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AbstrAct:
Escape from cellular senescence induction is a potent mechanism for chemoresistance. 
Cellular senescence can be induced in breast cancer cell lines by the removal of 
estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by 
the chemotherapeutic drug doxorubicin.  Long term culturing of the hormone-sensitive 
breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of 
doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often 
upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and 
Ras/Raf/MEK/ERK pathways.  To determine if active Akt-1 and Raf-1 can influence 
drug-induced senescence, we stably introduced activated ∆Akt-1(CA) and ∆Raf-1(CA) 
into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-
active Raf-1 construct resulted in higher baseline senescence, indicating these 
cells possessed the ability to undergo oncogene-induced-senescence. Constitutive 
activation of the Akt pathway significantly decreased drug-induced senescence in 
response to doxorubicin but not tamoxifen in MCF-7 cells.  However, constitutive Akt-
1 activation in drug-resistant cells containing high levels of active ERK completely 
escaped cellular senescence induced by doxorubicin and tamoxifen. These results 
indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence 
of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance 
by diminishing cell senescence in response to chemotherapy. Understanding how 
breast cancers containing certain oncogenic mutations escape cell senescence in 
response to chemotherapy and hormonal based therapies may provide insights into 
the design of more effective drug combinations for the treatment of breast cancer.

IntroductIon

Signal transduction cascades downstream of 
epidermal growth factor (EGF) receptor (EGFR) isoforms 
(e.g., EGFR & HER2) have been associated with breast 
cancer development and resistance to anticancer agents 
[1]. Among the signaling pathways downstream of these 
receptors, the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/
mTOR pathways have been shown to regulate apoptosis 

and their deregulation is often implicated in malignant 
transformation [2-9]. Indeed, the PI3K p110 catalytic 
subunit gene (PIK3CA) is one of the most frequently 
mutated genes in breast cancer [10-11].  Oncogenic 
mutations often elicit a permanent cell cycle withdrawal, 
termed oncogene-induced-senescence (OIS), to eliminate 
pre-malignant cells before they acquire additional 
mutations [12]. 

Phosphatidylinositol (PI) (3,4)P2 and PI(3,4,5)P3 are 
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produced by class 1A PI3Ks and recruit phosphoinositide 
dependent kinase-1 (PDK1) as well as Akt isoforms to 
the plasma membrane by interacting with their pleckstrin 
homology (PH) domains [13-17]. Colocalization of PDK1 
with Akt proteins at the plasma membrane causes PDK1 
to phosphorylate Akt proteins at a threonine residue 
(T308) [18-19] and a serine residue (S473). Activation 
of PDK1 and Akt by class 1A PI3Ks is negatively 
regulated by phosphatase and tensin homologue deleted 
on chromosome ten (PTEN) [4,6,8,16,20,21]. PTEN 
removes phosphate groups from PI(3,4)P2 and PI(3,4,5)
P3 added by PI3K as well as from tyrosine phosphorylated 
proteins including focal adhesion kinase (FAK) and 
Shc [4,16,20,22]. PTEN also has important roles in the 
nucleus and can regulate genome stability [6, 21]. In some 
cases, there are complex interactions with the p53, PI3K/
PTEN/Akt/mTOR pathways which determine whether 
senescence, quiescence or autophagy occurs in response 
to DNA damaging drugs [12, 15, 23-49]. 

Diverse mechanisms regulate PTEN expression [7, 
50-53], including gene deletion, alterations in mRNA 
splicing, subcellular localization, epigenetic repression 
and protein:protein interactions [51]. There are numerous 
microRNAs (miRNAs) which target the PTEN gene to 
inhibit its expression [4,6,50,54,55]. Furthermore there 
is a pseudo PTEN gene [6] which serves as a decoy to 
bind and neutralize some of these miRNAs. PTEN 
interacts with p53 to influence key points in the regulation 
of cellular proliferation. Loss of these tumor suppressor 
interactions can lead to cancer or in some cases cellular 
senescence [12,53,56].

PTEN mutations occur in breast cancer at varying 
frequencies (5-21%). While PTEN is deleted in certain 
cancers, loss of heterozygosity (LOH) is a more common 
genetic event (30%) leading to decreased PTEN expression 
[50,57]. Additionally, PTEN expression can be decreased by 
promoter methylation [50].  In one study, 26% of primary 
breast cancers had low PTEN levels which correlated with 
lymph node metastases and poor prognoses [58].  Disruption 
of PTEN activity by various mechanisms frequently results 
in Akt activation. 

