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AbstrAct:
Recent studies have demonstrated the significance of the leukemia oncogene Evi1 
as the regulator of hematopoietic stem cells and marker of poor clinical outcomes in 
myeloid malignancies. Evi1-mediated leukemogenic activities include a wide array of 
functions such as the induction of epigenetic modifications, transcriptional control, 
and regulation of signaling pathways. We have recently succeeded in comprehensively 
elucidating the oncogenic function of Evi1 in a model of the polycomb-Evi1-PTEN/
AKT/mTOR axis. These results may provide us with novel therapeutic approaches 
to conquer the poor prognosis associated with Evi1-activated leukemia or other 
solid tumors with high Evi1 expression. Here, we review the current understanding 
of the role of Evi1 in controlling the development of leukemia and highlight 
potential modalities for targeting factors involved in Evi1-regulated signaling.

INtrODUctION

Ecotropic viral integration site 1 (Evi1) is a nuclear 
zinc finger protein that is essential for the proliferation 
and maintenance of hematopoietic stem cells (HSC) 
[1]. Clinically, activated Evi1 expression is observed in 
approximately 10% of patients with acute myeloid leukemia 
(AML) and is an independent factor associated with poor 
prognosis in AML [2-4]. Evi1 is located on chromosome 
3q26, and the up-regulation of Evi1 expression was 
originally found to be a consequence of inv(3)(q21q26.2) 
or t(3;3)(q21;q26.2) [5,6]. In addition, we have recently 
shown that Evi1 is transcriptionally up-regulated by 
oncogenic MLL fusion proteins [7]; around half of the 
patients with AML having 11q23 rearrangements display 
high Evi1 expression [2]. Chromosomal abnormalities 
involving chromosome 7 are another candidate cause 
of Evi1 activation [2,8]. Molecularly, Evi1 has a variety 
of functions as an oncoprotein. Firstly, it regulates some 
signaling pathways. The most characterized function 
is the negative control exerted by Evi1 on TGF-β 
signaling through the repression of Smad3 function by 
physical interaction and recruitment of the corepressor 
CtBP [9,10]; this may contribute to the leukemogenic 
activity of Evi1 by promoting cellular proliferation and 
affecting cellular differentiation. Moreover, Evi1 exerts 

anti-apoptotic effects by suppressing the JNK1-mediated 
phosphorylation of c-Jun [11] or inhibiting interferon-α 
signaling through the regulation of the PML gene [12]. 
Secondly, Evi1 has been shown to act as a transcriptional 
factor and regulate the expression of several target genes 
by directly binding DNA through its proximal zinc 
finger domain and recognizing a consensus sequence 
consisting of GA(C/T)AAGA(T/C)AAGATAA-like or 
GACAAGATA-like motifs [13,14]. We and other groups 
have reported that Evi1 regulates GATA2 [14], PBX1 
[15], and PML [12] transcription. Thirdly, recent studies 
have indicated that Evi1 actively induced epigenetic 
changes by interacting with various molecules. In this 
perspective, we will discuss the novel oncogenic functions 
of Evi1, particularly focusing on the relationship between 
leukemogenesis and epigenetics or signaling pathways. 

EpIgENEtIcs IN lEUkEmOgENEsIs

Although cancer development has been 
considered a consequence of genetic changes, it has 
become increasingly evident that it also involves 
epigenetic changes that are mechanisms affecting gene 
expression profiles without alterations in the DNA 
sequence. Such mechanisms include DNA methylation, 
histone modification, and microRNA involvement. In 
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hematological malignancies, recent findings of frequent 
mutations in epigenetic regulators such as EZH2 [16-18], 
DNMT3A [19-21], TET2 [22,23], ASXL1 [24], and UTX 
[25] support the idea that dysregulation of epigenetics 
plays a role in leukemogenesis [26,27]. For example, 
somatic mutations in EZH2 are frequently identified in 
myeloid malignancies, particularly in myelodysplastic 
syndrome and myeloproliferative neoplasms [16-18]. 
EZH2 is a core component of the polycomb repressive 
complex 2 (PRC2) and catalyzes histone 3 lysine 27 
(H3K27) trimethylation in association with SUZ12 and 
EED. Another complex called PRC1 possesses histone 2A 
lysine 119 E3 ubiquitin ligase activities, and these histone 
modifications are essential for the silencing of polycomb 
target genes, which in turn regulate a broad array of 
biological processes such as the cell cycle, apoptosis, stem 
cell regulation, senescence, and cancer development [28-
32]. Most of the missense mutations of EZH2 occurred 
in the CXC-SET domain and domain II, both of which 
are essential for the histone methyltransferase activity. 
Therefore, truncated or missense mutations in EZH2 
observed in myeloid malignancies are supposed to be 
inactivating mutations [16], and EZH2 may be a tumor 
suppressor in this context. On the other hand, intact 
polycomb group (PcG) proteins function as oncogenic 
silencers in other contexts, as shown below. 

