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ABSTRACT
Phorbol ester (PMA or TPA), a tumor promoter, can cause either proliferation 

or cell cycle arrest, depending on cellular context. For example, in SKBr3 breast 
cancer cells, PMA hyper-activates the MEK/MAPK pathway, thus inducing p21 and cell 
cycle arrest. Here we showed that PMA-induced arrest was followed by conversion 
to cellular senescence (geroconversion). Geroconversion was associated with active 
mTOR and S6 kinase (S6K). Rapamycin suppressed geroconversion, maintaining 
quiescence instead. In this model, PMA induced arrest (step one of a senescence 
program), whereas constitutively active mTOR drove geroconversion (step two). 
Without affecting Akt phosphorylation, PMA increased phosphorylation of S6K 
(T389) and S6 (S240/244), and that was completely prevented by rapamycin. Yet, 
T421/S424 and S235/236 (p-S6K and p-S6, respectively) phosphorylation became 
rapamycin-insensitive in the presence of PMA. Either MEK or mTOR was sufficient to 
phosphorylate these PMA-induced rapamycin-resistant sites because co-treatment 
with U0126 and rapamycin was required to abrogate them. We next tested whether 
activation of rapamycin-insensitive pathways would shift quiescence towards 
senescence. In HT-p21 cells, cell cycle arrest was caused by IPTG-inducible p21 
and was spontaneously followed by mTOR-dependent geroconversion. Rapamycin 
suppressed geroconversion, whereas PMA partially counteracted the effect of 
rapamycin, revealing the involvement of rapamycin-insensitive gerogenic pathways. 
In normal RPE cells arrested by serum withdrawal, the mTOR/pS6 pathway was 
inhibited and cells remained quiescent. PMA transiently activated mTOR, enabling 
partial geroconversion. We conclude that PMA can initiate a senescent program by 
either inducing arrest or fostering geroconversion or both. Rapamycin can decrease 
gero-conversion by PMA, without preventing PMA-induced arrest. The tumor promoter 
PMA is a gero-promoter, which may be useful to study aging in mammals.

INTRODUCTION

The mTOR (Target of Rapamycin) signaling 
pathway is activated by nutrients (glucose, amino 
and fatty acids), growth factors, cytokines, oxygen, 
hormones and many other signals [1-4]. In turn, mTOR 
stimulates cellular size growth and metabolism as well as 
differentiation-specific functions [3-19]. In cycling cells, 
mTOR drives mass growth. If the cell cycle is arrested, 
then mTOR drives “futile growth” or geroconversion, 
converting reversible arrest to irreversible senescence [5, 
20-22]. Senescence is not just cell cycle arrest: arrested 

cells can be either quiescent or senescent [21-25]. In 
quiescent cells, mTOR is deactivated [20, 26-33]. For 
example, serum withdrawal deactivates mTOR and 
MEK/MAPK pathways, causing reversible quiescence in 
normal cells [20, 26, 34-36]. In contrast, in senescent cells, 
mTOR is active [26, 29, 30, 33, 37- 40] Senescent cells are 
characterized by a large flat morphology (hypertrophy), 
active metabolism, differentiation-specific hyper-
functions, and irreversible loss of proliferative potential 
[21, 23, 39, 41-58]. A senescent program includes 2 steps: 
(a) cell cycle arrest and (b) conversion from arrest to 
senescence [22]. For example, p21 can arrest cell cycle 
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but does not inhibit mTOR. Therefore, mTOR drives 
geroconversion from p21-induced arrest to senescence. 
Since mTOR is fully active in cell culture (high levels of 
mitogens, nutrients and oxygen), it is usually sufficient 
for a cell to get arrested, in order to become senescent 
[22]. Rapamycin (and other rapalogs), certain tumor 
suppressors, including p53, serum-withdrawal, hypoxia 
and contact inhibition all suppress geroconversion by 
deactivating mTOR [19, 28, 59-71], thus maintaining 
quiescence instead. And vice verse, growth factor 
receptors, Ras, Raf, MEK, PI3K and Akt, which all 
activate the mTOR/S6K/S6 pathway, are involved 
in cellular senescence and cancer [72-76]. They are 
gerogenes, driving gerogenic conversion and oncogenic 
transformation [21, 64]. We can predict that activators 
of these pathways will promote both cancer and aging. 
Phorbol ester is the most well known tumor promoter, 
which activates MEK/ERK and mTOR/S6K signaling 
pathways [77-85].

