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Pyruvate kinase M2 regulates glucose metabolism by functioning 
as a coactivator for hypoxia-inducible factor 1 in cancer cells
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AbstrAct:
Cancer cells feature altered glucose metabolism that allows their rapid growth. 
They consume large amounts of glucose to produce lactate, even in the presence 
of ample oxygen, which is known as the Warburg effect. Pyruvate kinase M2 
(PKM2) contributes to the Warburg effect by previously unknown mechanisms. 
Hypoxia-inducible factor 1 (HIF-1) mediates PKM2 gene transcription and 
metabolic reprogramming in cancer cells. The recent discovery of novel physical 
and functional interactions between PKM2 and HIF-1 in cancer cells has 
provided insight into molecular mechanisms underlying the Warburg effect.

INtrODUctION

Altered glucose metabolism is a key feature that 
distinguishes cancer cells from normal cells. Most cancer 
cells consume higher amounts of glucose and produce 
much more lactate than normal cells, even in the presence 
of ample O2. This phenomenon is known as the Warburg 
effect [1]. Since Otto Warburg made this important 
observation in 1924 [2], many researchers have attempted 
to elucidate the underlying molecular mechanisms in 
cancer cells. Hypoxia-inducible factor 1 (HIF-1), Myc, 
p53, Ras, Akt, Src, pyruvate kinase (PK) M2, and lactate 
dehydrogenase A (LDHA) have been implicated in the 
Warburg effect [3-8]. We recently discovered that the 
glycolytic enzyme PKM2 promotes the Warburg effect 
by serving as a transcriptional coactivator for HIF-1 in 
cancer cells [9]. This research perspective will discuss 
these recent findings regarding physical and functional 
interactions of HIF-1 and PKM2.

HIF-1 AND MetAbOlIc 
rePrOGrAMMING IN cANcer cells

HIF-1 is a heterodimeric transcription factor, 
consisting of an O2-regulated HIF-1α subunit and a 
constitutively expressed HIF-1β subunit [10, 11]. HIF-1 is 
a master regulator of transcriptional responses to reduced 
O2 availability (hypoxia), which is found in the majority 
of advanced human cancers [12, 13]. In well-oxygenated 
human cells, HIF-1α is hydroxylated at proline-402 
and/or proline-564 by the prolyl hydroxylase domain 
proteins, PHD1-3 [14]. PHD2 is primarily responsible 
for regulating basal HIF-1α levels in cancer cells [15]. 
Prolyl-hydroxylated HIF-1α is bound by the von Hippel-
Lindau (VHL) tumor suppressor protein, which is the 
substrate recognition component of an E3 ubiquitin-ligase 
complex, leading to HIF-1α protein degradation by the 
26S proteasome [16]. Under hypoxic conditions, HIF-1α 
prolyl hydroxylation is inhibited, thereby stabilizing HIF-
1α protein [17]. HIF-1α protein levels are also increased 
in normoxic cancer cells with loss of function of certain 
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tumor suppressors, most notably VHL in the clear cell type 
of renal cell carcinoma [16, 18, 19]. HIF-2α is a paralog 
of HIF-1α that is also O2-regulated, dimerizes with HIF-
1β, and transactivates a group of target genes that partially 
overlaps the battery of genes regulated by HIF-1 [20, 21].

Activation of HIF-1 commonly occurs in many 
cancer types and is a driving force regulating many 
steps in cancer progression [18, 22]. HIF-1 activates the 
transcription of genes encoding proteins that mediate 
angiogenesis, invasion, metastasis, and the shift from 
oxidative to glycolytic metabolism [12, 18, 19, 22, 
23]. By activating the transcription of genes encoding 
glucose transporters and glycolytic enzymes, HIF-1 
enhances glucose uptake and glycolysis in cells [23-27]. 
HIF-1 also controls expression of LDHA and pyruvate 
dehydrogenase kinase 1 (PDK1) [25, 26, 28, 29]. LDHA 
catalyzes the conversion of pyruvate to lactate (Figure 1), 
thereby decreasing mitochondrial utilization of pyruvate 
as a substrate for pyruvate dehydrogenase (PDH), which 
converts pyruvate to acetyl coenzyme A (AcCoA). PDK1 
phosphorylates the catalytic subunit of PDH, leading 
to its inactivation, which shunts pyruvate away from 
the mitochondria. HIF-1 activation shifts the balance 
of metabolism from oxidative phosphorylation toward 
glycolysis and mediates the Warburg effect in VHL-null 
renal carcinoma cells [30]. 

