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ABSTRACT

Understanding genome integrity and DNA damage response are critical to cancer 
treatment. In this study, we identify CSN6’s biological function in regulating genome 
integrity. Constitutive photomorphogenic 1 (COP1), an E3 ubiquitin ligase regulated 
by CSN6, is downregulated by DNA damage, but the biological consequences of this 
phenomenon are poorly understood. p27Kip1 is a critical CDK inhibitor involved in cell 
cycle regulation, but its response to DNA damage remains unclear. Here, we report 
that p27Kip1 levels are elevated after DNA damage, with concurrent reduction of COP1 
levels. Mechanistic studies showed that during DNA damage response COP1’s function 
as an E3 ligase of p27 is compromised, thereby reducing the ubiquitin-mediated 
degradation of p27Kip1. Also, COP1 overexpression leads to downregulation of p27Kip1, 
thereby promoting the expression of mitotic kinase Aurora A. Overexpression of 
Aurora A correlates with poor survival. These findings provide new insight into CSN6-
COP1-p27Kip1-Aurora A axis in DNA damage repair and tumorigenesis.

 INTRODUCTION

The COP9 signalosome (CSN) is a protein complex 
involved in protein degradation, transcriptional activation 
[1, 2], signal transduction [3–6], and tumorigenesis [5, 7–
10]. The contribution of the CSN’s subunits in cancer has 
not been well elucidated. Mammalian CSN subunits are 
involved in developmental processes: targeted disruptions 
of mammalian Csn2, Csn3, Csn5, and Csn8 resulted in 
defective embryo development [11–14]. In our previous 
study, we performed targeted disruption of the Csn6 gene in 
mice and found that Csn6-/- mice developed until 7.5 days 
post-coitus but not beyond this time [9]. Also, Csn6+/- mouse 

tumor experiments showed that Csn6 haplo-insufficiency 
helps impede the development of cancer [9], suggesting that 
CSN6 signaling regulation is critical for tumor development. 
However, the mechanism and biological consequence of 
CSN6 overexpression in cancer remain unclear.

COP1 E3 ubiquitin ligase contains RING-finger, a 
coiled-coil, and WD40-repeat domains. COP1 is a crucial 
mediator to block photomorphogenesis in the dark through 
the ubiquitinated proteasomal degradation of light-induced 
transcription factor HY5 [15]. Mammalian COP1 regulates 
various cellular functions, such as proliferation and survival, 
by facilitating the degradation of physiological substrates 
through ubiquitin-mediated protein degradation [16, 17]. 
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Many of the ubiquitinated targets of COP1 are involved in 
tumorigenesis, including p53 and 14-3-3σ tumor suppressors 
[6, 18], c-JUN [19], transducer of regulated CREB activity 2 
(TORC2, a glucose metabolite regulator) [20], FOXO1 [21], 
and nucleosome remodeling factor MTA1 [22]. Also, we 
show that COP1 is a downstream target of CSN6 [6]. COP1 
itself is autoubiquitinated, and this ubiquitination process 
is regulated by COP9 signalosome subunit 6 (CSN6) [6], 
a protein involved in Cullin neddylation [10]. COP1 is 
phosphorylated by ATM on S387 following DNA damage 
[23], which results in COP1 nuclear exclusion-mediated by 
14-3-3σ and subsequent p53 activation [24, 25]. However, 
it is not clear how COP1 further involves in DNA damage 
response.

The tumor suppressor p27 is critical for regulating 
the cell cycle transition from the G0/G1 to the S phase 
[26–28]. Levels of p27 are tightly regulated to control cell 
cycle progression. p27 is a critical CDK inhibitor that can 
negatively regulate cell cycle progression. Cell responds to 
DNA damage with a cell cycle arrest for further DNA repair 
[29, 30], but there is a knowledge gap regarding detailed 
regulation of CDK inhibitors during DNA damage. DNA 
damage induces p53 accumulation, which in turn induces 
14-3-3σ or p21 expression to execute cell cycle arrest 
[31–34]. It is not clear whether p27Kip1 (abbreviated as p27) 
[26, 29] is regulated in this process. p27 levels are mainly 
regulated through polyubiquitination. The ubiquitin ligase 
component F-box protein Skp2 regulates polyubiquitination 
of p27 and mediates its degradation [35–38]. However, in 
the absence of Skp2, p27 is still degraded, suggesting that 
other E3 ubiquitin ligases may regulate p27 turnover [39]. 
PirH2, a RING containing protein [40], is another identified 
E3 ligases for p27 [39]. It remains to be characterized if any 
other E3 ligase may regulate p27.

Here, we found that CSN6 is involved in 
chromosomal integrity. The downstream target of the CSN6 
axis—COP1 is in this process. COP1 coordinates with p27 
and Aurora A expression to regulate genome integrity and 
DNA damage repair. Our studies characterize the signaling 
of the COP1-p27-Aurora A axis in DNA damage response. 
These results provide insight into the process of DNA 
damage by defining a new mechanism for posttranslational 
regulation of p27. Our findings also implicate a specific 
mechanism by which p27 is deregulated in human cancers.