Depending on the cellular context, PMA can 
cause either cell cycle progression or cell cycle arrest 
by inducing both cyclin D1 and p21 via the MEK/ERK 
pathway [43, 86-88]. Cell cycle arrest by itself can lead 
to senescence, if mTOR is not inhibited. Furthermore, 
the ability to activate mTOR predicts that PMA may be 
gero-promoter (promote geroconversion). Accordingly, 
it can cause cellular senescence, first by arresting cell 
cycle and then by converting this arrest to senescence 
(geroconversion). Cell cycle arrest caused by PMA is 
well studied. For example in SKBR3 cells, PMA over-
activates MEK/ERK/MAPK, which in turn induces p21 
and cell cycle arrest [86]. Here we show that cells become 
senescent, because mTOR is constantly active in SKBR3 
cells. By blocking geroconversion, rapamycin rendered 
PMA-treated cells quiescent but not senescent. We also 
investigated cell lines that are completely resistant to 
PMA-induced arrest. In these cell lines, arrest was 
caused by either ectopic p21 or by serum starvation. In 
these cases, PMA increased geroconversion. Use of 
three cellular models demonstrated that, regardless of its 
ability to provoke senescence by arresting cell cycle (first 
step), PMA also empowers a second step of a senescent 
program: geroconversion. 

RESULTS

PMA-induced senescence in SKBR3 cells

As it was investigated in detail in SKBR3 cells 
[86], PMA activates the MEK/ERK pathway, which 
in turn induces both p21 and cyclin D1, causing G1 
and G2 cell cycle arrest. As it was shown later, hyper-
accumulation of cyclin D1 in arrested cells is a marker 
of senescence [39, 88]. Therefore we checked whether 

PMA-arrested cells acquire senescent morphology (Fig. 
1A). We found that PMA caused a large flat morphology 
with nucleoli enlargement and beta-Gal positivity (Fig. 1 
A). Next, we treated cells with PMA in the absence of 
serum, expecting that serum withdrawal might inhibit the 
mTOR pathway and prevent senescence. However, PMA 
caused senescence both in the presence and absence of 
the serum. In agreement with previous report [86], PMA 
rapidly activated ERK1/2 followed by p21 and cyclin D1 
induction (Fig. 1 B). We also measured phosphorylation of 
S6 at S235/236 and S240/244 sites, as markers of mTOR 
activity. Noteworthy, S235/236 sites are phosphorylated 
by S6K (a substrate of mTOR) and by RSK (MEK-
dependent), whereas S240/244 sites are presumably 
phosphorylated by S6K only [77-85]. Levels of p-S6 were 
high in both proliferating cells and serum-starved cells 
and become even higher after PMA treatment (Fig. 1B). 
First, this explains why arrested SKBR3 cells become 
senescent and, second, why they become senescent both 
in the presence and absence of serum. 

These senescent cells lost the reversibility or 
regenerative potential (RP). In fact, PMA-treated SKBR3 
cells poorly proliferated after PMA was washed out (Fig. 
1 C, D) (Note: PMA is known to be poorly washable. Yet, 
even without washing, PMA-induced p21 disappears by 
day 3 [86] and this is a functional equivalent of washing 
PMA out). 