Elevated Akt activity can have pleiotropic effects 
on cell growth, which include activation/inactivation of 
transcription factors controlling pivotal gene expression, 
inactivation of pro-apoptotic molecules by their 
phosphorylation and subsequent proteasomal degradation, 
or by regulating the efficiency of translation of mRNAs 
involved in growth.  Akt can regulate translation directly 
by activating mammalian target of rapamycin (mTOR) 
or indirectly by inhibiting TSC2.  Active mTOR then 
can phosphorylate ribosomal S6 kinase (p70S6K), which 
in turn regulates the efficiency of translation of certain 
mRNAs and also functions in a negative feedback loop 
to control Akt activity [7,16,59-61]. The activities of Akt 
and p70S6K along with other molecules are essential 
for the formation of the eIF4F translation complex. The 

eIF4F complex is necessary for the translation of mRNAs 
containing long 5’UTRs which are highly-structured and 
have an elevated G+C content. These “weak” mRNAs 
often encode proteins involved in oncogenesis and 
survival such as c-Myc, Mcl-1, cyclin-D, VEGF and 
survivin. Furthermore p70S6K has important roles in 
autophagy and cellular senescence [62-65]. 

Akt, mTOR and p70S6K activation have been 
associated with a more severe prognosis in breast and 
other cancers [66-73]. Targeting the PI3K/PTEN/Akt/
mTOR pathway may prove effective therapy in a variety 
of cancers [9,16,74-76]. Indeed some studies have 
evaluated the effectiveness of targeting mTOR in PTEN-
negative cells [69].  Elevated active Akt expression has 
been associated with both chemo- and hormonal resistance 
in breast cancer [67-68,77]. Cells expressing activated 
Akt may be more sensitive to mTOR inhibitors such as 
rapamycin and may increase the efficacy in combination 
with chemo- and hormonal-based therapies [6,69]. A 
distinct advantage of targeting mTOR with rapamycin 
is that it has been used for many years to treat organ 
transplant patients. Rapamycin is now being examined in 
treatment of certain cancers and in the prevention of aging 
and other diseases including AIDS [7,8,78]. Previously 
it was determined that mutated forms of Akt and PTEN 
can induce chemotherapeutic- and hormonal-based drug 
resistance in breast cancer [5,67,77]. PTEN mutants that 
eliminate the lipid phosphatase activity result in activated 
Akt expression and drug resistance, which can be reversed 
by the mTOR inhibitor rapamycin [5]. 

In addition to deregulation of the PI3K/mTOR 
pathway, the Ras/Raf/MEK/ERK pathway plays a critical 
role in cellular transformation and drug resistance. 
Growth factor/cytokine/mitogen activation recruits a Src 
homology 2 (Shc) domain containing adaptor protein 
to the C-terminus of the receptor [6-8,60]. Shc in turn 
recruits the growth factor receptor-bound protein 2 
(Grb2) protein and the son of sevenless (SOS) homolog 
protein, resulting in the loading of membrane-bound Ras 
with GTP [6-8,60]. Additionally, Ras can be activated 
by growth factor receptor tyrosine kinases (RTK), such 
as insulin receptor (IR), and insulin-like growth factor 
one receptor (IGF1-R), via intermediates like insulin 
receptor substrate (IRS) proteins that bind Grb2 [6-
8,60,79]. Ras:GTP can recruit Raf to the membrane where 
it becomes activated, likely via a Src-family tyrosine 
kinase [6-8,60,80,81]. Ras and Raf are members of multi-
gene families and there are three Ras members (KRAS, 
NRAS and HRAS) and three Raf members (BRAF, CRAF 
(a.k.a Raf-1) and ARAF) [6-8,60]. Raf is responsible for 
serine/threonine phosphorylation of mitogen-extracellular 
activated protein kinase kinase-1 (MEK1) [6-8,60]. 
MEK1 phosphorylates extracellular signal-regulated 
kinase 1 and 2 (ERK1/2) at specific threonine and 
tyrosine residues [6-8,60]. Activated ERK1 and ERK2 
serine/threonine kinases phosphorylate and activate a 
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variety of substrates, including p90 ribosomal six kinase 
(p90Rsk1) [6-8,60,82,83].  ERK1/2 has many downstream 
(>60) and even upstream substrates. The Ras/Raf/MEK/
ERK pathway plays pivotal roles in: differentiation, 
chemotherapeutic drug resistance, cellular senescence and 
metastasis [2,84-94]. Thus suppression of MEK and ERK 
activities will have profound effects on cell growth. While 
Ras is frequently mutated in human cancers overall, it is 
rarely mutated in breast cancer. However, this pathway 
can be activated by multiple other mechanisms including: 
mutations in upstream receptors, mutations in pathway 
components, subcellular localization and changes in the 
level of expression of pathway constituents and regulators 
[82-83,95-98]. 