EvI1 lINks thE EpIgENEtIc 
mAchINEry tO thE rEgUlAtION 
Of Its tArgEt gENE/sIgNAlINg 
pAthwAy 

We have recently found that Evi1 physically 
interacts with PcG proteins (EZH2, SUZ12, EED, BMI1, 
RING1, RING2, and HPH2) [33]. However, it appeared 
that Evi1 expression did not affect the global methylation 
status of H3K27 (data not shown). This finding prompted 
us to investigate specific target genes of Evi1 whose 
expressions were repressed in concert with PcG proteins. 
Our microarray data using primary bone marrow (BM) 
progenitors with forced expression of Evi1 and some sets of 
published gene expression data from AML samples [4,34] 
were combined and bioinformatically analyzed, leading to 
the identification of the tumor suppressor PTEN as a novel 
repressive target of Evi1. Chromatin immunoprecipitation 
(ChIP) assays using Evi1-transduced BM cells indicated 
that Evi1 induced H3K27 trimethylation marks on the 
PTEN genomic locus by recruiting PcG proteins. As 
PTEN is a well-established tumor suppressor and acts 
as a negative regulator of the PI3K/AKT pathway, and 
we found that Evi1 activated the AKT/mTOR signaling 
pathway through transcriptional repression of PTEN. The 
activation of this signaling is essential for Evi1-mediated 
leukemogenesis, as discussed later. Interestingly, RNAi-

mediated knockdown of EZH2 restored PTEN expression 
and down-regulated the AKT/mTOR activities in Evi1-
transduced BM cells, suggesting that Evi1 functions as a 
platform to recruit PcG proteins to the PTEN locus (Figure 
1). In accordance with the aforementioned concept, the 
effects of EZH2 knockdown on PTEN expression were 
not observed in BM cells with low Evi1 expression. 
In other words, EZH2 can act as an oncoprotein in the 
presence of high Evi1 expression. Another example of 
the oncogenic function of EZH2 has been investigated in 
acute promyelocytic leukemia (APL). APL is induced by a 
differentiation block and an overgrowth of promyelocytes 
attributed to chromosomal translocation, leading to the 
production of fusion proteins such as PML/RARα and 
PLZF/RARα. These chimeric proteins have been shown 
to recruit PcG complexes to the target gene promoters 
through the RARα moiety and block cell differentiation 
[35,36]. Therefore, such oncogenic functions of PcG 
proteins can be therapeutic targets (Figure 1). In addition, 
we confirmed that Evi1-transduced BM cells show 
specifically increased sensitivity to a PRC2 inhibitor 
[3-Deazaneplanocin A (DZNep)] (data not shown). 

Increasing evidence indicating the involvement of 
Evi1 in the epigenetic regulation of gene transcription 
has been recently accumulated. Lugthart et al. have 
shown that AML samples with activated Evi1 presented 
with a deregulated hypermethylation signature, possibly 
through physical interactions between Evi1 and the DNA 
methyltransferases DNMT3A and DNMT3B [37]. Their 
genome-wide DNA methylation profiling revealed about 
300 promoters (out of the 14000 tested) with abundant 
cytosine methylation, and ChIP assays for the purpose 
of validation identified some Evi1 target genes such as 
FAM83b, CRHBP, VPREB3, and IL11RA. Given that 
EZH2 has been reported to interact with DNMT3A and 
DNMT3B [38], the two reports on Evi1 and histone/
DNA methyltransferases may support each other in 
demonstrating that Evi1 repressed target gene transcription 
through, at least in part, PcG-DNMT complex-mediated 
epigenetic modifications. 

