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ABSTRACT
Chemotherapy fails to provide durable cure for the majority of cancer patients. 

To identify mechanisms associated with chemotherapy resistance, we identified 
genes differentially expressed before and after chemotherapeutic treatment of breast 
cancer patients. Treatment response resulted in either increased or decreased cell 
cycle gene expression. Tumors in which cell cycle gene expression was increased by 
chemotherapy were likely to be chemotherapy sensitive, whereas tumors in which 
cell cycle gene transcripts were decreased by chemotherapy were resistant to these 
agents. A gene expression signature that predicted these changes proved to be a 
robust and novel index that predicted the response of patients with breast, ovarian, 
and colon tumors to chemotherapy. Investigations in tumor cell lines supported these 
findings, and linked treatment induced cell cycle changes with p53 signaling and 
G1/G0 arrest. Hence, chemotherapy resistance, which can be predicted based on 
dynamics in cell cycle gene expression, is associated with TP53 integrity.

INTRODUCTION

Breast cancer cases are increasing and represent 
a leading cause of cancer death in women [1]. Despite 
advances in endocrine and targeted therapies, cytotoxic 
chemotherapies remain mainstays for breast cancer 
(BC) treatment [2]. However, even potent multi-drug 
regimens fail to provide long-term cure, especially in the 
context of advanced disease. For example, combinatorial 
Doxorubicin (Dx)/Taxotere (Tax) therapy results in 
complete clinical response in some 20% of cases [3], 
and provides long-term disease free survival for only 
~60% of patients [3, 4]. Accordingly, there is a need for 
understanding the cellular mechanisms that circumvent 
chemotherapy efficacy, as well as to identify means to 
predict which tumors are most likely to respond to therapy.

Many studies focus on identifying gene signatures 
to guide the selection of appropriate chemotherapy 
regimens and to identify mechanisms of resistance 
[5–10]. Such studies generally focus on identifying tumor 
characteristics or genomic features measured in advance 
of therapy that correlate with clinical responses. On the 
other hand, few reports link the dynamics of the measured 
feature over the course of treatment response. Examples 
of the latter approach include reports linking endocrine 
therapy induced reduction of Ki67 labeling as a predictive 
factor of patient response and outcome [11, 12]. Indeed, 
changes in Ki67 labeling index measured during treatment 
is reportedly a superior predictor of response than similar 
measurements taken prior to treatment [12].

Hence, we investigated neoadjuvant chemotherapy-
induced changes of tumor-resident transcripts to identify 
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biological processes that change in response to treatment 
as these might represent biomarkers that predict therapy 
response and may reveal mechanisms of treatment 
resistance.

RESULTS

Treatment induced changes of cell cycle gene 
expression predicts patient response

We sought to identify chemotherapy-induced 
processes in breast tumors. We reasoned that changes in 
gene expression resulting from chemotherapy exposure 
might reveal mechanisms that underpin chemotherapy 
sensitivity/resistance and identify biomarkers of treatment 
response. To the latter end we compared published datasets  
of global gene expression profiles of 26 matched pre/post 
treatment breast tumor samples from patients that were 
treated with an anthracycline and taxane (GSE28844 
[13]) (Figure 1A), and identified transcripts with at 
least a 2 fold expression difference between pre/post 

treatment samples across all 26 tumors (Figure 1B). We 
mapped these genes as nodes onto a protein interaction 
network [14, 15], calculated correlation coefficients for all 
interacting gene pairs, and assigned these as edges to the 
network [15]. The weighted network was clustered to yield 
sets of gene interaction modules. Each module comprised 
sets of genes that are topologically close in a protein 
interaction network, and also displayed highly coordinate 
expression among pre/post exposed breast tumor samples. 
We identified 4 modules individually comprising at least 
10 genes with an average correlation that exceeded 0.5 
(Figure 1C, Supplementary Table 1).

Independent pathway analyses on each of the 
modules (Supplementary Table 2) revealed that Modules 
0 and 3 were enriched in genes related to T- and B-cell 
biology, respectively, whereas Module 2 was enriched 
in genes associated with migratory processes such as 
axon guidance, and angiogenesis mediated by VEGF and 
VEGFR. Module 1 was enriched in genes exclusively 
associated with cell cycle, and included well studied 
regulators of cell cycle such as the centromere proteins 

Figure 1: Identification of treatment response genes and modules. (A) Strategy for identifying treatment responsive genes. 
(B) Average fold change of genes between pre/post treatment biopsies for 26 breast tumors treated with anthracycline & taxane chemotherapy. 
(C) Network modules of genes that display on average at least 2-fold variation between pre/post treatment biopsies.
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CENPN, CENPF and CENPA that control the separation 
of sister chromatids during mitosis, as well as BUB1B 
and CDC20. Notably, proliferative processes have been 
linked previously with chemotherapy response in breast 
cancer patients [16–18].