RESULTS

CSN6 expression leads to mitotic defect and ROS 
production

CSN6 is overexpressed in many types of cancer. To 
understand the biological consequence of this deregulation, 
we established CSN6 stable expressing clones and 
checked their cell cycle regulation. We found that CSN6 
expressing clones have increased numbers of cells with 
bigger nuclei, small nuclei and fused nuclei (Figure 1A), 

suggesting mitotic defects in these cells. We also found 
that these CSN6 expressing clones have elevated reactive 
oxygen species (ROS), suggesting potential DNA damage 
(Figure 1B). We then found that these cells have elevated 
Aurora kinase A and σH2AX (a surrogate marker of DNA 
double strand breaks) when compared with control cell 
line as assayed by immunostaining (Figure 1C). Further, 
these CSN6 expressing cells have high levels of COP1, a 
downstream target of CSN6, with concurrent high Aurora 
kinase A and σH2AX, as evidenced by immunoblotting. 
This observation suggests that CSN6-COP1 axis may be 
involved in DNA damage and mitotic defect.

CSN6-mediated ROS production and DNA 
damage involve COP1 and Aurora A

To understand further the role of COP1 or Aurora 
A in CSN6-mediated ROS production, we knocked 
down COP1 or Aurora A in CSN6 expressing clones, and 
found that COP1 or Aurora A knockdown led to reduced 
ROS production in CSN6 expressing cells (Figure 2A), 
suggesting that COP1 or Aurora A expression is involved 
in CSN6’s DNA damaging effect.

Since CSN6 is critical in maintaining genomic 
stability, we analyzed the σH2AX foci formation in cells 
with overexpression of COP1. We detected higher levels 
of σH2AX by immunoblotting and larger numbers of 
σH2AX foci by immunofluorescent microscopy in COP1-
overexpressing cells when compared with control cells 
(Figure 2B), but these effects of COP1 were reversed when 
cells were infected with adenovirus 14-3-3σ (Ad-14-3-3σ; 
Figure 2B), a negative regulator of COP1 [25]. We then 
investigated further the impact of COP1 overexpression on 
ROS production by staining. Again, COP1-induced ROS 
production was diminished when COP1-overexpressing 
cells were infected with Ad-14-3-3σ (Figure 2C). These 
findings confirm the biological significance of the CSN6-
COP-14-3-3σ-regulatory pathway in genomic stability.