Besides PcG proteins and DNMTs, we and other groups 
have demonstrated that Evi1 recruits epigenetic regulators 
for controlling transcription. For example, SUV39H1 
and G9a are H3K9 methyltransferases associated with 
gene silencing [39,40], and they also interact with Evi1 
[41-43]. Reporter assays have indicated that SUV39H1 
synergistically suppressed the transcriptional activity of 
Evi1, and knockdown of SUV39H1 or G9a specifically 
reduced the colony-forming activity of Evi1-transduced 
BM cells, suggesting that H3K9 methyltransferases 
are actively involved in Evi1-associated oncogenic 
functions, possibly through the epigenetic repression of 
putative Evi1 target genes. In addition, Evi1 physically 
associated with the methyl-CpG binding protein 3b [44] 
and histone deacetylases 1 [45], both of which are the 
core components of the NuRD complex that harbors 
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histone deacetylase activity and induces transcriptional 
repression [46,47]. Evi1 associates with Brahma-related 
gene 1 (BRG1; also known as SMARCA4 and SNF2β), a 
member of the SWI/SNF chromatin-remodeling complex 
[48]. In reporter assays, the authors have shown that 
Evi1 activated the E2F1 promoter in association with 
BRG1, which suggested that Evi1 enhanced cell cycling 
and cellular proliferation through the up-regulation of 
E2F1 by interacting with the SWI/SNF complex. Taken 
together, these data suggest that Evi1 has the potential 
to induce transcriptional repression by recruiting higher 
order chromatin remodeling complexes. 

Along with chromatin remodeling factors, 
microRNAs play a part in epigenetic regulation, and 
recent findings have clarified that Evi1 regulates some 

microRNAs. Dickstein et al. have demonstrated that Evi1 
silenced miRNA-124 expression through the methylation 
of CpGs located around miRNA-124 [49]. In addition, 
they have shown that Evi1 induction in Lin− murine 
BM cells increased the expression of BMI1 and cyclin 
D3, whereas forced expression of miRNA-124 in Evi1-
transduced murine BM cells restored their expression. 
Furthermore, Gomez-Benito et al. have recently shown 
that Evi1 directly bound to the miR-1-2 promoter region 
and up-regulated its expression, which may have a role 
in the Evi1-mediated proliferation activity, as shown by 
transient transfection assays using AML cell lines [50]. 
Likewise, Evi1 has been suggested to increase K-ras 
oncoprotein expression through the direct repression 
of miR-143 in colon cancer [51]. The authors argued 
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figure 1:Evi1 induces epigenetic regulation on pI3k/ptEN/Akt/mtOr signaling. In cells with high Evi1 expression, Evi1 
recruits polycomb repressive complexes (PRC1 and PRC2) to the PTEN locus and epigenetically represses PTEN transcription, which in 
turn stimulates AKTand mTOR. These regulatory mechanisms are activated only in cells with high Evi1 expression.
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that the Evi1/miR-143/K-ras axis contributed to colonic 
carcinogenesis by enhancing proliferation capacity and 
motility. 

These data strongly suggest that Evi1 regulates target 
gene transcription by mobilizing epigenetic mechanisms. 

pI3k/Akt/mtOr sIgNAlINg IN EvI1-
mEDIAtED lEUkEmOgENEsIs 

Next, we focused on the PI3K/PTEN/AKT/mTOR 
signaling pathway in leukemia (overviewed in Figure 
2; see other review articles such as [52-54] for more 
detailed information). As presented above, Evi1 recruited 
polycomb complexes to the PTEN genomic locus and 
activated the AKT/mTOR signaling pathway through the 
transcriptional repression of PTEN [33]. On the basis of 
these observations, we established a murine AML model 
with high Evi1 expression by BM transplantation and aimed 
to test the efficacy of the mTOR inhibitor rapamycin on 
the leukemia model in vivo. Administration of rapamycin 
significantly prolonged the survival of diseased mice, 
suggesting that the AKT/mTOR pathway played a role in 
the proliferation and survival of the Evi1-expressing AML 
cells. Moreover, we investigated the effects of rapamycin 
on other leukemia models established by transduction 
of the AML1 mutant (AML1_S291fsX300) [55] and 

coexpression of TEL/PDGFβR and AML1/ETO [56] and 
found no changes in their survival; this demonstrated the 
specific sensitivity of Evi1-activated leukemia cells to 
rapamycin (Figure 1). 