Despite an established link between the cell cycle 
and chemotherapy response, the mechanism(s) that 
governs poor response has yet to be described. Hence we 
investigated the expression changes of Module 1 genes 
in the pre/post treatment biopsies. Intriguingly, a third of 
tumors (n = 8) displayed near uniform up-regulation of 
Module 1 genes in response to chemotherapy treatment 
(Figure 2A), whereas the remaining two thirds (n = 18) 
showed coordinate down-regulation of Module 1 genes. 
Additional proliferation associated genes, Ki67, E2F1 and 
AURKA, that were absent in Module 1, showed similar 
expression changes among pre/post treatment samples 
(Figure 2B), strengthening the association of Module 1 
with the expression of proliferation-associated genes. 
These analyses reveal that breast tumors exposed to 
chemotherapy can be stratified into 2 subsets: 1) tumors 
that down-regulate cell cycle genes; and 2) tumors that 
up-regulate cell cycle genes. A comparison of the mean 
expression level of Module 1 genes and average change in 
expression levels revealed no correlation between levels 
of cell cycle gene expression prior to treatment with those 
found in post treatment tumors (Figure 2C, r = −0.1, 
p = 0.60, Spearman’s rank correlation). A relationship 
was also not identifiable between changes in Module 
1 during treatment and pre-treatment levels of ki67 
transcripts, another well-validated marker proliferation 
(Supplementary Figure 1A; r = –0.14, p = 0.47).

We next determined whether changes in Module 
1 gene expression during chemotherapy were associated 
with treatment response. Briefly, we identified a gene 
signature (Response Signature [RS]) that discriminated 
between pre-treatment tumors that either up-regulated or 
down regulated Module 1 genes in response to treatment, 
and measured the capacity of the RS to predict tumor 
response to neoadjuvant chemotherapy. To generate the 
RS, we identified the 10 genes with the largest differential 
expression between the 6 pre-treatment tumor samples 
that most highly up-regulated and down-regulated 
Module 1 gene expression in response to treatment, 
respectively (Supplementary Table 3). Receiver-operator 
characteristics curve (ROC) analysis of these 12 patients 
demonstrated that the RS was significantly associated 
with whether or not chemotherapy altered Module 1 gene 
expression in breast tumors (Supplementary Figure 2A, 
AUC: 1.0, p = 0.004). Among the 14 patients that were 
not used to identify the RS, we validated the capacity of 
the RS to correctly predict how a tumor would respond to 
treatment based on changes in Module 1 gene expression 
(Supplementary Figure 2B, AUC: 0.84, *p = 0.04). Hence, 
these data demonstrate that the RS can be evaluated on 
pre-treatment tumor samples and subsequently used to 

prospectively identify tumors that would up- or down-
regulate Module 1 genes in response to chemotherapy. 
Application of the RS to multiple cohorts of neoadjuvantly 
treated breast cancer patients revealed a robust relationship 
between RS and pathological response outcomes for each 
of the cohorts that we tested (Figure 2D & 2E; 5 cohorts; 
patient n = 1066; AUC > 0.5 and p < 0.05). Further, the 
predictive nature of the RS could also identify response 
to chemotherapy in colon and ovarian patient cohorts 
(Figure 2D & 2E; Ovarian: n = 58, Colon: n = 37; AUC 
> 0.5 and p < 0.05). In each cohort, higher signature 
scores were significantly associated with resistance to 
chemotherapy (Supplementary Figure 2C), strongly 
suggesting that the treatment-induced down-regulation 
of Module 1 genes is also associated with treatment 
resistance.