Rapamycin suppresses geroconversion in PMA-
arrested cells

As shown in Fig. 2A, PMA caused typical senescent 
morphology in 30% of SKBR3 cells. Rapamycin by itself 
slightly inhibited proliferation but did not cause senescent 
morphology (Fig 2A and Fig. S1). Importantly, rapamycin 
abrogated PMA-induced senescent morphology (Fig. 
2A). We also determined the reversibility potential by 
the ability of PMA-treated cells to form colonies in drug-
free medium. The ability to restart proliferation or RP 
was decreased in PMA-pretreated cells, measured when 
PMA was washed out (Fig. 2 B). Rapamycin increased 
the number of colonies approximately 5-fold (Fig. 2B). 
We also excluded that rapamycin forced PMA-treated 
cells to proliferate in the presence of PMA. (Fig. S1A). 
As expected, co-addition of rapamycin and PMA inhibited 
proliferation (Fig. S1A). Also, rapamycin alone inhibited 
proliferation (Fig. S1), whereas inhibiting proliferation, 
rapamycin prevented PMA-induced loss of the potential 
to proliferate or RP. As emphasized previously, 
“proliferation” and “potential to proliferate” should not 
be confused. Rapamyin never induces proliferation but 
preserves the potential. Perhaps terms “regenerative 
potential (RP)”, “reversibility potential (RP)”, “the 
potential”, “reversibility” should be used to distinguish 
“proliferative potential” from “proliferation”. So rapamyin 
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Figure 1: PMA-induced senescence in SKBr3 cells. A. Beta-gal staining. SKBR3 cells were treated with 100 nM PMA either in 
serum-free or in complete (10% FBS) medium. After 4 days drug was washed out and cells were cultured in drug-free medium and stained 
for beta-gal. Bar – 100 µm. B. Immunoblot analysis. SKBR3 cells were treated with 100 nM PMA in either serum-free or complete medium 
for times indicated and lysed. Results shown were obtained from 2 separate gels. C-D. RP (reversibility potential) of SKBR3 treated with 
PMA. C – Schema of experiment; D – RP: SKBR3 cells were plated at low density and treated with 100 nM PMA either in serum-free 
medium or in complete medium (10% FBS). After 4 days drug was washed out and cells were incubated in drug-free complete medium 
(10% FBS) for 6 days and counted. Fold increase in cell number was calculated relative to initially plated numbers. Data presented as mean 
±SD from triplicates. 

Figure 2: Suppression of PMA-induced senescence by rapamycin in SkBR3 cells. A. Beta-gal staining. SkBR3 cells were 
treated with PMA +/- rapamycin (20 nM) for 5 days, then drugs were washed out and cells were cultured for another 3 days and stained for 
beta-gal. Bar – 100 µm. B. RP (reversibility potential). SkBR3 cells were plated at low density and treated with 100 nM PMA -/+ rapamycin 
(20 nM). After 4 days cells were washed and colonies were allowed to regrow in drug-free medium and stained with Crystal Violet after 13 
days in culture. C. Schema: PMA-induced senescence and its suppression by rapamycin (Rapa). 
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suppressed senescent morphology, hypertrophy and 
maintained reversibility potential (RP). In other words, 
rapamycin suppressed conversion from reversible arrest 
to senescence (geroconversion) (Fig. 2C). 

Rapamycin partially abrogates PMA-induced 
hyper-activation of mTOR targets

PMA induced p-ERK1/2 and p-S6K in both 
isoforms p70 and p85 (T412) (Fig. 3A). As expected, 
rapamycin did not affect PMA-induced phosphorylation 
of ERK1/2. Rapamycin abrogated p-S6K at T389 and 
p-S6 at S240/244 both in the absence and presence of 
PMA (Fig. 3A). Also, rapamycin completely eliminated 
phospho-T421/S424-S6K and phospho-S235/236 -S6 
in the absence of PMA. However, rapamycin only 
marginally affected levels of phospho-T421/S424-S6K 
and phospho-S235/236 -S6 in the presence of PMA. In 
other words, PMA caused phosphorylation of S6K and 
S6 at these sites, even in the presence of rapamycin. This 
indicates that PMA activates S6K and S6 phosphorylation 

in part independent of mTOR.