Extensive studies regarding PI3K/AKT/mTOR 
signaling and leukemia have demonstrated that PI3K/
AKT signaling is frequently activated in AML [57,58]. In 
particular, AKT phosphorylation on Ser473 was detected 
in over half of the patients with AML [57]. As demonstrated 
by Tamburini et al. and Xu et al., downstream mTORC1 is 
constitutively activated in primary AML samples [58,59]. 
However, the mechanisms of PI3K/AKT/mTORC1 
activation remain largely unclear. PTEN and SHIP are 
negative regulators of PIP3 and downstream AKT/mTOR 
signaling. Xu et al. have shown that PTEN expression was 
down-regulated in a few patients with AML, but PTEN 
expression levels were not inversely correlated with 
AKT phosphorylation levels for an unknown reason [58]. 
Gene mutation analysis of PTEN and SHIP has revealed 
that mutations in these genes are uncommon [60,61] 
although a SHIP-V684E mutation was found in one out 
of 30 patients with AML. This mutation reduced catalytic 
function and enhanced AKT phosphorylation, which may 
contribute to leukemogenesis [61]. On the other hand, 
PTEN phosphorylation levels have been analyzed in 
AML. Phosphorylated PTEN was positively correlated 
with AKT phosphorylation (Figure 2) and was found 
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in 74% of patients with AML [62]. The authors have 
demonstrated that phosphorylated PTEN is a predictor of 
clinical outcome in patients with AML. 

With regard to PI3K/PTEN/AKT signaling as a 
prognostic factor, some controversial results have been 
reported by several groups. Min et al. have shown that 
phosphorylation of AKT on Ser473 and Thr308 confers 
poor prognosis in AML [63]. Kornblau et al. have shown 
similar results using a Ser473-specific antibody ([64] and 
personal communication with S. Kornblau). Meanwhile, 
Tamburini et al. have evaluated as many as 188 patients 
and demonstrated that constitutive activation of PI3K was 
associated with better prognosis [57]. Furthermore, Gallay 
et al. have shown that AKT phosphorylation on Thr308, but 
not on Ser473, predicted an adverse outcome in AML [65]. 
These complicated data may be partly explained by the 
heterogeneity of leukemic cells used in evaluating PI3K/
AKT phosphorylation [57,63,64]. Intracellular FACS 
staining and antibodies of high quality have enabled us to 
measure the phosphorylation status of a small amount of 
cells such as an immature population with CD34+, CD38−, 
and CD123+ phenotypes, wherein leukemia stem cells 
(LSCs) are supposed to be enriched [65,66]. Given that 
the PTEN/AKT/mTOR pathway plays an essential role 
in leukemia-initiating cells [67,68], the evaluation of this 
pathway in a purified leukemia population may provide 
some important insights. In addition, the aforementioned 
discrepancy may be attributed to the existence of cross-
activation with other pathways or feedback systems in 
leukemic cells, as shown by Kornblau et al. that ERK and 
PKCα were more likely to be activated in leukemic cells 
with AKT phosphorylation than statistically expected 
([64]; Excellent reviews on the cross-talk among the RAF/
MEK/ERK, PI3K/PTEN/AKT/mTOR, and JAK/STAT 
pathways are available: [69,70]). 