A final analysis was conducted to investigate the 
prognostic capacity of the RS while accounting for clinical 
factors, by performing multivariate regression analyses in 
a pooled breast cancer cohort, made by combining the 5 
neoadjuvant breast cohorts presented above. Although the 
pooled cohort comprised 1066 patients, only 895 patients 
had complete clinical annotations including RS score, 
grade, age, as well as ER and node status (summarized 
in Supplementary Table 4). Univariate analysis revealed 
that the RS signature (OR: 2.95 [2.14–4.08], p < 0.001), 
ER status (OR: 0.20 [0.15–0.29], p < 0.001), and grade 
(OR: 4.36 [3.00–6.34], p < 0.001) were all significant 
prognosticators of response, whereas age and node status 
were not. In the multivariate model, the RS signature 
( p = 0.032), ER status ( p < 0.001) and grade ( p < 0.001) 
all remained significantly associated with response 
(Supplementary Table 5). Hence these data confirm that 
the RS signature is a significant prognosticator of response 
even after adjusting for standard clinical variables. 
Together, these data suggest that exposure of breast, 
ovarian or colorectal tumors to chemotherapy leads to 
altered cell cycle gene expression. Decreased expression of 
proliferation genes following patient treatment is associated 
with chemotherapy resistance, whereas increased or no 
change in the expression of proliferation genes after 
chemotherapy predicts sensitivity to such agents.

Cell cycle integrity governs breast cancer cell 
lines response to chemotherapy

To establish a mechanism(s) that links altered 
proliferation gene expression and chemotherapy 
resistance, we treated 9 different breast cancer cell lines 
with Dx, an anthracycline (100 nM for 2 days), and 
measured cell cycle response by staining for markers 
of cell proliferation (Ki67) and cell cycle arrest (p21). 
The cell lines displayed 2 distinct behaviors: those in 
which Ki67 expression was decreased (MCF7, BT474, 
MDA-MB-361, ZR-75-1 and MDA-MB-175VII), and 
those in which Ki67 was increased or unchanged (T47D,  
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 MDA -MB-231, HCC1954 and BT-549) (Figure 3A). Staining 
for p21 typically demonstrated the converse trend (Figure 
3B). Moreover, re-analysis of published microarray based 
gene expression profiling of control and Dx treated MCF7 
cells [19], revealed near uniform (8/10) down-regulation of 
Module 1 genes in response to Dx, further supporting the 
capacity of cell lines to model our previous observations 
made in breast tumors (Supplementary Figure 3).

We extended these findings using the H2BGFP-
FUCCI cell cycle reporter [20, 21] that encodes a fusion 

of H2B-GFP, which decorates chromatin, and mKO2-Cdt1 
(herein referred to as FUCCI-G1) [21], the expression of 
which is restricted to G1/G0. Live cell imaging over the 
course of 3 days following Dx treatment showed that, 
although all cell lines displayed a marked decrease in 
proliferation, nearly all MCF7, BT474 and MDA-MB-361 
cells increased or maintained expression of the FUCCI-G1 
reporter 24 hours after treatment, whereas the fraction 
of T47D, MDA-MB-231 or HCC1945 cells expressing 
FUCCI-G1 remained constant or decreased (Figure 

Figure 2: Module 1 gene expression dynamics are associated with therapy response. (A) Dynamics of module 1 gene 
expression following therapy is heterogeneous. (B) Dynamics of proliferation gene expression following therapy is heterogeneous. 
(C) There is no relationship between Module 1 gene expression prior to therapy and changes in Module 1 gene expression after therapy 
(R = −0.1, p = 0.60). (D) The RS predicts patient response to chemotherapy among breast cancer (i) as well as ovarian and colon (ii) cancer 
patients, RS is a significant predictor in each dataset (*p < 0.05, AUC > 0.5). (E) ROC analysis of RS in chemotherapy response in 5 breast 
cancer datasets, one ovarian cancer dataset, and one colon cancer data set.
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4A & Supplementary Figures 4A–4F). Importantly, 
the results were consistent across a range of Dx doses, 
including previously defined IC50 doses for each line 
(Supplementary Figure 5A) (10). Single cell tracking 
of the reporter cell lines revealed that Dx treated MCF7 
and BT474 cells yielded non-dividing cells that were 
nearly all arrested in the G1/G0 phase of the cell cycle 
(Figures 4B–4C & Supplementary Figure 5B). In contrast, 
Dx treatment of T47D and MDA-MB-231 cells lead to 
increased apoptosis, and non-dividing cells that did not 
express FUCCI-G1 (Figures 4B–4C & Supplementary 
Figure 5B). In addition to using the FUCCI-G1 reporter, 
we also employed BrDU staining to monitor cell cycle 
status. BrDU incorporation in Dx treatment of MCF7 and 
MDA-MD-231 cells confirmed our observation that Dx 
induced MCF7 G1 arrest, whereas MDA-MB-231 cells 
arrested primarily in G2/M (Supplementary Figure 5C). In 
sum, some breast cancer cell lines (MCF7, BT474, MDA-
MB-361, ZR-75-1 and MDA-MB-175VII) phenocopied 
tumors that down-regulated cell cycle gene expression in 
response to treatment, whereas other lines (T47D, MDA-
MB-231, HCC1954 and BT-549) were similar to those that 
increase cell cycle gene expression after treatment.

