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ABSTRACT
Therapies such as BRAF inhibitors have become standard treatment for melanoma 

patients whose tumors harbor activating BRAFV600 mutations. However, analogous 
therapies for inhibiting NRAS mutant signaling have not yet been well established. In 
this study, we performed an integrative analysis of DNA methylation, gene expression, 
and microRNA expression data to identify potential regulatory pathways associated 
with the most common driver mutations in NRAS (Q61K/L/R) through comparison 
of NRASQ61-mutated melanomas with pan-negative melanomas. Surprisingly, we 
found dominant hypomethylation (98.03%) in NRASQ61-mutated melanomas. We 
identified 1,150 and 49 differentially expressed genes and microRNAs, respectively. 
Integrated functional analyses of alterations in all three data types revealed 
important signaling pathways associated with NRASQ61 mutations, such as the MAPK 
pathway, as well as other novel cellular processes, such as axon guidance. Further 
analysis of the relationship between DNA methylation and gene expression changes 
revealed 9 hypermethylated and down-regulated genes and 112 hypomethylated 
and up-regulated genes in NRASQ61 melanomas. Finally, we identified 52 downstream 
regulatory cascades of three hypomethylated and up-regulated genes (PDGFD, ZEB1, 
and THRB). Collectively, our observation of predominant gene hypomethylation in 
NRASQ61 melanomas and the identification of NRASQ61-linked pathways will be useful 
for the development of targeted therapies against melanomas harboring NRASQ61 
mutations.

INTRODUCTION

Melanoma is a malignant skin tumor that originates 
from melanocytes and accounts for more than 70% of 
skin cancer deaths. In contrast to the stable or declining 
rates for most other cancer types, melanoma is on the 
rise with 76,100 new cases and 9,710 deaths estimated 
for 2014 in the United States [1]. To date, many driver 
mutations in genes that encode signaling proteins 

critical for cellular proliferation and survival have been 
identified in melanomas. BRAF mutations, primarily at 
codon V600, are the most prominent oncogenic event in 
melanoma, present in 40-50% of melanomas [2-4]. NRAS 
mutations, primarily at codon Q61, are the second most 
common melanoma driver event, occurring in 13-25% of 
melanomas [3, 5, 6]. Understanding which downstream 
pathways are regulated by specific driver mutations 
is essential to develop effective targeted therapies for 
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melanoma.
It is well-known that the BRAFV600E mutation plays 

a fundamental role in the tumorigenesis of melanoma by 
activating the Ras/Raf/MEK/ERK (MAPK) signaling 
pathway. Inhibiting the MAPK pathway in BRAFV600-
mutant melanoma patients with BRAF inhibitors 
(vemurafenib and dabrafenib) or a MEK inhibitor 
(trametinib) has improved progression-free and/or overall 
survival compared to conventional chemotherapy [7-
10]. By investigating genome-wide alterations of DNA 
methylation and gene expression between BRAF-mutated 
samples and BRAF wild-type samples, it has been shown 
that BRAFV600 regulates other critical pathways and 
processes [2, 11-15]. For example, using a methylated 
CpG island amplification/CpG island microarray system, 
Hou et al. found that BRAFV600E signaling induced 
widespread alterations of gene methylation in melanoma 
cells [11]. Additionally, Flockhart et al. observed 
differential expression of protein-coding transcripts and 
long non-coding RNAs (lncRNAs) between matched 
normal human melanocytes with and without BRAFV600E 
based on RNA-sequencing, in which BRAF-regulated 
lncRNA 1 (BANCR) was recurrently over-expressed 
and played a potential functional role in melanoma cell 
migration [2].

NRAS mutations occur frequently and are almost 
mutually exclusive of BRAF mutations [4], making 
it an attractive therapeutic target for patients without 
BRAF mutations. Most research and drug development 
targeting NRAS has focused on the MAPK and PI3K/
AKT signaling pathways. Although the most active MEK 
inhibitors have shown promising activity [16], none have 
been FDA-approved for treatment of NRAS-mutant 
melanoma. The effect of NRAS mutations on global cell 
biology and gene expression remains poorly characterized. 
Recently, microarrays have been used to investigate global 
alterations of gene expression between cell lines with and 
without NRAS mutations [14, 15]. In addition, Jonsson 
et al. observed increased p16INK4A promoter methylation 
in NRAS-mutated samples compared to NRAS wild-type 
samples [17]. Therefore, understanding which pathways 
are affected by NRAS mutations is important and remains 
a challenge.