We have previously demonstrated that activated 
HRAS, CRAF, AKT1 and mutated phosphatase-inactive 
PTEN genes confer drug resistance to breast cancer cells 
[2,3,5,99,100]. Cellular senescence is clearly a very 
important component in regulating cancer development 
and responding to DNA-damaging chemotherapeutics as 
well as anti-cancer dietary considerations [12,101-108].  
However, it remains unclear as to how drug-resistant cells 
bypass the induction of cellular senescence.  

In the following study, we examined the effects of 
activated PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/
ERK pathways on the induction of cellular senescence in 

response to chemo-/hormonal therapy. Our results suggest 
that deregulation of PI3K/PTEN/Akt/mTOR, and to a 
lesser extent the Ras/Raf/MEK/ERK pathway, decreases 
drug-induced cellular senescence in response to chemo-/
hormonal therapy.

results

doxorubicin and tamoxifen Induce cellular 
senescence in McF-7 breast cancer cells

We first examined the ability of doxorubicin and 4 
hydroxy-tamoxifen (4HT) to induce senescence in p53 
wild type (WT) and estrogen receptor (ER) positive MCF-
7 breast cancer cells [2,3,5,99,100]. Cells were plated in 
6 well plates containing an etched, gridded coverslip on 
the bottom of the well at 5 x 106 cells/well. The MCF-
7 cells adhered to the etched coverslips and essentially 
grew as colonies (Figure 1). After 6 days, the cells on the 
coverslips were processed for β-galactosidase staining as 
described [109].  Both doxorubicin (10-100 nM) and 4HT 
(50-1000 nM) induced senescence in MCF-7 cells in a 
dose-dependent fashion (Figure 1). At high concentrations 
of 4HT (1000 nM), MCF-7 cells did not grow and form 

Figure 1: effects of doxorubicin and tamoxifen (4Ht) on the Induction of cellular senescence in McF-7 breast 
cancer cells. Top Panels, MCF-7 cells were treated with increasing concentration of doxorubicin for 6 days and then stained for 
senescence associated (SA) β-galactosidase (SA-β-gal). Bottom Panels, MCF-7 cells were treated with increasing concentration of 4HT 
for 6 days and then stained for SA-β-gal. 

0 nM 10 nM 50 nM 100 nM

Doxorubicin

4HT
0 nM 50 nM 250 nM 1000 nM
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colonies. Thus in subsequent experiments, lower doses of 
4HT were used. Quantitation of the effects of doxorubicin 
and 4HT on MCF-7 cells is presented in Figures 2 and 4. 

effects of doxorubicin on the Induction of 
cellular senescence in doxorubicin-resistant 
McF-7 cells

We also isolated MCF-7 cells with increased 
resistance to chemotherapeutic drugs by culturing the cells 
in medium containing 25 nM doxorubicin. These cells 
were named MCF7/DoxR. The MCF7/DoxR cells were 

approximately 5.7-fold more resistant to doxorubicin than 
MCF-7 cells as determined by MTT analysis.

The ability of MCF-7 and MCF7/DoxR cells 
to undergo cellular senescence was quantified from 
β-galactosidase-positive cells in the presence of 
doxorubicin (10, 50 and 100nM) for 6 days (Figure 2, 
Panels A and B). While MCF7/DoxR cells displayed 
lower levels of senescence compared to MCF-7 cells at 
10 and 50 nM, similar levels of senescence was achieved 
at 100 nM, suggesting that drug-resistance cells have a 
diminished ability to arrest (Figure 2, Panels A and B).  
Photomicrographs of the induction of cellular senescence 
in MCF-7 and the doxorubicin-resistant cells in response 

Figure 2: effects of Activated Akt-1, raf-1 and selection for doxorubicin-resistance on the Induction of cellular 
senescence in response to different concentrations of doxorubicin in McF-7 derivatives. Quantification of the induction 
of cellular senescence in response to doxorubicin treatment. 10 individual images were taken of different areas of the cover slip for each cell 
line, for a total of 1,000-3,000 cells per condition. The total number of SA-β-gal positive and negative cells was determined on each image, 
and the percentages of SA-β-gal positive from each culture condition and cell type were then determined and averaged. 
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to doxorubicin treatment are presented in Figure 3.