To identify the mechanism(s) that regulate 
chemotherapy-induced cell cycle gene changes, we 
performed gene set enrichment analysis (GSEA) with 

publically available gene expression profiles of Dx treated 
MCF7 cells, which identified enrichment for multiple p53 
related gene sets (Supplementary Table 6; bolded gene 
sets) [22]. The latter is in keeping with the fact that MCF7 
cells harbor WTp53 alleles [23, 24], and is consistent with 
the fact that Dx treatment of these cells activated G1/G0 
arrest via functional p53 signaling.

We hypothesized that the two distinct cell cycle 
response patterns observed in our panel of H2BGFP-
FUCCI expressing cell lines might be related to their 
TP53 status, as p53 mediates G1/G0 cell cycle arrest in 
response to DNA damage [25, 26]. We performed time-
lapse imaging of H2BGFP-FUCCI cell lines grown in 
the absence or presence of the small molecule Nutlin3A, 
an inhibitor of the interaction of p53 with MDM2. 
MDM2 targets p53 for degradation and hence Nutlin3A 
activates p53 signaling in cell lines that harbor the WTp53 
alleles. Nutlin3A elicited growth arrest and FUCCI-G1 
expression or Ki67 loss in the same lines (MCF7, BT474, 
MDA-MB-361, ZR-75-1 and MDA-MB-175VII) that 
were arrested in G1/G0 in response to Dx exposure 
(Supplementary Figures 6A–6D). However, Nutlin3A, like 
Dx, did not effect G1/G0 cell cycle arrest in the T47D, 
MDA-MB-231, HCC1945 or BT-549 cell lines, which 
harbor mutant TP53 alleles. These results were further 
confirmed by BrDU incorporation analysis in MCF7 and 

Figure 3: Effects of chemotherapy on Ki67 and p21 expression in breast tumor cell lines. (A) Ki67 is heterogeneously 
expressed in breast tumor cell lines in response to doxorubicin (100 nM). (B) p21 is variably expressed among breast tumor cell lines 
following treatment with doxorubicin (100 nM).
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MDA-MB-231 cells (Supplementary Figure 5C). Taken 
together these findings suggest that down-regulation of 
cell cycle gene expression is dependent on functional p53 
signaling, ultimately leading to chemotherapy resistance.

Functional p53 signaling is associated with 
chemotherapy resistance in breast cancer patients

Our data described above suggested that a reduction 
of cell cycle gene expression following therapy is 
associated with chemotherapy resistance and that this 
is dependent, at least in part, by activation of functional 
p53 signaling. Based on this data we hypothesized that 
intact p53 signaling in human breast cancer patients 
would likely be associated with chemotherapy resistance. 
To confirm this hypothesis, we sought to test whether a 
transcriptional signature of TP53 mutational status was 
associated with response to neoadjuvant chemotherapy, 
similar to our observations made with the RS. We first 
interrogated transcriptional data (GSE3494) of 251 
breast tumors for which the mutational status of TP53 
was also known [27]. In short, we used PAM and 10-
fold cross-validation to identify an 18 probe set signature 
that was associated with p53 status in patient samples  
(n = 34, training cohort) comprising a subset of the original 
GSE3494 cohort (Supplementary Table 7). Expectedly, 
we found that among training patients, those whose 

tumor harbored mutant TP53 had significantly higher p53 
signature scores than those with WT TP53 (Figure 5A, 
t-test, *p < 0.0001). Among the remaining patients in 
the GSE3494 cohort (n = 217, validation cohort) we 
validated the capacity of the p53 gene signature to predict 
TP53 status, and found that the p53 signature remained 
significantly associated with tumor p53 status using both 
t-tests and receiver operator characteristic (ROC) curve 
analysis (Figures 5B–5C, t-test, *p < 0.0001, AUC: 0.74, 
*p < 0.0001). Accordingly, these data suggest that our p53 
signature can be used as a surrogate marker of tumor TP53 
status, and represents a useful tool to examine TP53 status 
in additional transcriptional breast tumor datasets.