In this study, we comprehensively analyzed multi-
omics data in NRASQ61-mutated and pan-negative 
melanomas to identify differentially methylated (DM) 
genes, differentially expressed (DE) genes, and DE 
microRNAs (miRNAs) (Fig. S1). Here, in order to 
eliminate the potential influence of other driver mutations 
in genes such as BRAF and KIT, and to focus on genetic 
cohorts without approved targeted therapies, we limited 
our analysis to NRASQ61-mutated melanoma and 
melanomas that are negative for known driver mutations 
(“pan-negative”) in BRAF, NRAS, KIT, GNAQ, or 
GNA11. We found that hypomethylation was dominant 
in NRASQ61-mutated melanomas. Through an integrated 

functional analysis of DM genes, DE genes, and DE 
miRNAs, we identified not only the important signaling 
pathways known to be related to the NRASQ61 mutations, 
such as the MAPK signaling pathway, PI3K/AKT 
pathway, CDK4/6/Rb pathway, but also novel processes, 
such as axon guidance, calcium signaling, and TGF-beta 
signaling. Finally, we constructed a curated transcription 
factor (TF) and miRNA coordinated regulatory network, 
from which we identified downstream regulatory cascades 
initiated by three concordantly hypomethylated and up-
regulated genes (PDGFD, ZEB1, and THRB) in NRASQ61-
mutated melanomas. To our knowledge, this study is 
the first to integrate DNA methylation, gene expression, 
and miRNA expression data to systematically analyze 
potential NRASQ61-associated pathways. Although sample 
size is not very large in this study, the observations were 
based on genomic data from the same sample sets. This 
study suggests novel pathways that may be amenable to 
therapeutic targeting of NRAS-mutant tumors.

RESULTS

Genome-wide DNA methylation, gene expression, 
and miRNA expression profiles for 61 primary melanomas 
were obtained from The Cancer Genome Atlas (TCGA) 
(as of February 2014). We defined “pan-negative” samples 
as those melanomas harboring none of the well-known, 
specific, and recurrent mutations in the genes BRAF, 
NRAS, KIT, GNAQ, or GNA11, which are commonly 
mutated in melanoma [6, 18, 19]. These driver mutations 
were mutually exclusive of one another. Of these, eight 
NRASQ61-mutated and 16 pan-negative samples were 
identified and used for further analysis (Fig. 1A). We did 
not observe significant batch effects in DNA methylation 
(p=0.953), gene expression (p=0.664), or miRNA 
expression (p=0.715) data (Materials and Methods). The 
schematic diagram of the proposed integrative genomics 
approach was shown in Fig. S1.

Dominant hypomethylation associated with 
NRASQ61 mutations

Genome-scale DNA methylation levels 
were examined with the Illumina Infinium 
HumanMethylation450K BeadChip Kit, which assays for 
more than 480,000 CpG sites. After excluding probes that 
were single nucleotide polymorphisms (SNP) associated, 
located on the X or Y chromosome, or had “NA” values, 
we obtained 321,892 CpG sites for the following analysis. 
The relative methylation levels were represented by 
β-values ranging between 0 and 1, measured as the 
ratio of the methylated probe intensity over the sum of 
both methylated and unmethylated probe intensities 
[20]. Comparison of the global methylation (β-value) 
distribution revealed that there was a larger proportion of 
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highly methylated CpG sites in pan-negative samples than 
in NRASQ61-mutated samples (right peaks in Fig. 1B). Box 
plots of the β-values revealed that pan-negative samples 
had higher median methylation level than NRASQ61-
mutated samples (Fig. 1B). 

We next converted β-values to M-values for 
statistical analysis (Materials and Methods). M-values 
are represented by the log2 ratio of the intensities of a 
methylated probe versus an unmethylated probe [20]. 
The locus-by-locus differential DNA methylation analysis 
was performed using limma in R package [21] to identify 
DM CpG sites between NRASQ61 and pan-negative 
samples. Utilizing the criteria p<0.05 and |ΔM|>1.5, we 
determined 90 significantly hypermethylated probes 
(encompassing 47 genes and 1 miRNA) and 4,484 
significantly hypomethylated probes (encompassing 
2,085 genes and 28 miRNAs) in NRASQ61 samples (Fig. 
S2). 98.03% (4484/4574) of DM probes had significantly 
lower methylation levels in NRASQ61 samples than in 
pan-negative samples (Fig. 1C and Fig. S3), indicating 

that NRASQ61 mutations are primarily associated with 
hypomethylation (Fig. 1D). This result was especially 
interesting because gene hypomethylation in human 
cancers is still poorly characterized. Similarly, Hou et 
al. found broad hypomethylation caused by BRAFV600E 
signaling in melanoma cells [11]. Thus, global 
hypomethylation induced by or associated with driver 
mutations appears to be a common feature in melanoma 
and could potentially play an important role in the 
pathogenesis of this disease.