Both mTOR and MEK pathways are sufficient to 
phosphorylate S6

Since PMA activates the MEK/ERK pathway, we 
investigated whether inhibition of MEK can prevent 
PMA-induced phosphorylation of S6K and S6. PMA alone 
stimulated phosphorylation of ERK1/2 (dramatically), 
S6K (moderately) and only marginally S6, because S6 
has been already near-maximally phosphorylated in 
proliferating untreated SKBR3 cells (Fig. 3B). Also, 
SKBR3 cells were treated with PMA in the presence of 
either U0126 (U), rapamycin (R), U+R or Torin 1 (an 
inhibitor of both TORC1 and TORC2). As expected, 
U0126, an inhibitor of MEK, abrogated PMA induced 
p-ERK1/2 but did not affect p-S6K and p-S6 at all sites 
tested (Fig. 3B). In contrast, rapamycin abrogated p-S6K 
(at both sites) and p-S6 (at both sites) in the absence 
of PMA-stimulation. Yet in the presence of PMA, 
while abrogating phospho-T389-S6K and phospho-

Figure 3: PMA-induced activation of the mTOR pathway in SkBr3 cells. A. Immunoblot analysis. SkBR3 cells were treated 
with 100 nM PMA for the times indicated and lysed. One set was pre-treated (and co-treated) with 100 nM rapamycin for 16 h before 
adding PMA, as indicated at the bottom (+ Rapa). B. Immunoblot analysis. SkBR3 cells were pre-treated and co-treated with either 10 
µMU0126 (U), rapamycin 100 nM (R) or their combination, or with Torin 1 (100 nM) for 24 h. Then 100 nM PMA was added for 1 h and 
cells were lysed.



Oncotarget12719www.impactjournals.com/oncotarget

S240/244-S6, rapamycin did not abrogate PMA-induced 
rapamycin-resistant (RR sites, for brevity) sites: namely, 
phospho-T421/S424-S6K and phospho-S235/236-S6 sites. 
Interestingly, Torin 1, which inhibited both complexes of 
mTOR and prevented phosphorylation of all substrates of 
mTORC1, as shown for phospho-4EBP1 (T37/46), failed 
to affect RR sites in the presence of PMA (Fig. 3B). In 
other words, PMA caused phosphorylation of RR sites 
in the presence of either rapamycin, U0126 or Torin 1 
(Fig. 3B). Only a combination of U+R prevented PMA-
induced RR sites (phospho-T421/S424-S6K and phospho-
S235/236-S6). We conclude that, in the presence of 
PMA, S6K can be fully phosphorylated at T421/S424 via 
mTORC1 (rapamycin sensitive) and via MEK (rapamycin-
insensitive) pathways (Fig. 4). Similarly, S6 can be fully 
phosphorylated on S235/236 via mTORC1 (rapamycin 
sensitive) and via MEK (rapamycin-insensitive) pathways 
in the presence of PMA (Fig. 4). Noteworthy, PMA did 
not cause AKT (T308) phosphorylation. Rapamycin 
increased Akt phosphorylation (Fig. 3B). This suggests 
that Akt itself (unlike mTORC1) does not empower 
geroconversion.

We emphasize that rapamycin only partly suppressed 
geroconversion. We investigated whether PMA-induced 
phospho-T421/S424-S6K and phospho-S235/236 S6 
contribute to geroconversion in the presence of rapamycin. 
As we discussed, addition of U0126 to rapamycin 
eliminated PMA-induced RR phosphorylation (Fig. 
3B). However, this combination did not further suppress 
senescent morphology in comparison to rapamycin alone 
(Fig. 5). 

PMA increased geroconversion in HT-p21 cells 
arrested by p21

We next investigated whether PMA contributes to 
senescence independently of cell cycle arrest. In HT-p21 
model, cell cycle arrest was induced not by PMA but by 
IPTG-inducible p21 (Fig. 6A). In agreement with previous 
reports [89], a transient (for 4 days) induction of p21 led to 
cellular senescence, as evident by senescent morphology 
(Fig. 6 B). Rapamycin partially suppressed geroconversion 
to senescent morphology; rapamycin decreased cell size 
and beta-Gal-staining (Fig. 6 B). In addition, rapamycin 
preserved the reversibility potential (RP) measured by 
the ability to form colonies after removal of IPTG. (Note 
once again: The potential to proliferate (the reversibility 
potential) should not be confused with proliferation. Thus, 
rapamycin did not abrogate IPTG-induced arrest but 
instead preserved the potential to proliferate, when IPTG 
was washed out). 