ectopic Akt-1 expression Promotes resistance 
of McF-7 cells to Induction of senescence after 
doxorubicin treatment

Since the PI3K/PTEN/Akt/mTOR pathway is 
frequently altered in breast cancer and associated with 
drug resistance, we used a retrovirus to stably-transfect 
MCF-7 cells with a constitutively-active Akt-1 gene 
[∆Akt-1(CA)]. Expression of activated Akt-1 alone was 
sufficient to increase the IC50 for doxorubicin  by 2-fold 
in MCF7/∆Akt-1(CA) [100]. Similar to MCF7/DoxR 
cells, expression of ∆Akt-1 reduced senescence 10-fold 
compared to MCF-7 cells when the cells were treated with 
50 nM doxorubicin (Figure 2, Panels A and C). 

We also isolated MCF7/∆Akt-1(CA) cells with 
increased resistance to chemotherapeutic drugs by 
culturing the cells in medium containing 25 nM 
doxorubicin. These cells were named MCF7/∆Akt-
1(CA)DoxR. The MCF7/∆Akt-1(CA)DoxR were 5-fold 
more frequently recovered from MCF7/∆Akt-1(CA) 
than the MCF7/DoxR were from MCF-7 cell line. The 
MCF7/∆Akt-1(CA)DoxR cells were approximately 6.7-
fold more resistant to doxorubicin than control MCF-7 
cells [100]. 

Interestingly, constitutive activation of Akt-1 in the 

drug resistant cells [MCF7/∆Akt-1(CA)DoxR] resulted 
in the complete abrogation of drug-induced senescence 
at all doses examined (Panel D), suggesting an interplay 
between active Akt-1 and other resistance mechanisms 
acquired by the MCF7/DoxR cells. We have observed 
that MCF7/DoxR cells overexpress activated ERK, but 
not activated Akt when cultured in medium containing 
doxorubicin. In addition, we have seen that MCF7/∆Akt-
1(CA) also overexpress activated ERK, suggesting the 
presence of both active pathways may serve to prevent 
drug-induced senescence. 

effects of ectopic raf-1 expression on the 
Induction of senescence

Since we observed elevated activated ERK1/2 
expression in MCF7/DoxR cells, the activity of the 
Raf/MEK/ERK cascade was manipulated in MCF-7 
cells in order to determine whether signals transduced 
by this pathway control the induction of drug-induced 
senescence. MCF-7 cells were stably transfected with 
a constitutively-active Raf-1 gene [Raf-1(CA)] using a 
retrovirus [2,3]. Expression of constitutively-active Raf-1 
increased resistance to doxorubicin by 9-fold compared to 
parental MCF-7 cells [2,3]. 

Consistent with prior reports, activated Raf-1 
expression increased baseline cellular senescence in 
the absence of stress by 3-fold, indicating that MCF-

Figure 3: effects of doxorubicin and 4Ht on the Induction of cellular senescence in McF-7 cells containing Activated 
Akt-1, raf-1 or selected for doxorubicin-resistance. Photomicrographs of wild type MCF-7 and doxorubicin-resistant ∆Akt-
1(CA) or ∆Raf-1(CA) cells after staining for SA-β-gal. Top row: untreated cells, middle row: cells treated with 50 nM doxorubicin, bottom 
row: cells treated with 100 nM 4HT.
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7 cells were undergoing oncogene-induced senescence 
(OIS) (Figure 2, Panels A and E). MCF7/∆Raf-1(CA) 
cells treated with 10 nM doxorubicin showed a 2.4-fold 
increase in cellular senescence, whereas similar treatments 
did not induce cellular senescence in either MCF-7 or 
MCF7/∆Akt-1(CA) cells (Figure 2, Panels A, C and E). 
Interestingly, increasing concentrations of doxorubicin 
in MCF7/∆Raf-1(CA) cells failed to induce senescence 
to as high levels as observed in MCF-7 or unselected 
MCF7/Akt-1(CA) cells.

We also isolated MCF7/∆Raf-1(CA)DoxR cells 
with increased resistance to chemotherapeutic drugs 
by culturing the cells in medium containing 25 nM 
doxorubicin. These cells are approximately 5-fold more 
resistant to doxorubicin than MCF7/∆Raf-1(CA) cells. 
The MCF7/∆Raf-1(CA)DoxR cells had a 5.8-fold higher 
baseline level of cellular senescence than MCF-7 cells 
(Figure 2, Panels A and F) and a 2.1-fold higher baseline 
level of cellular senescence than MCF7/∆Raf-1(CA) cells 
(Figure 2, Panels E & F).  However, these MCF7/∆Raf-
1(CA)DoxR cells displayed a similar induction of 
senescence in response to doxorubicin treatment as 
MCF7/∆Raf-1(CA) cells (Figure 2, Panels E & F). 