Furthermore, we investigated whether the DM CpG 
sites were significantly enriched (p<0.001) in specific 
functional genomic regions using a hypergeometric test 
comparing the background distribution of all probes used 
in this study (Fig. 1E and 1F). In gene regions, we found 
that hypermethylated probes were significantly enriched 
in promoter regions, while hypomethylated probes were 
significantly enriched in gene bodies. In the context of 
CpG islands, both hypermethylated and hypomethylated 
probes were enriched in CpG islands and island shores, 

Figure 1: Sample information and global methylation patterns. A) Driver mutations in 61 primary melanomas. B) Distribution 
and box plot of methylation levels in NRASQ61-mutant (in red) and pan-negative (in green) samples. C) Proportions of hypermethylated 
and hypomethylated probes. D) Circos plot displaying the differences in DNA methylation, gene expression, and miRNA expression in 
NRASQ61-mutant melanomas compared to pan-negative samples. Each circle from the periphery to the core represents the following: 
chromosomal location, 4,574 DM CpG sites (hypermethylation in red, hypomethylation in green), 1,150 DE genes (up-regulation in 
red, down-regulation in green), and 49 DE miRNAs (up-regulation in red, down-regulation in green). The highest bars in DE gene circle 
and DE miRNA circle indicate the |log2FC| is equal to or larger than 5. E) and F) are the distribution of hypermethylated (in red) and 
hypomethylated (in green) probes across different gene regions and CpG island types, respectively. #, hypergeometric test p-value<0.001; 
*, Fisher’s exact test p-value<0.001. DM, differentially methylated; DE, differentially expressed.
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whereas hypomethylated probes were also enriched in the 
open sea. These results indicate that the hypermethylated 
probes were preferentially located in promoter regions 
and near CpG islands. In contrast, hypomethylated probes 
were preferentially located in gene bodies and broadly 
distributed across different CpG island types. 

Next, we compared the differences in proportion 
between hypermethylated and hypomethylated CpG sites 
in specific functional genomic regions using Fisher’s 
exact test (Fig. 1E and 1F). These results revealed that 
there was a larger proportion of hypermethylated sites 
in promoters and CpG islands but a larger proportion of 
hypomethylated sites in gene bodies and CpG island open 
sea, which are consistent with previous observations of 
certain methylation patterns during tumorigenesis [22, 23]. 

Alteration of gene and miRNA expression 
associated with NRASQ61 mutations

Gene and miRNA expression levels were measured 
by next-generation sequencing analysis. Based on read 
counts, we used edgeR R package [24] to identify the 
DE genes and DE miRNAs. At a significance level of 
p<0.05 and log fold change (|log2FC|)>1, 1,150 genes 
were significantly differentially expressed, with 469 up-
regulated and 681 down-regulated genes in the NRASQ61 
group compared to the pan-negative group (Fig. S4A). 
Forty-nine miRNAs were significantly differentially 
expressed, with 26 up-regulated and 23 down-regulated 
miRNAs in the NRASQ61 group (Fig. S4B). Fig. 1D 
summarizes the genome-wide alterations of DNA 

methylation, gene expression, and miRNA expression. It 
is clear that the hypomethylation associated with NRASQ61 
mutations was dominant and widely distributed across all 
autosomes.

Signaling pathways linked with NRASQ61 
mutations

In order to identify pathways associated with 
NRASQ61 mutation status, we performed an integrated 
functional analysis of DM genes, DE genes, and DE 
miRNAs. First, we used the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) 
resources [25, 26] to find the pathways that enriched 
with DM genes or DE genes. Next, we employed the 
DNA Intelligent Analysis (DIANA) miRPath tool [27] 
to identify the pathways affected by DE miRNAs. At a 
significance level of p<0.05, we found 16, 10, and 49 
significant pathways for DM genes, DE genes, and DE 
miRNAs, respectively. To incorporate information from 
multiple levels, we used Fisher’s method to combine 
the three p-values for each pathway (Fig. 2A). In the 
sorted pathway list according to combined p-values, 
we found the most significantly-associated pathway is 
the MAPK signaling pathway, which is well-known to 
be dysregulated in most melanomas. This pathway was 
significant in all the pathway analyses of DM genes 
(p-value: 0.0026), DE genes (p-value: 0.0047) and DE 
miRNAs (p-value: 1.11×10-16). Current therapeutics are 
mainly focused on inhibitors of MAPK members, such as 
BRAF (vemurafenib) and MEK (trametinib) [28]. Both the 

Figure 2: Significant signaling pathways associated with NRASQ61 mutations. A) Heat map of enrichment p-values for 
significantly-associated pathways through combination analysis of DM genes, DE genes, and DE miRNAs. B) The “melanoma pathway” 
in KEGG.
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“Pathways in cancer” and the “Melanoma pathway” were 
also in the top 5 significant pathways, demonstrating the 
capability of our approach to capture relevant pathways. 