COP1 is involved in p27 protein stability 
regulation during DNA damage

DNA damage induces cytoplasmic distribution of 
COP1 and subsequent COP1 cytoplasmic ubiquitination 
[23–25]. The biological consequence of this regulation 
remains unclear. We sought to determine the relationship 
between the subcellular localization of COP1 and the 
effects of COP1 on p27 during DNA damage. Without 
DNA damage, COP1 is distributed in both the nucleus and 
the cytoplasmic compartments, and p27 expression levels 
were diminished when cells were co-transfected with 
p27 and COP1 (Figure 3A). However, we found that the 
p27 signal accumulated in the nucleus when COP1 was 
excluded in the cytoplasm (punctate green fluorescence) 
upon DNA damage by doxorubicin (Figure 3A), suggesting 
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Figure 1: CSN6 expression leads to mitotic defect and ROS production. (A) Stably expressing Myc-CSN6 (U2OS/Myc-CSN6) 
and Vector (U2OS vector) cells were stained with DAPI (4σ,6-Diamidino-2-Phenylindole, Dihydrochloride) and percentages of mitotic 
defects as demonstrated by bigger nuclei, micro nuclei, and fused nuclei were compared. Phase-contrast images and merged images of the 
same microscopic fields are shown. (B) ROS production (green fluorescence) was detected by DCFDA and fluorescence microscopy in 
indicated cells. Phase-contrast images and merged images of the same microscopic fields are shown. (C) CSN6 overexpressing cells have 
increased steady-state expressions of Aurk A and σ-H2AX. Equal amounts of cell lysates were immunoblotted with indicated antibodies.
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Figure 2: CSN6-mediated ROS production and DNA damage involve COP1 and Aurora A. (A) Knockdown of COP1 or 
Aurora A attenuates CSN6-mediated ROS production. ROS production (green fluorescence) was detected by DCFDA and fluorescence 
microscopy in indicated cells. Phase-contrast images and merged images of the same microscopic fields are shown. (B) 14-3-3σ blocks the 
increase in σ-H2AX foci induced by COP1. Stably expressing RFP-COP1 (U2OS/RFP-COP1) and RFP vector (U2OS/RFP-vector) U2OS 
cells were examined for the distribution of σ-H2AX foci (green) by confocal microscope with anti-σ-H2AX and Alexa Fluor 488-conjugated 
secondary antibodies. DNA was counterstained with the DAPI dye (blue). Cell lysates of U2OS (RFP-vector and RFP-COP1) cells were 
also analyzed by immunoblotting using antibodies against σH2AX and RFP-COP1. U2OS/RFP-COP1 cells were also infected with Ad-
σ-gal or Ad-HA-14-3-3σ to examine their impacts on σH2AX foci formation. The bar graph shows percentage of nuclear σH2AX foci 
in Adenovirus-infected groups. Error bars represent 95% confidence intervals. 200 hundreds have been counted. Two asterisk, p < 0.01 
(Student’s t-test). Scale bar, 10 μm. (C) 14-3-3σ inhibits COP1-mediated ROS production. ROS production (green fluorescence) was 
detected by DCFDA and fluorescence microscopy in stably expressing Myc-vector HCT116 cells, Myc-COP1 HCT116 cells, Myc-COP1 
HCT116 cells infected with Ad-σ-gal or Ad-HA-14-3-3σ. Phase-contrast images and merged images of the same microscopic fields are 
shown. Scale bar, 50 μm.
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Figure 3: COP1 is involved in p27 protein stability regulation during DNA damage. (A) p27 nuclear accumulation increases 
in response to doxorubicin. U2OS cells were treated with 1 μg/ml doxorubicin and co-transfected with either vector or GFP-COP1 and 
RFP-p27, stained with DAPI. (B) Reduced p27 ubiquitination in A549 cells after DNA damage. A549 cells were treated with 1 μg/ml 
doxorubicin (DOX) for the indicated times and lysates were analyzed by immunoblotting (IB) with the indicated antibodies. Cell lysates 
were immunoprecipitated with anti-ubi followed by immunoblotting with anti-p27. (C) MG132 reverses DNA damage-mediated COP1 
downregulation. A549 cells treated with 1 μg/ml DOX for the indicated times were treated with MG132 for 3 hours. Lysates were analyzed 
by IB with the indicated antibodies. (D) COP1 depletion and accumulation of p27. COP1 shRNA (#1 or #2) or control shRNA HCT116 
stable transfectants were treated with 1 μg/ml DOX for the indicated times. Cell lysates were analyzed by IB with the indicated antibodies. 
(E) p27 is accumulated in HCT116 p53-/- cells. HCT116 p53-/- cells were treated with 1 μg/ml DOX for the indicated times. Cell lysates 
were analyzed by IB with the indicated antibodies. (F) p27 is not accumulated in 14-3-3σ-/- cells treated with DOX. HCT116 14-3-3σ-/- cells 
were treated with 1 μg/ml DOX for the indicated times. Cell lysates were analyzed by IB with the indicated antibodies. (G) DNA damage–
mediated upregulation of p27 is ATM-dependent. AT22IJE-T/pEBS7 (ATM-/-) or AT22IJE-T/YZ5 (ATM+/+) cells were treated with 1 μg/ml 
doxorubicin (DOX) for the indicated times. Lysates were analyzed by immunoblotting with the indicated antibodies. (H) p27 (VP) mutant 
accumulation and DNA damage. A549 cells were transfected with either wt Flag-p27 or Flag-p27 (VPσAA). Cells were treated with 1 μg/
ml doxorubicin (DOX) for the indicated times. Lysates were analyzed by IB with anti-Flag, anti-COP1, or Actin.
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that DNA damage affects the subcellular distribution of 
COP1, which may in turn affect levels of p27.

In a DNA damage response study using lung 
adenocarcinoma A549 cells expressing wild-type p53 
as a model, we found that DNA damage caused by 
treatment with doxorubicin led to the accumulation of p27 
(Figure 3B). Levels of constitutive photomorphogenic 
1 (COP1) [6, 17, 25, 41], an E3 ubiquitin ligase, was 
downregulated by the DNA damage at the same time 
(Figure 3B). Moreover, p27 ubiquitination levels were 
reduced after DNA damage (Figure 3B), implying that 
reduced ubiquitin-mediated proteasome degradation 
of p27 was involved in doxorubicin-mediated p27 
accumulation. These observations suggest that COP1, 
as an E3 ubiquitin ligase, may have a functional role in 
DNA damage-mediated p27 accumulation. Consistently, 
treatment with MG132, an inhibitor of ubiquitin-mediated 
protein degradation via proteasomes, alleviated the impact 
of DNA damage on COP1 reduction or p27 accumulation 
(Figure 3C), suggesting the involvement of ubiquitin-
mediated protein degradation in this process.

To further understand the role of COP1 in DNA 
damage-mediated p27 accumulation, we examined 
expression levels of p27 when COP1 was depleted by 
shRNA during DNA damage. We found that COP1 
depletion led to the accumulation of p27 above the 
basal level at the early time points of DNA damage, as 
expected (Figure 3D). However, the phenomenon of p27 
accumulation following DNA damage time points is no 
longer present when COP1 is depleted (i.e., no change 
following time points). We also found that accumulation of 
p27 after doxorubicin-induced DNA damage was observed 
in HCT116 p53-/- cells (Figure 3E) but not in HCT116 14-
3-3σ-/- cells (Figure 3F), suggesting that DNA damage-
mediated p27 accumulation is not p53-dependent but is 
14-3-3σ-dependent. Importantly, we noted that COP1 was 
downregulated in HCT116 p53-/- cells but not in HCT116 
14-3-3σ-/- cells (Figure 3E and 3F). This is because 14-3-
3σ, a protein that plays a role in DNA damage [31, 42–44], 
was required for DNA damage-mediated downregulation 
of COP1 [24, 25] (Figure 3F). When 14-3-3σ is deficient, 
COP1 is relatively stable, thereby interfering with p27 
accumulation. We also noted that DNA damage-mediated 
downregulation of COP1 and p27 accumulation depended 
on the presence of ATM, a protein collaborates with 14-
3-3σ for mediating COP1 downregulation [24, 25], as 
DNA damage-mediated downregulation of COP1 and p27 
accumulation is not observed in ATM-/- cells (Figure 3G).