We next measured the relationship between tumor 
TP53 status and response to neoadjuvant chemotherapy. 
Application of the p53 signature in the same 5 cohorts 
of neadjuvant treated breast cancer patients revealed 
a robust relationship between the p53 signature and 
patient response (Figure 5D & Supplementary Figure 7, 
Supplementary Table 8; 5 cohorts; total n = 1066; AUC 
> 0.5). In 4 of 5 cohorts the AUC was significantly above 
0.5, whereas the 5th cohort (GSE20271) narrowly missed 
significance (p = 0.07). In all cases elevated p53 signature 
scores, indicating mutant TP53 status, was associated with 
chemotherapy sensitivity. Accordingly, we concluded 
that mutant TP53 status, as assessed by our transcript 
signature, was associated with chemotherapy sensitivity.

Figure 4: The cell cycle response of human breast cancer cell lines to doxorubicin treatment. (A) Percentage of cells 
expressing FUCCI-G1 and cell count increase over 3 days in the presence of doxorubicin (Dx) or control (Ctrl) conditions. (B & C) 
Summary of single cell tracking of human BC lines in control or doxorubicin conditions. B) Chart depicts the percentage of cells for 
each line and condition in different stages of the cell cycle. C) Percentage of non dividing doxorubicin treated cells that are expressing 
FUCCI-G1 reporter.
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Induction of G1 arrest by p53 results in 
chemotherapy resistance

Our data suggested that activation of p53 signaling 
by either chemotherapy induced DNA damage or small 
molecules that prevent p53 degradation decreased cell 
cycle gene expression resulting in G1/G0 arrest in a 
subset of breast tumor cell lines harboring WT TP53 
alleles. Moreover, analysis of clinical data suggested this 
mechanism might drive therapy resistance whereby cells 
avoid cell death during exposure to cytotoxic agents.

To test this hypothesis directly we first examined 
cell nuclear morphology in response to Tax, a 
chemotherapeutic agent that stabilizes microtubules thus 

leading to mitotic catastrophe and nuclear fragmentation 
[28]. We exposed cells to either Tax (100 nM) alone or 
a combination of Nutlin3A (10 μM) and Tax, and then 
compared the frequency of fragmented nuclei among cell 
lines with WT TP53 (MCF7 & BT474) or mutant TP53 
(MDA-MB-231 & T47D). Irrespective of the cell line, 
exposure of breast tumor cells to Tax alone rapidly induced 
nuclear fragmentation in ~70% of nuclei (Figures 6A–6B).  
G1/G0 arrest of the cell lines harboring WT TP53 with 
Nutlin3A during exposure to Tax rescued the lines 
from Tax-induced nuclear fragmentation, (Figure 6A). 
Importantly, Nutlin3A did not protect cell lines harboring 
mutant TP53 from Tax-induced nuclear fragmentation 
(Figures 6A–6B).

Figure 5: Mutp53 is associated with chemotherapy sensitivity in breast cancer patients. (A) The p53 signature correctly 
identifies MUTp53/WTp53 tumors in the training cohort. (B) The p53 signature correctly identifies MUTp53/WTp53 tumors in the 
validation cohort by t-test analysis (*p < 0.0001). (C) The p53 signature correctly identifies MUTp53/WTp53 tumors in the validation 
cohort by ROC analysis (*p < 0.0001). (D) The p53 signature is associated with patient response in 5 neoadjuvant cohorts of breast cancer 
patients (AUC and 95% confidence interval is shown).
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We performed colony-forming assays with cells 
that had been exposed to Tax or Tax and Nutlin3A 
to establish whether division-competent viable cells 
remained after exposure to these agents. Cells were 
either incubated with vehicle (control) or Nutlin3A for 
3 days, with both receiving a 24 hour treatment of Tax 
at the beginning of day 2. While vehicle controls grew 
to confluency (data not shown), Tax-only treatment in 
the presence of vehicle inhibited the capacity of both 
WT TP53 and mutant TP53 cells to form colonies 
(Figures 6C & 6D). However, the presence of Nutlin3A 
during Tax treatment protected the capacity of cells 

with WT TP53 to form colonies, but not those with 
mutant TP53. These data show that activation of 
functional p53 signaling and G1/G0 arrest protects 
cells during exposure to the cytotoxic effects of Tax.