We further investigated the “Melanoma pathway” 
in KEGG (Kyoto Encyclopedia of Genes and Genomes) 
(Fig. 2B), and it was clear that the DM genes, DE genes, 
and target genes of DE miRNAs were enriched in three 
sub-pathways, which have previously been implicated 
as downstream targets of NRAS: Ras/Raf/MEK/ERK 
(MAPK), PI3K/AKT, and CDK4/6/Rb. The PI3K/AKT 
pathway is another important signaling pathway that 
participates in both melanoma initiation and therapeutic 
resistance [29]. For NRAS-mutant tumors, it has been 
suggested that the combined inhibition of BRAF, MEK or 
PI3K may be an effective treatment [30]. Multiple novel 
inhibitors against the PI3K/AKT pathway are currently 
being studied in clinical trials. In addition, CDK4 is a 
well-known regulator of the Rb-regulated G1/S cell cycle 
checkpoint, which is differentially affected by genetic 
NRASQ61K extinction [31]. Therefore, targeting the cell 
cycle via CDK inhibitors in NRAS-mutant melanoma may 
be a promising strategy [32]. Specifically, the CDK4/6 
inhibitor PD-0332991(Palbociclib) has demonstrated anti-
tumor activity in melanoma [33]. Combined inhibition of 
MEK and CDK4/6 is another possible approach and in 
fact, phase I/II clinical trials have shown promising early 
results for LEE011 (CDK4/6 inhibitor) and binimetinib 
(MEK162; MEK inhibitor) [34]. Fig. 2B shows MDM2 
as an upstream regulator of CDK4/6, and our analysis 
suggests it is differentially expressed in NRASQ61-mutant 
samples. The simultaneous blockade of MEK and MDM2 
induces apoptosis in acute myeloid leukemia, indicating 
the therapeutic potential of this combination [35]. A 
clinical trial of MEK and MDM2 inhibition in melanoma 
is planned at Vanderbilt University Medical Center.

In addition to the above known melanoma-
associated pathways, we found that the calcium signaling 
pathway, the TGF-beta signaling pathway, and the Wnt 
signaling pathway were significantly associated with 
NRAS-mutant melanoma. Furthermore, we observed that 
processes involving regulation of the actin cytoskeleton, 
focal adhesion, and axon guidance, significantly linked 
with NRAS mutations. Involvement of these pathways is 
supported by recent findings, and may be novel candidate 
pathways in melanoma pathogenesis. For example, in 
melanoma cells and melanocytes, genes down-regulated 
by MAPK signaling were most often associated with axon 
guidance, including plexin-semaphorin family members 
[36], which have been shown to inhibit migration and 
proliferation in melanoma [37]. These findings could 
explain why patients with NRAS-mutant melanoma are 
more likely to have brain metastases [38]. 

In addition to neuron-related processes, we found 
B-cell receptor and T-cell receptor signaling pathways 
in the most highly associated pathways. Various 
immunotherapy strategies that activate an anti-tumor 

immune response are playing an expanding role in 
melanoma therapy. T-cell transfer immunotherapy that uses 
tumor-infiltrating lymphocytes and high dose interleukin-2 
has demonstrated durable, complete responses for many 
years in patients with metastatic melanoma [39-41]. More 
recently, immune checkpoint modulators, which activate 
suppressed cytotoxic T cells have produced long-lasting 
responses in an increasing proportion of patients [42-44]. 
Novel approaches also suggest that B cells could similarly 
be leveraged in melanoma therapies [45]. A differential 
effect of immune therapy by genotype has been observed 
clinically; retrospective studies suggest that NRAS-
mutant melanomas may respond better to immune therapy 
compared to other genetic cohorts [46, 47].

Relationship between DNA methylation and gene 
expression alterations

In order to identify DNA methylation events 
with potential biological function, we integrated DNA 
methylation analysis with gene expression analysis. We 
first calculated the Spearman’s rank correlation coefficient 
between DNA methylation and gene expression for DM 
CpG sites and their corresponding genes. We found that 
the hypermethylated loci displayed a stronger inverse 
relationship with the expression of their corresponding 
genes than the hypomethylated probes (Fig. S5). 
The average correlation coefficient was -0.31 for 
hypermethylated loci and -0.04 for hypomethylated loci. 
Next, we deeply analyzed the correlation distribution in 
different gene regions (Fig. S6). For both hypermethylation 

Figure 3: Starburst plot integrating alterations in 
DNA methylation and gene expression. The x-axis is the 
difference in DNA methylation levels (ΔM); the y-axis is the 
difference in gene expression (log2FC); green nodes represent 
the hypomethylated/up-regulated genes; red nodes represent the 
hypermethylated/down-regulated genes.
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and hypomethylation, we observed a higher correlation 
in regions near the TSS (TSS1500, TSS200, 5’UTR, and 
1stExon) and a lower correlation in regions far away 
from the TSS (gene body and 3’UTR). In the above DM 
loci analysis, we found that the hypermethylated and 
hypomethylated loci were most commonly observed 
in promoters and gene bodies, respectively. Thus, these 
results were consistent with the previous findings that 
promoter methylation levels negatively correlated with 
gene expression, while positive correlations were observed 
between DNA methylation levels in gene bodies and gene 
expression [48-50]. In the following analysis, we focused 
on the inverse relationship between DNA methylation and 
gene expression changes to identify potentially important 
factors and their regulatory pathways that correlated 
with NRASQ61 signaling. We obtained 112 genes that 
were concordantly hypomethylated and up-regulated 
in NRASQ61-mutant samples, and 9 genes that were 
concordantly hypermethylated and down-regulated in this 
sample group (Fig. 3). 