Active Akt-1 Prevents the Induction of cellular 
senescence Following tamoxifen treatment

Since chemotherapies are commonly administered 
in combination with hormonal therapy in ER-positive 
breast cancers, we sought to determine if drug resistance 
and oncogenic signaling through Akt-1 or Raf-1 effects 
induction of cellular senescence in response to 4-hydroxy 
tamoxifen (4HT). MCF-7 or MCF7/DoxR cells expressing 
constitutively-active Akt-1 or Raf-1 were treated with 
10, 50 and 100 nM 4HT for six days then stained for 
β-galactosidase activity (Figure 4).  Photomicrographs 
of the induction of cellular senescence in MCF-7 and 
the doxorubicin-resistant cells in response to 4HT or 
doxorubicin treatment are presented in Figure 3.

Similar levels of cellular senescence were 
observed in MCF-7 and MCF7/DoxR (Panel A) after 
4HT treatment, suggesting that mechanisms of drug 
resistance are independent of senescence inducted by 
4HT.  Interestingly, ∆Akt-1(CA) expression did not 
prevent cellular senescence induction by 4HT treatment 
in the unselected MCF7/∆Akt-1(CA) cells (Panel B), but 
potently suppressed senescence in doxorubicin-resistant 
MCF7/∆Akt-1(CA)DoxR cells (Panel B). In contrast, 
Raf-1 activation in doxorubicin-resistant MCF7/∆Raf-
1(CA)DoxR cells did not suppress senescence by 4HT 
treatment (Panel C). Together, these results suggest that 
presence activated PI3K/PTEN/Akt/mTOR pathway in 
the presence of acquired drug resistant Raf/MEK/ERK 
pathway activation is sufficient to block drug-induced 
senescence to both doxorubicin and 4HT.

Figure 4: effects of Activated Akt-1, raf-1 and 
selection for doxorubicin-resistance on the Induction 
of cellular senescence in response to different 
concentrations of tamoxifen in McF-7 derivatives. 
Quantification of the induction of cellular senescence in 
response to 4HT treatment. 10 individual images were taken of 
different areas of the cover slip for each cell line, for a total of 
1,000-3,000 cells per condition. The total number of SA-β-gal 
positive and negative cells was determined on each image, and 
the percentages of SA-β-gal positive cells from each culture 
condition and cell type were then determined and averaged. 
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dIscussIon

In our studies, we determined the effects of the 
chemotherapeutic drug doxorubicin and the hormonal drug 
tamoxifen (4HT) on the induction of cellular senescence 
in MCF-7 and derivative cell lines which varied in their 
levels of activated Akt-1 or Raf-1 expression. Moreover, 
we also examined the induction of cellular senescence in 
cells which were selected for drug resistance by prolonged 
culture in medium containing 25 nM doxorubicin to 
determine whether drug resistance would alter the 
induction of senescence after either doxorubicin or 4HT 
treatment. An advantage of our investigation was that all 
cells had the same basic genetic background (MCF-7) and 
differed only in the levels of activated Akt-1 or Raf-1, or 
their resistance to doxorubicin.

A lower level of senescence was observed after 50 
nM doxorubicin treatment of MCF7/DoxR than in MCF-
7 cells. However, when the cells were treated with 100 
nM doxorubicin, similar levels of cellular senescence 
were observed. These results demonstrated that the 
doxorubicin-resistant MCF7/DoxR wells were more 
resistant to the induction of senescence after doxorubicin 
treatment than unselected MCF-7 cells. However, the 
MCF7/DoxR doxorubicin-resistant phenotype did not 
prevent the induction of senescence in response to 4HT 
treatment. This indicates that acquired resistance to DNA 
damage-induced senescence does not protect against 
senescence induced by hormone blockade, and thus the 
two are likely to occur through independent signaling 
cascades. 