DISCUSSION
Defining the currently elusive mechanisms that 

underlie cancer patient response to chemotherapy will 
yield important advances in patient care, including 
redirecting non-responders to alternative treatment 
strategies that may afford better outcomes [29].

Figure 6: Activation of functional p53 signaling confers chemotherapy resistance to breast tumor cells. (A) Representative 
day 3 micrographs of WTp53 (MCF7 & BT474) and MUTp53 (MB-231 & T47D) cell response to Tax only or combined Nutlin 3A and 
Tax treatment. Scale bar = 20 um. (B) Graphs comparing the percentage of Tax-induced nuclear fragmentation at day 3 in the absence or 
presence of Nutlin 3A. (C) Images of wells stained for colonies in MCF7 and 231 plates (Scale bar = 1 cm). (D) Colony forming efficiency 
of cell lines following Tax only or combined Nutlin 3A and Tax treatment.
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Here we describe the novel observation that 
chemotherapy induced cell cycle gene expression changes 
is predictive of patient response. To date, most reports 
relating patterns in tumor gene expression to clinical 
responses have focused primarily on discovering genomic 
features in pre-treatment biopsies that predict therapy 
response [5–10]. However, we report that changes in gene 
expression occurring during response to chemotherapy 
are also related to patient response. We identified a set 
of 10 genes associated with cellular proliferation, termed 
Module 1, that are among the most variably expressed 
genes within tumors following treatment. Module 1 
genes are coordinately regulated intra-tumorally, and 
are uniformly up or down-regulated in response to 
chemotherapy. RS, a surrogate measure for changes in 
Module 1 gene expression, was significantly related to 
patient response in 5 cohorts of breast cancer patients 
(total n = 1066), as well as in smaller cohorts of colon and 
ovarian cancer patients (n = 37 and n = 58, respectively). 
Specifically, tumors predicted to increase Module 1 gene 
expression following chemotherapy were more likely 
to respond favorably to treatment, whereas the opposite 
was true for tumors predicted to reduce Module 1 gene 
expression in response to chemotherapy.

From a clinical standpoint, pre-treatment evaluation 
of the RS or monitoring cell cycle changes during the 
course of neoadjuvant chemotherapy, might represent 
valuable predictive biomarkers. In this fashion, patients 
identified as resistant to chemotherapy could benefit 
from expedient enrollment in clinical trials investigating 
the efficacy of novel agents [29]. However, many issues 
remain to be addressed to confirm the clinical utility 
of either the RS or monitoring Module 1 genes during 
treatment. For example, our conclusions are based on the 
analysis of retrospective data, which limits its clinical 
value, and our analyses of colon and ovarian tumors were 
limited by the small sample sizes available. Prospective 
clinical trials would establish a full understanding of the 
utility of the approach presented here.

To date, most predictive gene signatures identified 
for breast cancer derive their predictive capacity based 
on their ability to measure proliferation in pre-treatment 
tumor samples [6, 9, 17]. The relationship between 
proliferation and response is further supported by 
reports that ki67 staining is also a robust predictor of 
chemotherapy response [30–32]. In the initially discovery 
dataset (GSE28844) we did not observe a significant 
relationship between the RS and Ki67, although some 
caution is warranted when interpreting this result as it is 
only based on analysis of 26 samples. Nonetheless, these 
data overall suggest that the RS may capture distinct 
predictive information from either Ki67 staining or purely 
proliferation based signatures.

The success of the RS to identify chemotherapy 
responsive tumors led us to investigate the phenomenon 
whereby therapy response occurs. To this end we used 