Regulatory networks associated with NRASQ61 
mutations

We used our previously proposed bioinformatics 
approach based on Breadth-First-Search algorithm 
[51] to identify the regulatory cascades that might be 
affected by aberrant DNA methylation of the 121 above-
identified genes (112 hypomethylated/up-regulated and 
9 hypermethylated/down-regulated). First, the curated 
TF and miRNA coordinated regulatory network was 
constructed through the integration of information 
from five databases (TRANSFAC [52], TransmiR [53], 

miRTarBase [54], miRecords [55], and TarBase [56]). This 
network was used as background network here, which 
was comprised of TFs, miRNAs and their experimentally 
validated target genes. 17 of the 121 genes were included 
in this background network. Next, we mapped all DE 
genes and DE miRNAs into this network and extracted all 
DE nodes and their neighbors. In addition, we eliminated 
the nodes that had outdegree of 0 and were not DE, 
because we preferred to focus on upstream genes, which 
might play a critical and causal role. Through these 
procedures, we constructed a subnetwork associated with 
NRASQ61 mutations. In this subnetwork, 5 of the 17 genes 
were included, and three of the genes (PDGFD, ZEB1, 
and THRB) had non-zero outdegrees, which indicated that 
these three genes were regulators of downstream gene 
expression. All three genes were hypomethylated and up-
regulated in NRASQ61-mutant melanoma, indicating that 
they might contribute to oncogenicity in this subtype. 
Finally, 52 regulatory cascades originating from PDGFD, 
ZEB1, and THRB were identified through our previous 
approach (Fig. 4) [51].

PDGFD is located upstream of the MAPK and 
PI3K signaling pathways (Fig. 2B) and was differentially 
methylated, differentially expressed, and targeted 
by DE miRNAs. PDGFD is one of the members of 
platelet-derived growth factors (PDGFs), which can 
regulate many cellular processes in tumors, such as cell 
proliferation, transformation, invasion, and angiogenesis 
through specifically binding to and activating its cognate 
receptor, PDGFR-β [57]. PDGFD is highly expressed in 
the melanoma cell line [58], as our findings had observed. 
Furthermore, B16 melanoma cells stably transfected with 
PDGFD increased allograft tumor growth compared with 

Figure 4: Downstream regulatory cascades of PDGFD, ZEB1, and THRB. Green nodes represent down-regulated genes, and 
red nodes represent up-regulated genes.
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cells stably transfected with an empty vector [59].
The aberrant expression of epithelial-mesenchymal 

transition (EMT) transcription factors, such as 
ZEB1 (zinc finger E-box binding homeobox 1), can 
facilitate both neoplastic transformation and tumor cell 
dissemination [60]. Wels et al. found that ZEB1 can 
promote the migration of melanoma cells through the 
repression of E-cadherin [61]. Furthermore, Caramel et 
al. demonstrated that ZEB1 acts as an oncogene and can 
repress differentiation in malignant melanoma driven by 
MAPK pathway signaling [60].

Finally, THRB is one of the thyroid hormone 
receptors (TRs). Many studies have shown that 
differential expression of THRB could be associated with 
carcinogenesis [62]. Defects in this gene are known to 
cause generalized thyroid hormone resistance (GTHR) 
with normal or slightly elevated thyroid stimulating 
hormone (TSH) levels. The elevation of the circulating 
levels of TSH is one of the diagnostic hallmarks of 
hypothyroidism, a condition prevalent in the cutaneous 
melanoma population [63]. One thyroid hormone, T3, may 
have an inhibitory effect on melanogenesis in malignant 
melanocytes [64]. Hypothyroidism can be reversible 
with use of thyroid hormone replacement [65]. Thus, 
THRB-linked processes and the association between 
hypothyroidism and NRAS-mutant melanoma should 
be further experimentally validated, as thyroid hormone 
therapy might be a novel strategy for NRAS-mutant 
melanoma treatment. 

Our results indicate that NRASQ61 mutations are 
connected to hypomethylation of PDGFD, ZEB1, and 
THRB, consequently increasing their gene expression 
and subsequently dysregulating downstream regulatory 

cascades. For example, NRASQ61 mutations may induce 
the hypomethylation of PDGFD, which actives its 
expression (log2FC=1.43, p-value=0.036). The aberrant 
expression of PDGFD down-regulates the expression of 
hsa-mir-24-1 (log2FC=-0.98, p-value=0.042), and then 
up-regulates the TRIB3 (log2FC=1.15, p-value=0.0081). 
Furthermore, in order to evaluate the therapeutic potentials 
of PDGFD, ZEB1, and THRB, we obtained 413 melanoma 
samples with clinical information and gene expression 
from TCGA. For each of the three genes, we clustered 
these samples into two groups according to the average 
expression level. One included samples with high gene 
expression (larger than average), whereas another included 
samples with low gene expression (less than average). The 
survival analysis revealed that the two sample groups had 
significantly different survival time (log-rank p-values 
are 0.038, 0.0076, 0.204 for PDGFD, ZEB1, THRB, 
respectively), which indicated that the expression of the 
three genes were correlated with the patients’ survival 
time. Finally, we sketched the pathways potentially 
associated with NRASQ61 mutations by integrating the 
above-identified KEGG pathways with the PDGFD, 
ZEB1 and THRB regulatory cascades in order to provide 
a relatively comprehensive landscape (Fig. 5).

