Broad Institute, Cambridge, USA), and 
the collections for canonical pathways (c2.cp.kegg) or 
transcription factor targets (C3.tft). 
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