While previous studies have shown that 
overexpression of either activated Akt-1 or Raf-1 results 
in resistance to doxorubicin [2,3,99,100], in our current 
work activated Akt-1 and Raf-1 expression have different 
effects on the induction of senescence after doxorubicin 
treatment. Overexpression of activated Akt-1 resulted in 
decreased induction of senescence compared with MCF-
7 cells after 50 nM doxorubicin treatment. Drug-resistant 
MCF7/∆Akt-1[CA]DoxR cells were even more resistant 
to the induction of senescence than either MCF7/∆Akt-
1[CA], MCF7/DoxR or MCF-7 cells (Figure 2). In 
contrast, a higher background level of cellular senescence 
was observed in untreated MCF7/∆Raf-1(CA) and 
MCF7/∆Raf-1(CA)DoxR cells compared to MCF-7 cells. 
However, the levels of cellular senescence observed after 
100 nM doxorubicin treatment of MCF7/∆Raf-1(CA) 
and MCF7/∆Raf-1(CA)DoxR cells were not as high as 
observed in MCF-7 cells, suggesting that while there were 
higher levels of constitutive senescence in MCF7/∆Raf-
1(CA) and MCF7/∆Raf-1(CA)DoxR cells, they were 
blocked in their ability to undergo as much senescence as 
MCF-7 cells. 

MCF-7 cells contain WT p53 and doxorubicin 

induces p53 in MCF-7 cells [99]. Lower levels of p53 and 
downstream p21Cip-1 were induced in doxorubicin-resistant 
MCF-7 cells which also contain activated Akt-1[99]. p53 
plays key roles in the regulation of cellular senescence [38-
40,43-46,110-120], DNA damage response [121-123], cell 
cycle progression [124-143], chromosome dynamics [144-
146], apoptosis [147-151], sensitivity to chemotherapy 
[152-154], radiotherapy [107,155] tumorigenesis and 
metastasis [53,156-158], metabolism [159-161], cellular 
redox [41,162], hypoxia [61,75,136,163,164], autophagy 
[49,165,166] and aging [167] as well as other important 
biological processes. Often some of the purported functions 
of p53 are overlapping and even sometimes contradictory. 
p53 is regulated by other transcription factors [168,169], 
the proteins ATM [170], MDM2 and MDMX [174-180] 
and other interacting proteins [181-187] and miRNAs 
[171-173]. Small molecule inhibitors to proteins such 
as MDM2 which negatively regulate p53 have been 
developed [56,188-190]. Akt-1 can phosphorylate MDM-
2 which can promote p53 destabilization. Decreased p53 
and p21Cip-1 levels may result in less cellular senescence in 
response to doxorubicin in the cells containing activated 
Akt-1 than in  wild type MCF-7 cells.

The target genes of p53 and other members of the p53 
family are clearly important in regulating many diverse 
processes [191-200]. p21Cip1 can activate pRb which can 
regulate entry into replicative senescence [12,201]. p53 
also suppresses mTOR [38,40,44], however Akt can 
suppress the effects of p53 documenting the complexity of 
these pathways in how they regulate senescence induction 
[202-204]. miRNAs have also been shown to regulate 
critical genes involved in senescence such as pRb, p53, 
and PTEN [51,171-173,190,205]. Integrating these 
complex and often redundant interactions into a model by 
which p53 regulates cellular senescence in MCF-7 cells 
remains an ongoing process.

Recently it has been demonstrated by Blagosklonny 
and colleagues that the mTOR complex plays a critical 
role in regulating senescence and quiescence [30-
32,38,40,206]. Inhibition of mTOR by rapamycin treatment 
in the presence of Nutlin-3A, will prevent the induction 
of senescence and result in p53-mediated quiescence 
[38, 40]. Interestingly, they also observed that inhibiting 
mTOR with rapamycin resulted in increased activation of 
“upstream” Akt [40]. This induction of Akt could have 
resulted from a shift in the equilibrium between mTORC1 
and mTORC2, leading to higher levels of mTORC2 which 
resulted in Akt activation that prevented the induction of 
senescence by a mTORC1-independent mechanism [59]. 

Other studies by Blagosklonny’s group demonstrated 
that knock down of TSC2, a negative upstream regulator of 
mTOR, could convert quiescent cells into senescent cells 
in the presence of Nutlin-3A [38]. Nutlin-3A is a MDM2 
inhibitor, which results in p53 induction (accumulation).  
Inhibiting TSC2 resulted in increased mTORC1 activity 
which switched the cells from the quiescent into the 
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senescent phenotype. 
The effects of Akt on the induction of cellular 

senescence remain controversial. Often abnormal 
oncogene expression or tumor suppressor gene deletion 
(PTEN, NF1 or RB) has been associated with “oncogene 
induced senescence” (OIS) which can be viewed as a 
protective mechanism to prevent tumor development 
[80,101]. However, recently it has been observed that Akt 
activation can suppress the senescence induced by mutant 
Ras signaling to promote tumorigenesis [207]. In this 
system, mutations at PI3K/Akt accelerated tumorigenesis 
potentially by bypassing the senescence induced by the 
activated Ras. 