DISCUSSION

Most patients with melanoma harbor BRAF or 
NRAS mutations. Hitherto, several BRAF inhibitors and 
a MEK inhibitor have been approved by the FDA and 
have become standard treatments for those patients with 
BRAF mutations. Yet, there is still no effective therapy 
that can block the activity of the mutant NRAS protein. 

Figure 5: Regulatory pathways potentially associated with NRASQ61 mutations. Red nodes with a green shadow represent the 
hypomethylated and up-regulated genes.
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The identification of downstream pathways affected 
by NRAS mutations is critical to drug development for 
NRAS-mutant melanomas. In this study, we focused on 
the predominant NRAS mutations (Q61K/L/R) which 
makes up over 80% of the oncogenic NRAS mutations 
in melanoma, and systematically analyzed the potential 
pathways associated with these NRAS mutations by 
integrating DNA methylation, gene expression, and 
miRNA expression data.

In previous studies, researchers identified aberrant 
DNA methylation and gene expression in samples with 
driver mutations through comparisons with wild-type 
samples. In the present study, we compared NRASQ61 
mutant melanomas with pan-negative samples, in order 
to eliminate the effects of other driver mutations and to 
more clearly assess populations without targeted treatment 
options. At Vanderbilt, we routinely assess for 43 common 
somatic mutations in 6 genes in all melanoma patients: 
BRAF (V600), NRAS (G12/13, Q61), KIT (W557, V559, 
L576, K642 and D816), GNAQ (Q209), GNA11 (Q209), 
and CTNNB1 (S37/S45), using our melanoma SNaPshot 
assay [4]. Because CTNNB1 mutations usually co-
occur with mutations in the other 5 genes, we defined 
pan-negative samples as those melanomas negative for 
mutations in the 5 remaining genes [6, 18, 19].

By comparing NRASQ61-mutant samples with 
pan-negative samples, we identified 4,574 significantly 
DM CpG sites, 98.03% of which were hypomethylated. 
This result suggested that NRASQ61-mutated melanomas 
tend to have lower levels of DNA methylation, and 
hypomethylated genes may play important roles in the 
pathogenesis of melanoma. As has been well described, 
methylation levels and gene expression commonly have 
an inverse relationship. Thus, decreased methylation 
levels of oncogenes might explain their over-expression in 
tumors. Further analysis of the dominant hypomethylation 
in NRASQ61-mutated melanomas has the potential to 
identify novel genes with oncogenic properties. Through 
a functional genomic analysis of DM probes, we found 
that the hypermethylated and hypomethylated probes were 
significantly enriched in gene promoter and gene body 
regions, respectively. The proportion of hypermethylated 
loci was significantly larger than hypomethylated probes 
in both promoter regions and in CpG islands, whereas 
the hypomethelated loci featured prominently in gene 
bodies and regions far from CpG islands (open sea). 
We also identified 469 up-regulated genes, 681 down-
regulated genes, 26 up-regulated miRNAs, and 23 down-
regulated miRNAs in NRASQ61-mutant samples. This 
result did not reveal any trends regarding differential 
expression, possibly owing to the complicated positive or 
negative relationship between gene body methylation and 
expression levels [66]. 

In order to identify potential signaling pathways 
associated with NRASQ61 mutations with high confidence, 
we used an integrated functional analysis strategy to 

combine the functional enrichment results of DM genes, 
DE genes, and DE miRNAs. The MAPK signaling 
pathway was most significantly associated with this 
driver subtype, and is well-known to be affected by 
NRAS mutations. The “melanoma pathway” ranked in 
the top 5, where we found three sub-pathways that were 
enriched with DM genes, DE genes, or target genes of DE 
miRNAs (Ras/Raf/MEK/ERK, PI3K/AKT, and CDK4/6/
Rb). The PI3K pathway is another well-known pathway 
that plays an important role in NRAS-mutant melanomas. 
The CDK4/6/Rb pathway recently has attracted more 
attention, and clinically active CDK4/6 inhibitors, such 
as palbociclib (PD-0332991) and LEE011 are being 
developed. Two ongoing phase I/II clinical trials are 
proceeding in NRAS-mutant melanoma combining MEK 
inhibitors with CDK4/6 inhibitors with promising early 
results: 1) binimetinib and LEE011 and 2) trametinib 
and palbociclib. In addition, upstream of the CDK4/6/
Rb pathway, we found that MDM2 was differentially 
expressed, indicating that it might be a potential drug 
target. In acute myeloid leukemia, a combined MEK/
MDM2 blockade may induce apoptosis [35]. 