As shown in Figure S1B, PMA transiently 
phosphorylated RR sites in the presence of rapamycin. 
In agreement with the appearance of phospho-S6, this 
treatment affected geroconversion, increasing the number 
of senescent cells (morphology) and decreased RP (Fig. 
6 B, C). 

We next investigated induction of p-S6(S235/236) 
by PMA in detail. Basal levels of phospho-S6K (T389), 
phospho-S6(S235/236) and phospho-ERK1/2 were high 
and, therefore, the effect of PMA was marginal (Fig. 7 
A). Inhibitor of MEK U0126, inhibitor of TOR rapamycin 
and inhibitor of TOR kinase Torin 1 all eliminated basal 
level of phospho-S6K(T389)/ phospho-S6(S235/236). 
This is in agreement with data obtained in SKBR3 
cells. Impressively, none of these inhibitors prevented 
the induction of phospho-S6 (S235/236) by PMA. Only 
a combination of U0126 and Rapamycin prevented 
induction of phospho-S6(S235/236) by PMA. These data 
support the model shown in figure 4.

In HT-p21 cells, both rapamycin and U0126 
suppressed geroconversion, as evidenced by preservation 
of RP (Fig. 7B). Yet, rapamycin and U0126 did not 
have any additive effect (Fig. 7B). This indicates that 
PMA-induced phosphorylation of S6 at S235/236 sites 
is not sufficient by itself to promote geroconversion. 
Importantly, PMA increased geroconversion both in the 
absence or presence of rapamycin (Fig. 6 C), suggesting 
that mTORC1-dependent and -independent pathways are 
involved in geroconversion. 

PMA-induced geroconversion in quiescent RPE 
cells

Next, we investigated PMA-induced geroconversion 
in normal human retinal pigment epithelial (RPE) cells, 
arrested by serum starvation (Fig. 8). In RPE cells, serum Figure 4: PMA-activated pathways. 
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Figure 5: Effects of rapamycin plus U0126 on senescent morphology. Beta-gal staining. SkBR3 cells were pre-treated with 
rapamycin (100 nM) or its combination with U126 (10 µM) for 24 h before adding 100 nM PMA. After 3-day treatment with PMA drugs 
were washed out and cells were cultured for another 3 days in drug-free medium and stained for beta-gal. Bar – 100 µm.

Figure 6: Effects of PMA on IPTG-induced senescence in HT-p21 cells. A. Schema of experiment. Rapamycin – R. B-C. HT-
p21 cells were plated at low density and treated with IPTG, rapamycin (R) (500 nM) and PMA (100 nM) as indicated in Schema (A). After 
3 days drugs were washed out, cells were incubated in drug-free medium for another 3 days and stained for beta-gal (B) (bar – 100 µm) and 
colonies were stained 7 days after wash (C). As indicated in the Schema, rapamycin was added 1 h before PMA. 
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withdrawal causes reversible quiescence, characterized by 
low levels of p-S6 [26, 34]. In quiescent cells arrested by 
serum starvation, PMA transiently induced phospho-S6 
(Fig. 8 A). PMA did not induce proliferation but instead 

induced “futile growth” or geroconversion”. This 
geroconversion is manifested by hypertrophy and beta-Gal 
staining in approximately 20% of cells, observed after re-
addition of serum (Fig. 8 B). 

Figure 7: PMA induced rapamycin-insensitive p-S6 in HT-p21 cells A. Immunoblot analysis. HT-p21 cells were pre-treated 
with IPTG in the presence of either rapamycin (500 nM), U126 (10 µM) or their combination or torin 1 (100 nM) for 24 h, then 100 nM 
PMA was added for 1 h and cells were lysed. All treatments were performed in the presence of IPTG to match conditions shown in fig. 6 
and panel 7B. B. RP: HT-p21 cells were pre-treated with IPTG in the presence of different drugs as in panel A for 24 h, then 100 nM PMA 
was added. After 3 day-treatment with PMA (4 days with IPTG and other drugs), drugs were washed out and colonies were allowed to grow 
and stained with Crystal violet after 9 days in culture and counted in triplicates. Data are presented as mean ± SD. C – cells treated with 
IPTG alone; R – treated with IPTG in the presence of rapamycin; U – treated with IPTG in the presence of U126; U+R – treated with IPTG 
in the presence of combination of rapamycin and U126. 