COP1 preferentially binds to target proteins with the 
VP motifs [45]. We have analyzed the p27 peptide sequence 
and found a putative COP1 binding motif located in p27 
(aa 87–198) [10]. We thus constructed the p27 (VPσAA) 
mutant, which fails to bind COP1 and is resistant to COP1-
mediated ubiquitination [10]. We found that levels of p27 
(VPσAA) mutant protein is pretty stable in the presence 
of DNA damage and is above the basal level of wt p27 
at the early time points of DNA damage (Figure 3H). 

Importantly, the phenomenon of p27 (VPσAA) mutant 
protein accumulation following DNA damage time points 
is not observed in the presence of DNA damage (Figure 
3H), suggesting that interaction between COP1 and p27 is 
critical for the inverse relationship during DNA damage.

COP1 modification is required for DNA damage-
mediated p27 stabilization

We found that DNA damage-mediated accumulation 
of p27 is not specific to doxorubicin, as other DNA 
damaging agents such as irinotecan and cyclophosphamide 
have the same impact (Figure 4A). We next found that 
wild-type p27 (wt), p27 with deficient Akt phosphorylation 
(p27T157A), p27 that defectively binds to SKP2 (p27 
T187A), and p27 missing the Jab1 binding region 
(p27ΔJab1; Figure 1F) [38, 46–48] all accumulated after 
DNA damage following concurrent downregulation 
of COP1, indicating that DNA damage led to p27 
accumulation following COP1 downregulation regardless 
of modifications in the p27 construct. These observations 
imply that the effects of COP1 on p27 do not occur through 
regulating Akt, SKP2, or Jab1 (Figure 4B). We confirmed 
that COP1 still has inverse relationship with p27 in the 
presence of DNA damage in Skp2-/- cells (Figure 4C).

We have mapped COP1 S387 as the evolutionarily 
conserved 14-3-3σ binding motif (RTAS387QL) [25]. S387 
is an ATM phosphorylation site, and 14-3-3σ has a role 
in ATM-induced COP1 nuclear exclusion. COP1 S387 
phosphorylation is required for COP1–14-3–3σ binding. 
COP1 (S387A) mutant lost its binding affinity for 14-3-
3σ; therefore, it is not regulated by 14-3-3σ or subcellular 
localization shuttling. We found that COP1 (S387A) binds 
to p27 with less efficiency as shown by co-ip experiment 
(Figure 4D). COP1 S387A mutant affects the steady-state 
expression and the turnover of p27 with less efficiency 
(Figure 4E). Further, COP1 S387A mutant’s capability in 
accelerating p27 turnover is compromised when compared 
with wt (Figure 4F). COP1 S387A mutant does not have 
inverse relationship with p27 in the presence of DNA 
damage in PC3 cells, which does not have the expression 
of COP1 (Figure 4G). Accordingly, COP1 S387A mutant 
does not have impact on p27 ubiquitination under DNA 
damage in PC3 cells (Figure 4H). Together, our results 
show that DNA damage-mediated p27 accumulation 
requires ATM modification of COP1 and 14-3-3σ-binding, 
but does not require the function of Akt, Jab1, or Skp2.