Activating mutations at oncogenes in the EGFR/Ras/
PI3K/Akt pathway do not always result in OIS. AKT1, 
FGFR3, PIK3CA, KRAS, HRAS, and EGFR mutations 
have been found in some benign Seborrheic keratosis 
tumors which are not associated with increased cellular 
senescence. Interesting mutations in tumor suppressor 
genes TSC1 and PTEN were not observed in this study 
[208]. 

Inhibition of Akt activity can also have effects 
resulting in the induction of senescence. Pharmacological 
suppression of Akt activity in combination with vitamin 
D3 can synergistically inhibit growth and result in the 
induction of senescence in prostate cancer cells [209]. This 
research demonstrates that quenching the effects of Akt 
can result in the induction of senescence.  Expression of 
an inducible Akt gene suppressed temozolomide-induced 
Chk2 activation and G2 arrest and senescence in a glioma 
cell line model [210].  These studies indicate the protective 
effects of Akt with regards to certain chemotherapeutic 
drug treatments and support our findings that constitutive 
activation of Akt-1 can prevent the induction of senescence 
in MCF-7 cells after doxorubicin treatment. 

Previously we have determined that there are higher 
levels of activated Akt-1 in the drug resistant cell line 
MCF7/ΔAkt-1ER*(Myr+)DoxR compared with MCF7/
ΔAkt-1ER*(Myr+) cells which had not been selected 
for doxorubicin- or hormonal-resistance [99]. Growth 
in medium containing either doxorubicin or 4HT selects 
for ∆Akt-1(CA)-infected cells, as higher levels of Akt-1 
expression provides a selective growth advantage in the 
presence of these drugs [99].

We have also shown that introduction of mutated 
forms of PTEN into MCF-7 cells which lacked lipid and 
protein phosphatase activity also suppressed the ability 
of doxorubicin to induce cellular senescence [5]. These 
cells which express the PTEN mutants were also more 
drug resistant than MCF-7 cells and also overexpressed 
activated Akt [5]. The PI3K/PTEN/Akt/mTOR and 
Raf/MEK/ERK pathways differed in their abilities to 
modulate the induction of cellular senescence in response 
to doxorubicin treatment in breast cancer cells as activated 
Akt-1 impeded senescence while activated Raf-1 did not, 
similar to the results of the present study.

Doxorubicin induces the Raf/MEK/ERK pathway in 
MCF-7 cells and higher levels of active ERK are detected 
in MCF7/DoxR cells than in drug sensitive MCF-7 cells. 
ERK can in some cases phosphorylate p53 (or additional 
proteins) and alter its activity. However, this increased 
ERK expression does not appear to prevent the induction 
of cellular senescence. In fact, a higher as a higher baseline 
level of cellular senescence was detected in MCF7/∆Raf-
1(CA) cells. Thus it can be argued that there is probably 
an additional modification(s) besides increased ERK 
expression in MCF7/DoxR which results in the decreased 
induction of senescence after doxorubicin treatment. 
While both MCF7/∆Akt-1(CA) and MCF7/∆Raf-1(CA) 
cells display increased resistance to doxorubicin compared 
with MCF-7 cells [2,3,100], they varied in terms of 
induction of senescence after doxorubicin treatment. Thus 
the genetic mechanisms responsible for chemotherapeutic 
drug resistance and senescence induction are different.

The ability of 4HT to induce cellular senescence in 
breast cancer is not well documented.  4HT likely induces 
reactive oxygen species (ROS) which in turn cause DNA 
damage and subsequently cellular senescence [211-213]. 
Similar levels of cellular senescence were observed in 
MCF-7 and MCF7/DoxR cells when they were cultured in 
medium containing 4HT. Thus the genetic modifications 
that occur in MCF7/DoxR cells which allow them to 
grow in medium containing 25 nM doxorubicin are not 
sufficient to prevent the induction of senescence induced 
by 4HT.