Figure 8: mTOR-dependent geroconversion in RPE cells by PMA. A. Immunoblot analysis. RPE cells were incubated in serum-
free MEM overnight and then treated with 100 nM PMA for the times indicated. B. Beta-gal staining. RPE cells were pre-incubated in 
serum free medium before being treated with 100 nM PMA. After 2 day-treatment PMA was washed out, cells were incubated in drug-free 
medium for another 2 days and stained for beta-gal. Bar – 100 µm. C. Mechanism.
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DISCUSSION

Growth-promoting pathways such as the PI-3K/
mTOR pathway are involved in both cancer and aging 
[21, 64, 90, 91]. Rapamycin prevents age-related diseases 
and cancer in mammals, including humans [92-116]. 
Therefore, inhibitors of mTOR are both tumor suppressors 
and gero-suppressors. To study aging in accelerated 
fashion, it would be useful to identify “antipode for 
rapamycin”, an agent that promotes geroconversion. 
Such agent is expected to (a) activate mTOR and related 
pathway, (b) be a tumor-promoter. It is known that PMA, 
a classic tumor-promoter, activates mTOR and MAPK 
pathways. Importantly, rapamycin can suppress tumor-
promotion caused by PMA [117-119].

Given that PMA activates the mTOR pathway, we 
predicted that PMA can accelerate geroconversion in 
cell culture. Here we showed that phorbol ester indeed 
displayed the gero-converting activity. This activity can 
be obscured by the ability of PMA to initiate senescence, 
simply by inducing cell cycle arrest. In SKBR3 cells, 
strong activation of MEK/ERK pathway by PMA causes 
induction of p21 and cell cycle arrest. When the cell 
cycle was arrested, still active mTOR pathway drove 
geroconversion from arrest to senescence. So in SKBR3 
cells, PMA caused cell cycle arrest, which was sufficient to 
cause senescence in the presence of active mTOR. This is 
consistent with the model of two-step senescence program: 
cell cycle arrest by PMA plus geroconversion by active 
mTOR. The mTOR pathway was constitutively activated 
in cancer SKBR3 cells even in the absence of serum. 
Rapamycin decreased geroconversion, indicating that 
mTOR indeed is involved in PMA-induced senescence. 

To elucidate the role of PMA in geroconversion, 
we used the model of IPTG-induced senescence, HT-p21 
cells. In this model IPTG, not PMA, caused p21 induction 
and cell cycle arrest. PMA increased senescence in this 
cell model, acting as an enhancer of geroconversion. 
Rapamycin partially decreased geroconversion in the 
presence and absence of PMA. Yet, PMA still enhanced 
geroconversion in the presence and absence of rapamycin. 
This indicates that geroconversion involves some 
rapamycin-insensitive pathways (in addition to rapamycin-
sensitive pathways), which are activated by PMA and are 
involved in geroconversion. Noteworthy, rapamycin-
insensitive phosphorylation of S6K(T421/S424) and 
S6(S235/236) was also mTOR -independent because Torin 
1 (a direct inhibitor of both mTORC1 and mTORC2) 
did not abrogate-rapamycin insensitive phosphorylation 
of S6(S235/236) and S6K(T421/S424). We identified 
pathways that led to rapamycin-insensitive S6K(T421/
S424) phosphorylation by PMA (Fig. 4). In agreement 
with previous reports, PMA induced phosphorylation of 
S6K and S6 at both rapamycin-sensitive and -insensitive 
sites in all 3 cell lines tested here. In part, PMA-induced 
rapamycin-insensitive phosphorylation was dependent on 