COP1 affects genome stability by affecting  
p27-Aurora A axis

p27 plays a role in suppressing genes involved in 
mitosis or cell proliferation [49]. Importantly, treatment with 
DNA damaging agent doxorubicin led to downregulation 
of genes that are suppressed by p27 activation in A549 
cells and HCT116 cells (Figure 5A), including Aurora 
A. Transfection studies showed that COP1 particularly 
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Figure 4: COP1 modification is required for DNA damage-mediated p27 accumulation. (A) p27 accumulates in A549 cells 
after DNA damage. A549 cells were treated with 10 μg/ml irinotecan and 20 μg/ml cyclophosphamide for the indicated times and lysates 
were analyzed by IB with the indicated antibodies. (B) p27 accumulation occurs regardless of construct modifications. A549 cells were 
transfected as indicated with wild-type (wt) Flag-p27 or T157A, T187A, ΔJab1, or ΔJab1+T187A mutants. Cells were treated with 1 μg/
ml DOX for the indicated times. Equal amounts of protein from cell lysates were analyzed by IB with anti-Flag, anti-COP1, or anti-Actin. 
(C) Skp2 is not involved in DNA damage-mediated p27 accumulation. Wild-type (wt) MEF cells and Skp2-/- cells were treated with 1 μg ml 
doxorubicin (DOX) for the indicated times. Lysates were immunoblotted with the indicated antibodies. (D) COP1 S387A mutant binds to 
p27 with less efficiency. Cells were transfected with the indicated plasmids and equal amounts of lysates were immunoprecipitated with 
anti-GFP, followed by immunoblotting with indicated antibodies. (E) COP1 S387A mutant reduces the steady-state expression of p27 with 
less efficiency. Cells were transfected with the indicated plasmids and equal amounts of lysates were immunoblotted with anti-Flag to 
examine the expression of p27. (F) COP1 S387A mutant accelerates the turnover of p27 with less efficiency. Cells were transfected with the 
indicated plasmids and treated with CHX (100 μg/ml) for the indicated times. Cell lysates were immunoblotted with the indicated antibodies. 
(G) COP1 S387A mutant does not have inverse relationship with p27 in the presence of DNA damage. PC3 cells were transfected with the 
indicated plasmids and cells were treated with 1 μg/ml doxorubicin (DOX) for the indicated times. Lysates were immunoblotted with the 
indicated antibodies. (H) COP1 S387A mutant does not have impact on p27 ubiquitination in the presence of DNA damage. PC3 cells were 
transfected with the indicated plasmids and cells were treated with 1 μg/ml doxorubicin (DOX) for the indicated times as in (g). The cell 
lysates of the transfected cells from (g) were immunoprecipitated with anti-ubi and immunoblotted with an anti-p27 antibody.
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Figure 5: COP1 affects genome stability by affecting p27-Aurora A axis. (A) DNA damage downregulates the expression of 
genes that are suppressed through p27 mediation. mRNA levels of the indicated p27 target genes were determined by quantitative reverse 
transcription PCR in A549 and HCT116 cells after DNA damage. (B) COP1 overexpression or knockdown can affect the expression of p27 
or Aurora A. (C) COP1 upregulated Aurora A steady-state expression in a dose-dependent manner. 293T cells were co-transfected with the 
indicated expression vectors. Equal amounts of protein from cell lysates were analyzed by immunoblotting with the indicated antibodies. 
(D–E) Stably expressing Myc-COP1 (HCT116/Myc-COP1) and Vector (HCT116/vector) cells (d) and Myc-COP1 overexpressing HCT116 
cells infected with either AurkA shRNA or control shRNA (E) were stained with DAPI (4σ,6-Diamidino-2-Phenylindole, Dihydrochloride) 
and percentage of mitotic cells were compared. Lysates of Myc-COP1 overexpressing HCT116 cells infected with either AurkA shRNA 
or control shRNA were immunoblotted with indicated antibodies (E, right). (F) COP1 overexpression leads to deregulation of genome 
integrity. Giemsa-stained chromosomes from metaphase-arrested cells were examined to assess genomic aberrations. Chromosomes from 
Myc-COP1-overexpressing HCT116 stable transfectants and vector control transfectants were shown to illustrate chromosomal fragments 
and chromatid breaks. (G) High expression of Aurora A (AURKA) correlates with poor survival of multiple myeloma patients. Kaplan-
Meier curves for overall survival according to Aurora A expression in 414 patients with multiple myeloma are shown. Increased expression 
of Aurora A was associated with poor overall survival. (H) Levels of COP1 expression was positively correlated with Aurora A expression 
in a cohort of patients with multiple cancer data sets.
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decreased p27 expression and caused concurrent elevated 
expression of Aurora A, while COP1 knockdown suppressed 
the expression of Aurora A (Figure 5B). We found that 
COP1 overexpression led to elevation of Aurora A in a 
dose-dependent manner (Figure 5C). COP1 overexpression 
led to increased amount of mitotic cells (Figure 5D), while 
Aurora A knockdown in this COP1-overexpressing cell led 
to reduced number of mitotic cells (Figure 5E). Like CSN6, 
COP1 overexpression caused deregulation of genome 
integrity with increased chromosomal breakages (Figure 5F, 
Table 1), suggesting that the COP1-p27-Aurora A axis may 
play a role in genome integrity. Further, high expression 
of Aurora A was associated with poor overall survival 
(Figure 5G) in multiple myeloma, and COP1 expression was 
positively correlated with Aurora A expression in cancer as 
evident in multiple cancer data set studies (Figure 5H).

COP1 promotes cell migration, hinders DNA 
damage repair, and accelerates tumor formation

CSN6 and COP1 are frequently overexpressed in 
cancers. On the basis of our observation, we then examined 
whether COP1 could affect cell migration, DNA damage 
repair, and tumorigenicity. COP1-expression facilitates cell 
migration (Figure 6A). We found that 14-3-3σ (a negative 
regulator of COP1) replenishment (through Adenoviral 
delivery) antagonized COP1-mediated cell migration (Figure 
6A). Similarly, COP1 knockdown led to slower cell migration 
(Figure 6B). We have similar observation in transwell assay 
when 14-3-3σ is administrated (Figure 6C). Interestingly, 
COP1-overexpressing cells reduced the repair of homologous 
recombination, as demonstrated by DSB repair efficacy 
(Figure 6D). Also, COP1-overexpressing cells have reduced 
survival in response to DNA damage (Figure 6E), which is 
consistent with the fact that COP1-overexpressing cells are 
compromised in DSB repair.