Our experimental model using murine primary BM 
has allowed the demonstration of one of the possible 
mechanisms of AKT/mTOR activation through PTEN 
repression in AML. We confirmed an inverse correlation 
between Evi1 and PTEN mRNA expression levels in 
human AML and chronic myeloid leukemia (CML) 
samples but have not checked the status of AKT/
mTOR signaling. Thus, these data suggest the need 
for investigating whether Evi1-mediated AKT/mTOR 
activation in mice is recapitulated in human leukemia. 
Large scale studies applying a proteomic approach to 
human leukemic samples will provide comprehensive 
insight into the regulation of signaling pathways. 

hsc, lsc, AND thE EvI1-ptEN AxIs

Pten depletion in murine adult hematopoietic cells 
has caused short-term HSC expansion and long-term 
depletion of the HSC pool [67,68]. When Pten-deficient 
HSCs were transplanted into recipient mice, they could not 
reconstitute multilineage hematopoiesis. Moreover, Pten 

depletion has been shown to induce myeloproliferative 
neoplasms and their progression to acute leukemia, which 
may partly be a reflection of genomic instability [71]. 
Yilmaz et al. have demonstrated that rapamycin restored 
normal HSC function and effectively depleted leukemia-
initiating cells simultaneously [67], suggesting that mTOR 
plays a significant role downstream of the PI3K/PTEN/
AKT axis and can be an ideal therapeutic target. 

Given that Evi1 is essential for HSC proliferation 
and myeloid leukemia cells [1], the Evi1-PTEN axis may 
potentially contribute to HSC and LSC regulation. Peng et 
al. have shown that BCR/ABL repressed PTEN in CML, 
and this repression was important for leukemogenesis 
[72,73]. The authors isolated Lin−, ckit+, and Sca1+ cells 
from BCR/ABL-induced and both BCR/ABL and PTEN-
induced CML mice and transplanted the same number 
of each leukemic cell into the secondary recipient mice. 
The survival of the mice receiving LSCs transduced with 
both BCR/ABL and PTEN was significantly longer than 
that of the control mice, indicating that PTEN negatively 
regulated LSC functions. These results are consistent 
with our expression profiling of human CML samples 
showing an inverse correlation between Evi1 and PTEN 
levels and a tendency of Evi1 to be activated as the disease 
progresses from the chronic phase to blastic crisis [33]. 
Therefore, the Evi1-PTEN axis may play a role in LSC 
functions and the progression of leukemia. 

rApAmycIN mAy Act As A mUltI-
fUNctION AgENt IN A rEcIpIENt Of 
AllOgENEIc hsct

Rapamycin binds to the FK506 binding protein 1A 
to form an immunosuppressive complex that inhibits 
mTOR and exerts antiviral, antifungal, antineoplastic, and 
immunosuppressive properties [74,75]. On the basis of the 
antineoplastic activities in preclinical studies, the efficacy 
of rapamycin (Sirolimus; Wyeth, Collegeville, PA, USA) 
and its analogs (rapalogs) has been investigated in clinical 
trials for the treatment of leukemia or lymphoma, and 
promising results have begun to be reported [76-86]. 
For instance, Recher et al. have shown that rapamycin 
achieved significant clinical response against four out 
of nine patients with either refractory/relapsed de novo 
AML or refractory secondary AML [87]. In addition to 
its antineoplastic efficacy, rapamycin suppresses T-cell 
proliferation/activation and has been used in the treatment 
of graft versus host disease (GVHD) after allogeneic 
hematopoietic stem cell transplantation (HSCT) 
[74,77,78,88-94]. In allogeneic HSCT for patients with 
lymphoma, a retrospective study comparing the outcome 
of GVHD prophylaxis between rapamycin-containing 
regimens and a combination of calcineurin inhibitor and 
methotrexate without rapamycin was conducted [95]. 
Intriguingly, the use of rapamycin significantly decreased 
disease progression without any differences in nonrelapse 
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mortality in patients who underwent reduced-intensity 
conditioning regimens. This suggested that rapamycin 
can serve the dual purpose of an immunosuppressant and 
an antineoplastic agent. In addition, several reports have 
suggested the possibility that rapamycin exerts inhibitory 
effect on GVHD without interfering with graft versus 
leukemia (GVL) effect [96,97] (Figure 3). Moreover, Marty 
et al. reported that rapamycin-based GVHD prophylaxis 
reduced cytomegalovirus reactivation [98], which is 
still one of the challenging problems in HSCT because 
of the toxicity of cytomegalovirus itself or ganciclovir 
treatment-related toxicities such as myelosuppression and 
consequent risk of graft failure. On the other hand, the use 
of rapamycin or its analog, everolimus, may increase the 
risk of sinusoidal obstruction syndrome (veno-occlusive 
disease) under certain situations and lead to renal 
dysfunction, encephalopathy, and multiple organ failure, 
which is associated with high mortality [99,100]. Thus, 
the outcomes of large prospective trials that multilaterally 
evaluate the efficacy and toxicity of these agents in the 
treatment of leukemia and allogeneic HSCT are awaited. 