the MEK pathway. Either MEK or mTOR was sufficient 
to phosphorylate these sites of S6K and S6. Thus, neither 
rapamycin nor U0126 inhibited phosphorylation of S6K 
and S6 at T421/S424 and S235/236, respectively, whereas 
a combination of U0126 and rapamycin eliminated 
phosphorylation of S6K and S6 on these sites. Yet (and 
importantly), the addition of U0126 to rapamycin had no 
effect on geroconversion. This indicates that rapamycin-
insensitive phosphorylation of these sites alone is not 
sufficient to cause geroconversion, when mTORC1 is 
inhibited. In turn, this indicates that, although rapamycin 
sensitive-pathways are involved in geroconversion, 
some unidentified rapamycin-insensitive pathways also 
contribute to geroconversion. So identification of such 
pathways remains a challenge. 

In conclusion, PMA possesses two senescence-
promoting activities: cell cycle arrest (in some cell lines 
such as SKBR3) and geroconversion. When the cell cycle 
is arrested by other condition (IPTG-induced p21 or serum 
starvation), then the geroconverting activity of PMA 
becomes apparent. 

This study further validates the utility of two-step 
model of senescence for identification of agents which can 
promote or in contrast suppress aging. 

MATERIALS AND METHODS 

Cell lines and reagents

SKBR3, breast adenocarcinoma cell line (ATCC), 
was cultured in high-glucose DMEM (-pyruvate) 
with 10% FBS. HT-p21 cells, derived from HT1080 
human fibrosarcoma cells (ATCC, Manassas, VA) were 
previously described [20, 120, 121] and were cultured 
in high-glucose DMEM without pyruvate plus 10% FC2 
serum (HyClone FetalClone II from Thermo Scientific, 
Logan, Utah). In these cells, p21 can be turned on or off 
by isopropyl-thio-galactosidase (IPTG) [20, 120, 121]. 
Normal retinal pigment epithelial RPE cell line (ATCC, 
Manassas, VA) was maintained in MEM plus 10% FBS. 
IPTG was purchased from Invitrogen (Grand Island, NY). 
Rapamycin was obtained from LC Laboratories (MA, 
USA). U0126 and PMA were from Sigma-Aldrich (St. 
Louis, MO). Torin 1 was obtained from Selleck chemicals 
LCC (Houston, TX).

SA-β-Gal staining

Beta-Gal staining was performed using Senescence-
galactosidase staining kit (Cell Signaling Technology) 
according to manufacturer’s protocol. Cells were 
incubated at 37oC until beta-gal staining becomes 
visible. Development of color was detected under light 
microscope. 
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Immunoblot analysis

Whole cell lysates were prepared using boiling 
lysis buffer (1% SDS, 10 mM Tris.HCl, pH 74.). Equal 
amounts of proteins were separated using Criterion or mini 
gradient polyacrylamide gels (Bio-Rad, Hercules, CA) and 
transferred to PVDF membranes. The following rabbit 
antibodies for: phospho-S6 (Ser235/236 and S240/244), 
phospho-AKT (T308), phospho ERK ½ , AKT, phospho-
4EBP1(T37/46) and phospho-S6K(T421/S424)- were 
from Cell Signaling Biotechnology (Danvers, MA). 
Mouse anti-phospho-Thr 389 -S6K and anti-S6 antibody 
were from Cell Signaling Biotechnology. Rabbit anti-actin 
antibody was from Sigma-Aldrich (St. Louis, MO); mouse 
antibodies for p21 and cyclin D1 were from from BD 
Biosciences (San Jose, CA) and Santa Cruz Biotechnology 
(Paso Robles, CA), respectively. Secondary anti-rabbit and 
anti-mouse HRP-conjugated antibodies were from Cell 
Signaling Biotechnology. 

RP (reversibility potential)

Cells were plated at low densities, treated with 
senescence inducing drugs for 3-4 days as indicated in 
figure legends. Then, drugs were washed out and cells 
were allowed to re-grow in fresh drug-free medium for a 
few days (as indicated in figure legends). Then cells were 
either counted or formed colonies were stained with 1% 
Crystal Violet (Sigma-Aldrich) and counted.
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