We then performed an integrated analysis of DNA 
methylation and gene expression data to identify DM 
loci with potential functional significance. We found that 
hypermethylated probes had a stronger inverse relationship 
with their corresponding genes than hypomethylated 
probes. This may be because hypermethylated loci were 
enriched in gene promoters, which is commonly inversely 
associated with gene expression, whereas hypomethylated 
loci were enriched in gene bodies, which could have either 
a positive or negative gene expression correlation. To 
identify some key factors that associated with NRASQ61 
mutations, we focused on the inverse relationship between 
alterations of DNA methylation and gene expression. We 
found 112 genes that were concordantly hypomethylated 
and up-regulated, and 9 genes that were concordantly 
hypermethylated and down-regulated in NRASQ61-mutant 
samples. Our hypothesis was that NRASQ61 mutations 
induced the aberrant DNA methylation, which in turn 
affected the expression of key genes; the dysregulated 
genes then influenced downstream regulation. Starting 
from the key genes, we employed our previously proposed 
approach to identify downstream regulatory pathways. 
After mapping these 121 genes into the curated TF and 
miRNA regulatory network and extracting the potential 
subnetwork associated with NRASQ61 mutations, we 
identified 52 regulatory cascades initiated from PDGFD, 
ZEB1, and THRB. PDGFD is the upstream regulator of 
the MAPK and PI3K signaling pathways. The presence 
of NRASQ61 mutations correlated with a decreased 
PDGFD methylation level and thus, increased gene 
expression, which may further induced the activity of 
the MAPK and PI3K pathways. ZEB1 is an oncogene 
that may drive the development of malignant melanoma 
[60, 61]. Finally, differential expression of one of the 
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thyroid hormone receptors, THRB, may correlate with 
the high prevalence of hypothyroidism in patients with 
cutaneous melanoma [63]. One of the thyroid hormones, 
T3, has been demonstrated to have an inhibitory effect 
on melanogenesis in malignant melanocytes [64]. Thus, 
thyroid hormone therapy might be a novel strategy for 
melanoma drug development. In addition, the expression 
of PDGFD, ZEB1, and THRB were also associated with 
patients’ survival time, which indicated that they might 
have therapeutic potentials.

In summary, we provided novel insights into 
the downstream pathways that may be associated with 
NRASQ61 mutations in melanoma. This study was the 
first to integrate somatic mutations, DNA methylation, 
gene expression, and miRNA expression to investigate 
the influence of driver mutations. This analytical strategy 
can be straightforwardly applied to other mutations in 
other tumors. One limitation of the present study is a 
small sample size; however, this is primarily due to our 
use of strict criteria for the selection of the samples with 
matched genomic data (methylation, mRNA expression, 
and miRNA expression), including primary tumors 
and pan-negative melanomas, in order to eliminate the 
confounding factors and reduce false positive discoveries. 
The cumulated multiple levels of genome-wide data 
will make the analysis more reliable and stable. Our 
observations could lead to improvements in understanding 
the effects of NRASQ61 mutations in melanoma and 
drug development for NRAS-mutant or pan-negative 
melanomas. In the future, we will use the results from this 
analysis to experimentally predict promising combination 
therapies, based on the downstream pathways affected by 
driver mutations.

METHODS

Melanoma samples

Sixty-one primary melanoma samples, which have 
matched somatic mutation, DNA methylation, gene 
expression, and miRNA expression data, were selected 
from skin cutaneous melanoma dataset of TCGA. In order 
to eliminate the influence of other driver mutations, we 
selected the samples as controls that were pan-negative for 
well-known recurrent mutations in five driver genes: BRAF 
(V600), NRAS (G12/13, Q61), KIT (W557, V559, L576, 
K642 and D816), GNAQ (Q209), and GNA11 (Q209) 
[6, 18, 19]. In this study, the somatic mutations were 
downloaded from the level 2 data of BI mutation calling. 
We did not find melanomas with GNA11 mutations in the 
61 samples, and the other driver mutations were mutually 
exclusive of one another (Fig. 1A). As a result, there were 
8 samples with NRASQ61 mutations and 16 pan-negative 
samples. In the following analysis, we investigated the 

alterations of DNA methylation, gene expression, and 
miRNA expression between NRASQ61-mutated and pan-
negative samples.

Data pre-processing

Batch effect: We directly downloaded level 3 
data from the JHU-USC HumanMethylation450, UNC 
IlluminaHiSeq_RNASeqV2, and BCGSC IlluminaHiSeq_
miRNASeq for DNA methylation, gene expression, and 
miRNA expression, respectively. Because all samples 
came from different batches, we thus used gPCA R 
package [67] to evaluate the batch effects.