breast tumor cell lines to discover that a subset of cell lines 
examined entered G1/G0 cell cycle arrest after exposure 
to Dx. Bioinformatic and in vitro experiments linked this 
behavior with TP53 integrity: activation of p53 signaling 
was sufficient to induce G1/G0 arrest, which in turn 
protected cells from further chemotherapy treatments, thus 
permitting subsequent tumor cell regrowth post-therapy. 
Many clinical studies have examined the relationship 
between TP53 status and drug response: some were 
inconclusive [33, 34], whereas others linked chemotherapy 
responsiveness/sensitivity with either WT TP53 [35–37] 
or mutant TP53 [38–40]. Our study found that TP53 
integrity is associated with chemotherapy outcome, and 
that WT TP53 is most strongly connected with resistance 
to the cytotoxic effects of chemotherapy. Indeed, MMTV-
Wnt1 mouse mammary tumors with mutant TP53 are 
significantly more sensitive to Dx than those with WT 
TP53 [41]. The composition of the RS is intriguing, as 
it includes the gene WRAP53 (WDR79). WRAP53 is a 
naturally occurring TP53 antisense transcript that has been 
demonstrated to positively regulate p53 levels via RNA 
interaction [42]. Based on the RS, WRAP53 expression 
is higher in tumors that respond to chemotherapy through 
reduced expression of cell cycle genes, consistent with its 
role as a positive regulator of p53 and its association with 
resistance.

Intriguingly, although TP53 mutations are known 
to occur in a molecular subtype specific fashion among 
breast cancer patients [43, 44], no study has examined 
the relationship between TP53 status and chemotherapy 
response in a subtype specific fashion. Taken with this 
data, our results provide a possible explanation for the 
differences in chemotherapeutic sensitivity observed 
between breast tumors of differing molecular subtypes 
[7, 45, 46]. For example, basal-like breast tumors harbor 
the highest frequency of mutations in TP53 [43, 47] and 
patients with basal-like tumors are known to experience 
the highest rates of pathological response. Conversely, 
luminal breast tumors harbor the lowest frequency of 
mutations in TP53 and patients with luminal tumors 
experience the lowest rates of pathological response. 
It will be interestingly to learn if mutations in TP53 are 
associated with chemotherapy sensitivity in other tumor 
types. Indeed, a recent report suggests that mutations 
in TP53 are associated with favorable responses to 
chemotherapy in ovarian cancers [48].

One important aspect to consider when interpreting 
the data we present here is the role of therapy-induced 
senescence (TIS). TIS is a common tumor response to 
cytotoxic chemotherapies, including Dx [49], which 
results in permanent growth arrest, via halting the cell 
cycle in G2/M or G1 phase [50]. TIS shares overlapping 
characteristics with normal physiological senescence, 
including several genetic pathways that have been 
implicated in TIS, such as the tumour suppressors p53 
and Rb. However it is important to note that WT TP53 
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and mutant TP53 cells [49], as well as cells completely 
lacking TP53 [51, 52] can undergo TIS, indicating that 
functional p53 signalling is not a required component for 
attaining TIS.

The extent to which TIS defines a patient’s response 
to chemotherapy is not fully understood, but it is clear that 
TIS is not observed in all tumor cells, and that a small 
fraction of cells can evade TIS and reinitiate growth 
[52]. A key experiment presented here demonstrated that 
activation of a functional p53 program in response to 
nutlin3A was protective against the cytotoxic effects of 
chemotherapy (Figures 6A–6D), a result that is consistent 
with previous important studies linking p53 induction 
and mitotic inhibitor protection [53–60]. Although 
this observation is not necessarily consistent with p53 
mediated induction of senescence, as treated cells 
retained the capacity to proliferate and make colonies. 
Hence, p53 driven resistance likely also includes a non-
senescent mechanism(s) of cell cycle arrest. However, 
the transcriptional analyses presented here may generally 
afford a new avenue for investigating TIS mechanisms of 
patient response to chemotherapy.

Overall, the findings we present here have several 
important implications. Clinically, they suggest that either 
the RS signature or directly monitoring changes in cell 
cycle gene expression during treatment could be used 
for timely identification of non-responders, who could 
then be rapidly switched to alternate therapeutic options. 
Moreover, our findings also link TP53 integrity with 
treatment-induced changes in tumor cell responsiveness 
to chemotherapeutic drugs. Hence, modulation of p53 
signaling with various small molecules depending 
on pathway integrity could serve to increase potency 
of commonly used chemotherapeutic agents. Finally, 
we extended our finding in ovarian and colon tumors, 
suggesting that the implications of our work extend 
beyond breast tumors and may apply to the majority of 
tumors independent of tissue-of-origin.

METHODS

Bioinformatics

Full details of the Bioinformatics methods can be 
found in the Supplementary Methods.