Induction of cellular senescence in response to 4HT 
differed in these models which expressed activated Akt-
1(CA) or Raf-1(CA). In the MCF7/∆Akt-1(CA) cells that 
had not been selected in doxorubicin, there was more 
cellular senescence than in the MCF-7 cells in response 
to 4HT treatment (compare in Figure 4 panels A and B). 
In contrast, with the MCF7/Akt-1(CA)DoxR cells that 
had been selected in doxorubicin, less cellular senescence 
in response to 4HT treatment was observed than in all 
the other cell lines examined. These results suggest 
that doxorubicin-selected drug resistant cells which 
overexpress activated Akt-1 are resistant to the induction 
of senescence upon 4HT as well as doxorubicin treatment. 
As stated previously, the doxorubicin-resistant cells 
express higher levels of activated Akt-1 than cells which 
have not been selected in doxorubicin. This higher level of 
Akt-1 confers increased resistance to 4HT [99,100].

Activated Raf-1 did not appear to suppress the 
induction of cellular senescence in response to 4HT 
treatment. Although in general, relatively constant levels 
of cellular senescence were observed in MCF7/∆Raf-
1(CA) and MCF7/∆Raf-1(CA)DoxR cells in response to 
4HT treatment as was seen after doxorubicin treatment of 
these cells. Taken together with the results observed with 
MCF7/DoxR cells, which express high levels of activated 
ERK, it is likely that increased levels of the Raf/MEK/
ERK pathway does not inhibit the induction of cellular 
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senescence induced by either 4HT or doxorubicin. 
In some cases, the Ras/Raf/MEK/ERK pathway 

may induce cellular senescence [27,214-218]. Ras can 
activate both the Raf/MEK/ERK and PI3K/PTEN/Akt/
mTOR pathways [6-8,59,60]. Other investigators have 
demonstrated that sustained Ras activation in endothelial 
cells can result in autonomous growth and senescence 
bypass and alter the differentiation status [219]. However, 
this altered phenotype was demonstrated to be regulated 
by the PI3K/Akt pathway. 

These results have clinical significance as the PI3K/
PTEN/Akt/mTOR pathway is often activated in breast 
cancer by mutations at PIK3CA and dysregulation of 
PTEN. Thus this pathway and downstream substrates such 
as the transcription factor Twist are critically involved in 
breast cancer and are targets for improved therapy [220-
222]. Furthermore, drug resistance frequently develops in 
breast cancer after chemo- or hormonal-based therapies.   
Akt is frequently activated by upstream PIK3CA or 
PTEN mutations or gene silencing. PTEN can be mutated 
or silenced by various mechanisms in human cancer. 
Mutations occur which either delete the PTEN gene or 
alter its activity. These mutations which result in activated 
Akt expression may have effects on the induction of 
cellular senescence in response to chemotherapeutic 
drugs currently used to treat breast cancer patients. 
Our studies also indicate that just because a cell is drug 
resistant, that does not mean that it will be resistant to the 
induction of cellular senescence by a chemotherapeutic 
drug. Doxorubicin induced cell cycle arrest in the G2/M 
phase in both MCF7/∆Raf-1 and MCF7/Akt-1 cells, yet 
these cells differed in the extent of cellular senescence 
after doxorubicin treatment. Clearly cell cycle regulatory 
proteins play key roles in regulation of cellular senescence 
[223]. Other studies have shown that certain proteins such 
as p21Cip-1 are required in some cells for the induction of 
senescence but not for cell cycle arrest in response to 
HDAC inhibitors such as sodium butyrate [224]. Together 
these studies point to the complexities of drug resistance 
and cellular senescence.

MAterIAls And MetHods

cell culture

MCF-7 cells were obtained from the American 
Type Culture Collection (ATCC) (Manassas, VA). Cell 
culture medium for MCF-7 cells consisted of Roswell 
Park Memorial Institute-1640 (RPMI 1640) medium 
(Invitrogen, Carlsbad, CA) supplemented with 10% (v/v) 
heat inactivated fetal bovine serum (FBS) as described 
[2].

transfection of McF-7 cells with Akt-1 and raf-1 

constructs

5 x 105 MCF-7 cells were plated into 6-well cell 
culture plates (BD Biosciences, Mountainview, CA) and 
one day later infected with a retrovirus containing the 
various plasmid DNAs as described [3,5,99,100,109]. The 
nomenclature of the transfected cells is MCF7/ followed 
by the name of the introduced plasmid DNA. Stably 
transfected/infected cells were isolated by culture in 
medium containing 2 mg/ml G418 (Geneticin, Invitrogen).

cellular senescence Assay

Senescent cells were identified by a senescence 
associated (SA) β-galactosidase (SA-β-gal) assay as 
described [109].
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