To study the tumorigenicity, we set up COP1 
overexpression in U2OS cells. Again, COP1-expression 
facilitates cell migration (Figure 7A). Also Ad-HA-14-3-3σ 
replenishment antagonized COP1-mediated cell migration 
(Figure 7A). For tumorigenicity, COP1 can promote 
tumorigenicity (Figure 7B) compared with control cells, 
while 14-3-3σ administration through Adenoviral delivery 
(Ad-14-3-3σ) antagonized COP1-promoted tumorigenicity 

(Figure 7B). In the xenografted cancer samples, 14-3-
3σ administration inhibited tumor growth by increasing 
caspase 3 cleavage while downregulating Ki67 staining as 
evidenced in immunohistochemical staining (Figure 7C). 
These data suggest that tumors with COP1 overexpression 
can have growth advantage, which is a result of increased 
cell proliferation and reduced apoptosis.

DISCUSSION

CSN6 expression is elevated in cancers and leads to 
poor survival [5, 50, 51], suggesting that abnormal CSN6 
overexpression allows cancer to have many advantages. 
However, its role in cancer remains unclear. In the present 
study, we found that CSN6 deregulation is causing genome 
instability, one of the cancer hallmarks [52], in cancer. We 
found that CSN6 can link to COP1 elevation, which has 
unprecedented biological activity in downregulating p27, 
thereby inducing Aurora A; this confirms CSN6’s role in 
promoting cancer development by influencing genome 
integrity.

Also, the fact that COP1 downregulation 
participates in reducing p27 ubiquitination/degradation 
under genotoxic condition has biological significance as 
p27 needs to be preserved in order to cause cell cycle 
arrest. In addition to p21, a cdk inhibitor induced by 
p53 to cause cell cycle arrest [31], our p27 studies show 
another layer of DNA damage response. Interestingly, 
this process of p27 induction in response to DNA damage 
occurs regardless of p53 status, suggesting that cells has 
a backup system to cause cell cycle even p53 is missing. 
However, this process is compromised if another tumor 
suppressor 14-3-3σ is silenced. We demonstrate that 14-3-
3σ [42–44] is critical in keeping COP1 at bay by causing 
ubiquitination/degradation of COP1. Loss of 14-3-3σ 
leads to uncontrolled COP1 expression, thereby causing 
the degradation of p27. It is then conceivable that p27’s 
pleotropic impact on genes involved in mitosis such as 
Aurora A kinase will be compromised. Therefore, the 
COP1-p27 link is translated into the regulation of genes 
transcriptionally suppressed by p27, including Aurora 
kinase A, providing explanation to COP1-mediated 
genome instability and a possible plethora of functions of 
COP1. Significantly, we have shown that COP1 expression 

Table 1: COP1 expression leads to chromosome instability

Vector Myc-COP1

Number of metaphase examined 35 33

% normal diploid cells 97.1 45.4

% cells with chrom.
aberrations

0 21.2

% cells with breaks 0 21.2

% cells with chrom.
fusions

0 0
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Figure 6: COP1 promotes cell migration, hinders DNA damage repair. (A) COP1 promotes cell motility. Stable transfectants, 
HCT116/Myc-COP1 and HCT116/Myc-vector cells, were plated for wound healing assay. Stably expressing HCT116/Myc-COP1 cells 
were infected with Ad-σ-gal or Ad-HA-14-3-3σ. Infected cells were plated for wound healing assay. Migrated cells in the wound were 
observed using time lapse microscopy. The size of wound healing area were digitized following the time lapse after the treatments and 
plotted as a line graph. Error bars represent 95% confidence intervals (n = 3). (B) COP1 knockdown reduces cell motility. U2OS cells 
were transfected with indicated plasmids and plated for wound healing assay. The size of wound healing area were digitized following 
the time lapse after the treatment and plotted as a line graph. (C) 14-3-3σ antagonizes COP1-promoted cell motility. HCT116/Myc-COP1 
and HCT116/vector cells were plated for transwell assay. Migrated cells were stained with DAPI and counted. Stably expressing HCT116/
Myc-COP1 cells were infected with Ad-σ-gal or Ad-HA-14-3-3σ for 1 day. Infected cells were plated for transwell assay. Number of 
migrated cells was quantitated for each group and presented as a bar graph. Error bars represent 95% confidence intervals. Three asterisk, 
p < 0.001 (Student’s t-test, n = 3). Scale bar, 50 μm. (D) COP1 overexpression reduces the repair of homologous recombination. Cells were 
transfected with indicated plasmids. DSB repair was shown by the percentage of cells expressing GFP using cell cycle profiles. Error bars 
represent 95% confidence intervals. (E) COP1 overexpression leads to reduced survival in response to DNA damage. Cells were irradiated 
with the indicated doses of IR. After 12 days, colonies were stained with 0.5% crystal violet and the colonies were counted. Surviving 
fractions were calculated.
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Figure 7: COP1 accelerates tumor formation. (A) 14-3-3σ antagonizes COP1-mediated cell motility. U2OS/RFP-COP1 and U2OS/
RFP-vector cells were plated for transwell assay. Stably expressing U2OS/RFP-COP1 cells were left uninfected, infected with Ad-σ-gal or 
Ad-HA-14-3-3σ for 1 day. Infected cells were plated for transwell assay. Number of migrated cells was quantitated and presented as bar 
graphs. Error bars represent 95% confidence intervals. Three asterisk, p < 0.001 (Student’s t-test, n = 3). Scale bar, 50 μm. (B) 14-3-3σ 
hinders COP1-mediated tumorigenicity. Indicated cells were injected subcutaneously into nude mice. Tumor volumes were measured at 
the indicated days. Error bars represent 95% confidence intervals. One asterisk, p < 0.05. Three asterisk, p < 0.001 (Student’s t-test, n = 6). 
(C) Serial tumor sections from the experiment were stained with anti-cleaved Caspase 3 and anti-Ki67. (D) Model of CSN6-COP1-p27 
axis in regulating chromosome stability.
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is positively corrected with Aurora A kinase expression 
in human cancer samples. Thus, the COP1-p27-Aurora 
kinase A link can be recapitulated in cancer samples. 
Furthermore we have found that COP1 overexpression can 
hinder DSB repairs by reducing the repair of homologous 
recombination, as demonstrated by reduction of DSB 
repair efficacy (Figure 6D). Also, COP1-overexpressing 
cells have reduced survival in response to DNA damage, 
consistent with the observation that COP1-overexpressing 
cells are compromised in DSB repair. Additional studies 
investigating the way in which COP1 participates in 
interfering DSB repair efficacy are warranted.