cONclUsIONs AND fUtUrE 
DIrEctIONs

Recent extensive studies have greatly increased our 
understanding of the roles of epigenetic regulation and 
signaling pathways in normal and malignant cells at the 
molecular level. These studies have demonstrated that 
the leukemia proto-oncoprotein Evi1 formed a bridge 
between the epigenetic machinery and signaling pathways 
and proposed therapeutic targets for the eradication of 

Evi1-related myeloid malignancies. 
Recent studies have demonstrated that Evi1 is 

a strong inducer of epigenetic regulation of multiple 
genomic regions in hematopoietic cells. Clinical trials 
targeting patients with hematological malignancies have 
shown some efficacies and limitations of epigenetic 
agents such as histone deacetylase inhibitors and DNA 
methyltransferase inhibitors (reviewed in [101-105]). 
However, whether these drugs have the capacity to 
specifically counteract Evi1-mediated leukemogenic 
activity is unclear. Considering the marked clinical 
heterogeneity of hematological malignancies, 
accumulation of the results of epigenetic therapies on 
the basis of molecularly defined clusters will be essential 
for the appropriate use of epigenetic drugs. Efficient 
attenuation of the epigenetic regulators involved in Evi1-
mediated transcriptional silencing potentially restores 
the expression of several possible tumor suppressors and 
improves the extremely poor prognosis of leukemia with 
activated Evi1. 

Song et al. have recently reported that BMI1 induced 
epithelial–mesenchymal transition partially through 
transcriptional repression of PTEN in nasopharyngeal 
epithelial cells (NPECs) [106]. These results and those 
of our study have suggested that PcG proteins can 
target PTEN/AKT/mTOR signaling under specific 
circumstances. Our study proposes that one such condition 
in the hematopoietic system is high Evi1 activity because 
PcG proteins did not affect PTEN transcription in 
hematopoietic cells with low Evi1 expression. Meanwhile, 
it is yet to be determined whether anchor proteins like Evi1 
are required in BMI1-mediated PTEN regulation in NPEC 
or other cells. Interestingly, a recent genome association 
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study of nasopharyngeal carcinoma identified MDS1/Evi1 
on 3q26 as a susceptibility locus [107]. Given that Evi1 
has been suggested to be implicated in several carcinomas 
other than hematopoietic malignancies [107-111], deep 
insight into the function of Evi1 with regard to epigenetic 
regulation and signaling pathways may contribute to the 
development of molecularly targeted therapies for solid 
tumors such as colon cancer, lung cancer, nasopharyngeal 
carcinoma, and ovarian cancer. Particularly, PI3K/AKT 
signaling is one of the most frequently and aberrantly 
regulated pathways in human cancer [54,112-114], and 
Evi1-mediated AKT activation has been demonstrated in 
colon cancer cells [109]. These reports have suggested 
that the Evi1-AKT axis is involved with several solid 
tumors. In addition, there is increasing evidence showing 
aberrantly activated PI3K/AKT/mTORC1 signaling 
in cancer stem cells, including leukemia as mentioned 
above [115-119]. Current clinical trials and studies using 
murine models have shown that rapamycin and rapalogs 
are less toxic to normal hematopoiesis than they are to 
malignancies and possibly less toxic to HSC than to LSC. 
More investigation for this scientific basis will enable us 
to develop rapamycin-containing therapy targeting AKT/
mTORC1 activity in cancer stem cells. 
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