Methylation: The DNA methylation data were 
detected by the Illumina Infinium HumanMethylation450K 
BeadChip Kit, which interrogates the methylation status 
of more than 480,000 CpG sites covering 99% of RefSeq 
genes and 96% of CpG islands. We used the Illumina 
HumanMethylation450_15017482_v.1.2 manifest file, 
obtained from http://www.illumina.com, for functional 
genomicsanalysis. Here, we removed probes that had 
SNPs present within <50bp, located on either the X or Y 
chromosome, or had “NA” values. There were 321,892 
CpG sites reserved for further analysis.

Expression: For gene and miRNA expression data, 
we reserved all probes that have non-zero read counts in 
>16 samples, in order to ensure that there was at least one 
sample in each sample group. As a result, we obtained 
16,506 genes and 427 miRNAs for further analysis.

Differential methylation analysis

The relative methylation levels were measured as 
β-values ranging from 0 to 1, where values closer to 0 
indicated low levels of DNA methylation, and values 
closer to 1 indicated high levels of DNA methylation. 
Because M-values are statistically valid for differential 
methylation analysis, we converted the original β-values 
to M-values through logistic transformation [20]. Based on 
the M-values, we used limma R package [21] to identify 
the DM CpG sites between NRASQ61-mutated and pan-
negative samples. The limma method uses the linear 
models and empirical Bayes methods, which can produce 
stable analyses from experiments with small sample 
sizes, to assess the difference between the two groups. 
Because stringent multiple testing may produce a high 
false-negative rate when the number of samples is small 
[68], we used p<0.05 and M-value difference (|ΔM|)>1.5 
as cutoffs to identify the significant DM CpGs.

For the DM CpG sites, we also performed 
functional genomic analysis. Utilizing the manifest file 
from Illumina, the gene regions were divided into six 
groups: TSS1500 (within 1500 base pairs (bps) of a TSS), 
TSS200 (within 200 bps of a TSS), 5’UTR (untranslated 
region), 1stExon (first exon), gene body, and 3’UTR. The 
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CpG sites were grouped in the context of CpG islands: 
CpG islands, island shores (less than 2 kilobases (kb) 
from a CpG island), island shelves (2-4 kb from a CpG 
island), and open sea (more than 4 kb from a CpG island). 
TSS1500 and TSS200 were considered promoter regions. 
Here, we used a hypergeometric test to investigate whether 
or not the hypermethylated or hypomethylated probes 
were significantly enriched in specific functional regions, 
and Fisher’s exact test to evaluate the difference between 
proportions of hypermethylated and hypomethylated 
CpG sites in specific regions. The statistical analysis was 
performed using R (http://www.r-project.org/).

Differential expression analysis

Gene and miRNA expression data were generated 
by next-generation sequencing. Based on read counts, 
differential expression for genes and miRNAs were 
assessed using edgeR R package [24]. We defined 
significantly DE genes or miRNAs if p-value threshold 
<0.05 and |log2FC| cutoff >1.

Integrated functional analysis of DM genes, DE 
genes, and DE miRNAs

We used DAVID Bioinformatics Resources [25, 
26] to examine the enriched KEGG pathways for genes 
exhibiting altered DNA methylation and gene expression. 
Next, we investigated the combinatorial effect of the 
differentially expressed miRNAs on pathways using the 
DIANA miRPath web server [27]. Here, we used microT-
CDS to predict miRNA targets and selected “pathways 
union” to merge the results. The significance level of all 
above functional enrichment analysis was set to p<0.05. In 
order to integrate the pathways enriched with DM genes, 
DE genes, and pathways affected by DE miRNAs, we 
used Fisher’s method to combine the three p-values for 
each pathway. Due to the bias from the extremely small 
p-values, we fixed the p-values of all significant pathways 
as 0.05 in order to incorporate the pathways with moderate 
p-values (such as 0.06 or 0.07). The statistical analysis 
was performed by R.

Integrated analysis of DNA methylation and gene 
expression

For each pair of CpG site and its corresponding 
gene, we used the Spearman’s rank correlation coefficient 
to measure the correlation between DNA methylation 
(β-value) and gene expression (normalized count). The 
statistical analysis was performed by R.

Identification of transcriptional and post-
transcriptional regulatory pathways

We first constructed a curated TF and miRNA 
coordinate regulatory network from five databases, in 
which all regulations were experimentally validated: 
TRANSFAC [52], TransmiR [53], miRTarBase [54], 
miRecords [55], and TarBase [56]. Next, we mapped 
the DE genes and miRNAs to the regulatory network, 
extracted them with their neighborhoods, and then 
eliminated all non-DE nodes with 0-outdegree to construct 
a subnetwork potentially associated with NRASQ61 
mutations. Finally, we used our previously proposed 
approach based on Breadth-First-Search algorithm [51] to 
identify all downstream regulatory cascades that started 
from a specific node.
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