reGUlAtION OF PKM2 eXPressION 
IN cANcer cells

PK catalyzes the conversion of phosphoenolpyruvate 
to pyruvate (Figure 1) and is composed of M1-/M2-type 
and L-/R-type isoforms, which are encoded by PKM2 and 
PKLR genes, respectively [31]. Tissue-specific promoters 
control expression of PKL, which is expressed in liver 
and kidney, and PKR, which is expressed in erythrocytes. 
PKM1 and PKM2 are the alternatively spliced products of 
the PKM2 primary RNA transcript with PKM1 and PKM2 
mRNA containing sequences encoded by exon 9 or exon 
10, respectively [32]. PKM1 is expressed in muscle and 
brain, whereas PKM2 is expressed in the embryo and in 
cancer cells. The transcription factors Sp1 and Sp3 bind 
to a GC-rich element in the promoter of the human PKM2 
gene [33]. Sp1 constitutively activates transcription 
of PKM2, whereas Sp3 functions as a transcriptional 
repressor that dissociates from the PKM2 gene under 
hypoxic conditions. 

We recently identified a hypoxia response element 
(HRE) within the first intron of the human PKM2 gene 
[9]. Heterodimer complexes of HIF-1β with HIF-1α, 
but not HIF-2α, bound to the PKM2 HRE and increased 
the activity of a luciferase reporter gene driven by the 
PKM2 HRE in hypoxic HeLa cells. Mutation of the HIF-
1 binding site in the PKM2 HRE or knockdown of HIF-
1α protein expression suppressed reporter gene activity. 
Hypoxia induced the expression of PKM1 and PKM2 
mRNA in wild-type, but not in HIF-1α-knockout, mouse 
embryo fibroblasts [9]. 

PKM2 expression in cancer cells is also regulated 
by microRNAs (miRs). miR-326 matches two regions 
in the 3’-untranslated region (UTR) of PKM2 mRNA 
and transfection of miR-326 precursor decreased 
PKM2 3’-UTR-luciferase reporter activity and PKM2 
protein levels in glioma cells [34]. miR-133a and miR-
133b are also implicated in PKM2 expression. PKM2 
overexpression is associated with downregulation of 
miR-133a and miR-133b, whereas transfection of miR-
133a or miR-133b precursors inhibited PKM2 expression 
in tongue squamous cell carcinoma cells [35]. The 
significance of this mutual antagonism between miR-
133a/b and PKM2 has not been determined. 

Recent studies revealed the molecular mechanism 
underlying PKM2 mRNA splicing. Heterogeneous 
nuclear ribonucleoproteins (hnRNP) I, A1, and A2 
bind to RNA sequences encoded by exon 9 and inhibit 
PKM1-specific mRNA splicing [36, 37]. The c-Myc 
oncoprotein regulates transcription of hnRNPI, hnRNPA1 
and hnRNPA2, resulting in preferential PKM2 isoform 
expression in cancer cells overexpressing c-Myc [36]. 
Mammalian target of rapamycin (mTOR), a serine/
threonine protein kinase that regulates cell growth, cell 
survival, and protein synthesis, also stimulates PKM2 
expression through activation of HIF-1 and c-Myc [38]. 