Cell culture & generation of H2GFOIP reporter 
lines

All cell lines were obtained from the ATCC, 
characterized by STR profiling, and passaged minimally 
prior to completing these experiments. MCF7, BT-474, 
MB-MDA-231, T47D, HCC-1954, ZR-75-1, MDA-
MB-175VIII, BT549, and MDA-MB-361 BC cell lines 
were cultured as previously described [23]. Stable clones 
(MCF7, HCC1954, and MD-MBA-231) expressing the 

H2GFOIP reporter were produced by electroporation 
(300 v, 250 uF, 0.4 mm cuvette gap) with pCAG H2GFOIP 
plasmid DNA [20] and selected by the addition of 1 ug/ml 
puromycin to the medium. Other breast cancer reporter 
lines that proved refractory to electroporation-mediated 
transgenesis (BT-474, T47D, and MDA-MB-361) were 
infected with a H2GFO lentivirus. The recombinant 
H2GFO lentivirus was constructed as follows. The 
H2BGFP-F2A-mKO2-Cdt1 fragment was released from 
pCAG-H2GFOIP by digestion with KpnI and PmeI, and 
then subcloned into KpnI/EcoRV cut pEF-1a/pENTR 
(Addgene #17427) [61]. A LR clonase (Invitrogen) 
recombination reaction was then used to deliver pEF-1a  
H2BGFP-F2A-mKO2-Cdt1 into the pLenti X1 puro 
DEST vector (Addgene #17297). Virus was prepared 
as previously described, and stably infected cells were 
selected by the addition of 1 ug/ml puromycin to the 
medium.

Immunocytochemistry and flow cytometry

Immunocytochemistry was performed in 96 
well plates. Cells were fixed and stained as previously 
described [62] with antibodies to p21 (rabbit polyclonal, 
Cell Signaling # 2947; 1:400 dilution) or Ki67 (mouse 
monoclonal, Santa Cruz # SC23900; 1:100 dilution) and 
with appropriate secondary AF647 antibodies (Invitrogen 
#A-21238 & #A-31571; 1:500 dilution). Nuclei were 
co-stained with Hoechst 33342. BrdU incorporation 
experiments were performed as per manufacturers 
instructions (BD FITC BrdU Flow Kit #559619) and 
acquired on a LSRII (BD). Analysis was performed using 
FlowJo software.

Live cell imaging and high content imaging

Details for live and high content imaging are 
described previously [20, 62]. Briefly, for live cell 
imaging, cell lines were seeded in 12 well plates at 
50,000 cells per well, and imaged using a Biostation CT 
live imaging system (Nikon). Dx or Nutlin3A was added 
immediately prior to imaging, and images were acquired 
every 15 minutes for 3–4 days, compiled in ImageJ and 
then analysed with custom ImageJ scripts. Cell tracking 
was performed manually in ImageJ using the MtrackJ 
plugin or semi-automated with custom software written 
in Matlab 2012a (MathWorks, Natick, MA). A cross-
correlation algorithm for automated cell tracking was 
implemented on a graphics workstation (Intel Xeon  
E5–1607, 16 GB RAM, equipped with a Tesla C2075 
GPU). The Matlab cell tracking platform generates division 
pedigree databases. The latter were interrogated to yield 
individual cell features such as FUCCI-G1 fluorescence, 
G1 and S-phase duration and annotated fates (division, 
apoptosis, endoreplication, lost, or end of experiment). 
The database platform includes tools for display of single 
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cell data such as heat maps showing single cell FUCCI-G1 
expression dynamics as bar graphs or division trees. For 
high content imaging, cells were seeded at 10,000 cells 
per well of 96 well plates and imaged using an Operetta 
High Content Imaging system (Perkin Elmer). High 
content imaging data was transferred to a Columbus 
(Perkin Elmer) database and ~1,000–2,000 cells per n were 
analyzed with custom scripts in Acapella (Perkin Elmer) 
that segmented nuclear objects by Hoechst or H2BGFP, 
and subsequent intensity quantification for FUCCI-G1 or 
AF647 signals were performed. Fragmentation analysis 
was performed using Acapella-based phenoLOGIC 
machine learning after supervised identification of normal 
and TAX-induced fragmented nuclei.

Statistical analysis

The predictive capacity of the RS signature was 
evaluated using receiver-operator characteristic curve 
(ROC) analysis, as well as univariate and multivariate 
logistic regression. T-tests were also used to compare RS 
signature scores between responsive and non-responsive 
tumors. All tests were two-sided and a p-value of 0.05 
or less was considered statistically significant. All graphs 
for in vitro experiments show standard deviation derived 
from n = 3–5.
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