In our study, 14-3-3σ inhibited COP1-mediated 
tumor growth in xenograft cancer mice. Tumor sample 
analysis indicated that 14-3-3σ ablated the COP1 activity, 
thereby reducing Ki67 expression levels as well as 
increasing apoptosis, This result could be a manifestation of 
reducing COP1’s impact on p27 (this study) as well as p53 
[41]. Because CSN6 is frequently overexpressed in cancer; 
therefore, COP1 stabilization and its downstream impact 
on p27 degradation may lead to chromosomal instability 
(Figure 7D). It is important to point out that COP1 is known 
to degrade 14-3-3σ as well [6], which in turn will lead to 
Myc stabilization [42], an important factor hinders DNA 
repair and causes chromosome instability. Thus CSN6’s 
impact on chromosome integrity is delineated in our model 
(Figure 7D). Also, our results demonstrated a link between 
DNA damage response, COP1 regulation, p27 stability, and 
possible chromosome stability (Figure 7D): DNA damage 
response leads to p27 elevation through 14-3-3σ-mediated 
COP1 downregulation [24]. The role of COP1 in degrading 
p27 and subsequent expression of Aurora A offers a new 
bridge for knowledge gap regarding the role of COP1 
downregulation in maintaining chromosome integrity in 
response to DNA damage.

MATERIALS AND METHODS

Cell culture and reagents

Human 293T, A549, MEF, AT22IJE-T/pEBS7 
(ATM-/-) [53], and AT22IJE-T/YZ5 (ATM+/+) cells were 
cultured in Dulbecco’s modified Eagle medium/F12 
medium supplemented with 10% fetal bovine serum, 100 
units/ml penicillin G, 100 μg/ml streptomycin, and 0.25 
μg/ml amphotericin. Human HCT116 cells and U2OS 
cells were maintained as described above. Flag-p27 wt 
was constructed by PCR cloning and mutants (VP-AA, 
T157A, T187A, ΔJab1, ΔJab1 + T187A) were generated 
using PCR-directed mutagenesis [48]. Antibodies to the 
following epitopes and proteins were purchased from 
the indicated vendors: CSN6 (Biomol International), 
COP1 (Bethyl Laboratories, Inc.), σH2AX (Upstate), 
Aurora A (Cell Signaling Technology), ubiquitin (Zymed 
Laboratories), p27 (BD Transduction Laboratories 
and Santa Cruz Biotechnology). Flag (M2 monoclonal 

antibody), Actin, and Tubulin were purchased from Sigma. 
p53 (FL393 and DO1), KPC1, SKP2, and Myc (9E10) 
were purchased from Santa Cruz Biotechnology.

Generation of stable transfectants

Cells were transfected with either PCDNA6 or 
PCDNA6-Myc-CSN6 plasmids and were selected in 8 mg/
ml blasticidin for 2 weeks. Cells were infected by lentiviral 
shRNA transduction particles (Sigma, NM_006833) 
containing either control shRNA or CSN6 shRNA. After 
infection, cells were selected with 2 mg/ml puromycin 
for 2 weeks. For generation of RFP-tagged-COP1 (RFP-
COP1) overexpression stable transfectants, U2OS cells were 
transfected with RFP vector or RFP-COP1 plasmids by 
Electroporation (Amaxa). Forty-eight hours after transfection, 
cells were selected in 500 μg/ml G418 containing culture 
medium for 4 weeks. For generation of Myc-COP1 
overexpression stable transfectants, HCT116 cells were 
transfected with either pCDNA6 or pCDNA6-Myc-COP1 
plasmids by Electroporation (Amaxa). Forty-eight hours 
after transfection, cells were selected in 8 μg/ml blasticidin 
(Invivogen) containing culture medium for 2 weeks.