Figure 1: regulation of glucose metabolism by HIF-
1. HIF-1 controls transcription of genes encoding glucose 
transporters, which transport glucose from the extracellular 
(ext) to the intracellular (int) milieu, and glycolytic enzymes, 
which convert glucose to lactate as glycolytic end-product or 
acetyl coenzyme A (Acetyl-CoA) that is metabolized in the 
tricarboxylic acid cycle (TCA). Pyruvate kinase M2 converts 
phosphoenolpyruvate (PEP) into pyruvate, which is upstream of 
the decision point for glycolytic vs oxidative metabolism. Arrow 
indicates direction of glucose metabolism; blocked line indicates 
inhibition. 
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Thus, activation of transcription factors and kinases, and 
downregulation of microRNAs results in high expression 
of PKM2 in cancer cells. However, analysis of human 
tumor and non-tumor tissues from kidney, liver, lung, and 
thyroid using an absolute quantification approach by mass 
spectrometry revealed that PKM2 protein expression 
is predominant in both human tumor tissues and tissue-
matched normal controls, suggesting that no switch from 
PKM1 to PKM2 is required for tumor development [39]. 
These findings challenge the conclusion, which was 
based on the analysis of cancer cell lines, that PKM2 
overexpression is a hallmark of cancer cells [3]. The 
proteomic study found that total PKM expression (PKM1 
+ PKM2) is increased 3-fold in tumor tissue compared 
to normal tissue [39]. HIF-1α is overexpressed in solid 
tumors due to intratumoral hypoxia, genetic alterations, 
or both [12, 18, 22, 23], and thus may be a predominant 
regulator that contributes to elevated levels of PKM2 in 
human tumor tissues. 

PKM2 AND tHe WArbUrG eFFect IN 
cANcer cells

Christofk et al. demonstrated that PKM2 expression 
was associated with increased glucose uptake and lactate 
production, but decreased O2 consumption in cancer cells 
[3]. Genetic manipulation of cancer cells that switched 
them from PKM2 to PKM1 expression reversed the 
Warburg effect, suggesting that high expression of PKM2 
is required for aerobic glycolysis in cancer cells. Moreover, 
expression of PKM2, but not PKM1, induced tumor 

xenograft growth in nude mice [3]. The binding of tyrosine-
phosphorylated peptides to PKM2 at lysine-433 was 
found to inhibit PKM2 enzymatic activity through release 
of the allosteric activator fructose-1,6-bisphosphate (FBP) 
and to promote cell growth and glycolytic metabolism in 
cancer cells [40]. Tyrosine kinases play critical roles in 
cell growth, cell metabolism, and angiogenesis in cancer 
[41, 42]. Hitosugi et al. reported that fibroblast growth 
factor receptor type 1 (FGFR1) phosphorylated PKM2 at 
tyrosine residues-83, -105, -148, -175, -370, and -390 in 
murine Ba/F3 hematopoietic cells [43]. Phosphorylation 
of PKM2 at tyrosine-105 induced FBP release from 
active tetrameric PKM2, promoted formation of less 
active dimeric PKM2, and subsequently decreased PKM2 
enzymatic activity. In contrast, the phosphorylation 
of PKM2 at other tyrosine residues caused by FGFR1 
failed to regulate PKM2 activity. However, it remained 
unclear how alterations in PKM2 activity could determine 
whether the product of the PKM2 reaction, pyruvate, was 
converted to lactate or to AcCoA (Figure 1).

We recently delineated a molecular mechanism 
by which PKM2 mediates the Warburg effect in cancer 
cells [9]. PKM2 was found to interact with HIF-1α in the 
nucleus and to function as a transcriptional coactivator in 
HeLa cervical carcinoma and Hep3B hepatoblastoma cells. 
PKM2 increased HIF-1 binding to HREs at target genes, 
recruitment of coactivator p300, histone acetylation, and 
subsequent transactivation of HIF-1 target genes including 
SLC2A1 (which encodes glucose transporter 1), LDHA, 
and PDK1 in HeLa and Hep3B cells. PKM2-stimulated 
expression of HIF-1 target genes promotes the shift from 
oxidative phosphorylation to glycolytic metabolism. 