Generation of stable cell line for HR repair assay

The DR-GFP reporter substrate was integrated 
into cellular genomic DNA. SceGFP contains an I-SceI 
endonuclease site within the coding region, which abolishes 
GFP expression. iGFP is a truncated GFP, which contains 
homologous sequence for the SceGFP. Expression of I-SceI 
induces a single DSB in the genome. When this DSB is 
repaired by HR, the expression of GFP can be restored and 
analyzed by flow cytometry to indicate the efficiency of HR 
repair. Assays were performed as previously described [54].

Immunoblotting

Total cell lysates were solubilized in lysis buffer 
(50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% 
NP-40, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl 
fluoride, 1 mM sodium fluoride, 5 mM sodium vanadate, 
1 μg each of aprotinin, leupeptin, and pepstatin 
per ml) and processed as previously described [8]. 
Proteins were resolved by SDS-PAGE gels and then 
proteins were transferred (Bio-Rad) to polyvinylidene 
difluoride membranes (Millipore). The membranes 
were blocked with 5% nonfat milk for 1 h at room 
temperature prior to incubation with indicated primary 
antibodies. Subsequently membranes were washed and 
incubated for 1 h at room temperature with peroxidase-
conjugated secondary antibodies (Thermo scientific). 
Following several washes, chemiluminescent images of 
immunodetected bands on the membranes were recorded 
on X-ray films using the enhanced chemiluminescence 
(ECL) system (Roche) according to the manufacturer’s 
instructions.
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Immunofluorescence

RFP-COP1 expressing cells grown on chamber 
slides were fixed with 4% formaldehyde (Fisher). 
Following three 5 min washes in PBS, cells were 
permeabilized in 0.2% Triton-X-100 (Fisher) for 15 min. 
After washing, cells were blocked with 5% bovine serum 
albumin in PBS and then incubated for 1 h with anti-
σH2AX (Upstate) at 1:4,000 dilution. Following by rinsing 
away the nonspecific interactions, cells were incubated 
with Alexa Fluor 488-anti-mouse antibody (Molecular 
Probes) and DAPI (Sigma) in darkness. Cells were washed 
three times with PBS and the coverslips were then fixed 
onto slides and imaged using a confocal microscope 
(Olympus FV300). For ROS detection, cells were treated 
with 2σ-7σ-dichloro fluoresin diacetate (DCFDA) (5 μg/
ml, Molecular probes) and observed under fluorescent 
microscope as previously described [42, 55].

Correlation between COP1 and Aurora A 
protein expression in cancer patients

Microarray and clinical data were obtained from the 
gene expression profiles of a multiple-cancer dataset of 
Oncomine and GEO (accession number GSE2109; https://
expo.intgen.org/expo/public/).

Cytogenetics

Metaphase chromosomes from HCT116 control and 
myc–COP1 transfected cells were prepared as described 
[42] and subjected to Giemsa staining.

Wound healing assay

Cells were cultured in medium containing 10% 
FBS were seeded into wells of 24-multiwell plates. 
After the cells grew to confluence, cells were wounded 
by scratching with a 10 μl sterile pipette tips. Cells were 
observed under time-lapse microscope every 2 h (Zeiss 
Axiovert 200 M microscope). Wounded area was defined 
by line. Cells growing into lines are considered as wound 
closure.

Cell motility assay

Cell motility assays were determined using 8 μm 
pore size, 6.5-mm polycarbonate transwell filters (Corning 
Coaster Corp.). 5 × 104 cells were seeded in the upper 
chamber in 0.1% FBS medium. McCoy’s 5A medium 
with 10% FBS was added in the bottom well to serve as 
chemoattractant. Cells were cultured for 8 h. Cells on the 
inside of the transwell inserts were removed with a cotton 
swab, and cells on the underside of the inserts were fixed 
with 4% formaldehyde, stained with 5 μg/ml DAPI, and 
counted using a Olympus IX70 fluorescent microscope. 
Each experiment was done in triplicate.

Nude mice experiment

Four- to 6-week-old nude mice (Charles River 
Laboratories) were maintained in the animal facility at 
the University of Texas M. D. Anderson Cancer Center. 
Mice were divided into experimental groups, five for 
each. Groups included vector control stable cell lines, 
COP1 expressing cells left uninfected, COP1 expressing 
cells infected with Ad-σ-gal (MOI = 10) or Ad-14-3-3σ 
(MOI = 100) for forth-eight hours [34]. Cells were harvested 
and injected into the each flank of mice. Tumor volumes 
were measured and recorded three times a week from day 
10 after cell inoculation. At the end of experiment, the mice 
were sacrificed, and the tumors were removed and weighed.
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