Figure 2: PKM2 contributes to metabolic reprogramming and cancer progression by serving as a PHD3-dependent 
coactivator for HIF-1. Prolyl hydroxylation of PKM2 by PHD3 promotes the interaction of PKM2 with HIF-1α, thereby stabilizing 
HIF-1 binding to the HRE of target genes, recruitment of coactivator p300, histone acetylation, and subsequent transcription of HIF-1 
target genes, which encode proteins that are involved in metabolic reprogramming, angiogenesis, and many other critical aspects of cancer 
progression.
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PKM2 also binds to HIF-2α and promotes HIF-2-mediated 
transactivation in cancer cells [9]. In addition to its effects 
on genes encoding metabolic enzymes, PKM2 stimulates 
HIF-1- and HIF-2-mediated expression of the VEGF 
gene (which encodes vascular endothelial growth factor), 
thereby promoting angiogenesis. Thus, PKM2 may play a 
far broader role in promoting cancer progression than was 
previously appreciated (Figure 2).

The enzymatic activity of PKM2 is not required for 
HIF-1 transactivation [9]. Interestingly, PKM2 is prolyl 
hydroxylated in the PKM2-specific domain encoded by 
exon 10, and prolyl hydroxylation of PKM2 is required 
for HIF-1-mediated transactivation in cancer cells. PHD3 
catalyzes hydroxylation of PKM2 and PHD3 knockdown 
reduced expression of the HIF-1 target genes SLC2A1, 
LDHA, and PDK1, and reversed the Warburg effect in 
VHL-null RCC4 renal carcinoma cells [9]. PKM2, but 
not PKM1, is prolyl hydroxylated and PKM2, but not 
PKM1, interacts with HIF-1α, thus providing a molecular 
basis for the selective effect of PKM2 on HIF-1-mediated 
transactivation and the Warburg effect in cancer cells [9]. 

Recently, the interaction of PHD3 with PKM2 was 
reported to increase the formation of dimeric PKM2, 
which has decreasd activity compared to the tetrameric 
form of the enzyme [44]. Chen et al. concluded that the 
hydroxylase activity of PHD3 was not required for its 
effect on PKM2 oligomerization/enzyme activity because 
mutant PHD3 (R205K) behaved similarly to wild-type 
PHD3. However, we found that mutation of arginine-205 
alone was not sufficient to inactivate the hydroxylase 
activity of PHD3 (W.L. and G.L.S., unpublished) and thus 
it would be interesting to repeat these experiments using 
the PHD3 (H135A/D137A) mutant that lacks hydroxylase 
activity [9]. PHD3 is encoded by a HIF-1 target gene 
and increased PHD3 mRNA and protein expression is 
induced by HIF-1 under hypoxic conditions [45], which 
compensates for the reduced hydroxylase activity [9]. 
Thus, PHD3 and PKM2 exert a positive feedback loop 
in cancer cells that amplifies HIF-1 activity, which may 
play a major role in driving metabolic reprogramming, 
angiogenesis, and other critical aspects of cancer 

progression (Figure 3).

UNANsWereD QUestIONs, FUtUre 
DIrectIONs

Does PKM2 have other functions in the nucleus 
that promote cancer progression? PKM2 also binds to the 
transcription factor Oct-4 and enhances Oct-4-dependent 
gene transcription [46]. Oct-4 is a key mediator of 
pluripotency in embryonic stem cells [47] and induced 
pluripotent stem cells [48]. Oct-4 is also expressed in 
human breast cancer stem cells [49]. Hoshino et al. also 
found that nuclear translocation of PKM2 is induced 
by interleukin-3 and stimulates cell proliferation [50], 
although the nuclear target of PKM2 was not identified. It 
is likely that the stimulation of cell proliferation by PKM2 
is independent of its regulation of HIF-1α transactivation.

Post-translational modification by prolyl 
hydroxylation and tyrosine phosphorylation regulate 
PKM2 activity as a transcriptional coactivator and 
glycolytic enzyme, respectively. PKM2 is also subjected 
to sumoylation [51] and lysine acetylation [52] and further 
studies are required to determine whether these post-
translational modifications also regulate the role of PKM2 
as a HIF-1 coactivator.

Several compounds have been shown to inhibit 
PKM2 enzymatic activity [53, 54]. However, those 
inhibitors may not suppress HIF-1 transactivation in 
cancer cells because the enzymatic activity of PKM2 is 
not required for its coactivator functions [9]. Combination 
therapy with HIF inhibitors [12, 18, 19] may prove to be 
more efficacious.
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