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ABSTRACT
Chronic lymphocytic leukemia (CLL) cells residing in the bone marrow (BM) and 

in secondary lymphoid tissues receive survival and proliferative signals from the 
microenvironment, resulting in persistence of residual disease after treatment. In this 
study, we characterized primary CLL cells cultured with BM stromal cells, CD40 ligand 
and CpG ODN to partially mimic the microenvironment in the proliferative centers. 
This co-culture system induced proliferation and chemoresistance in primary CLL cells. 
Importantly, co-cultured primary CLL cells shared many phenotypical features with 
circulating proliferative CLL cells, such as upregulation of ZAP-70 and CD38 and higher 
CD49d and CD62L expression. This indicates aggressiveness and capability to interact 
with surrounding cells, respectively. In addition, levels of CXCR4 were decreased due 
to CXCR4 internalization after CXCL12 stimulation by BM stromal cells. We suggest 
that this co-culture system can be used to test drugs and their combinations that 
target the proliferative and drug resistant CLL cells.

INTRODUCTION

Chronic lymphocytic leukemia (CLL), the most 
prevalent B-cell malignancy in adults in Western countries, 
is characterized by the expansion of monoclonal mature 
B cells expressing CD5 and CD23 in peripheral blood 
(PB), secondary lymphoid tissues, and the bone marrow 
(BM)[1]. CLL cells had been described to accumulate as a 
result of a defective apoptosis, rather than of an increased 
proliferation[1]. This hypothesis was mainly based on the 
fact that most of the circulating cells are arrested in the G0/
G1 phase of the cell cycle[2]. However, it was later shown 
that a distinct fraction of CLL cells are proliferating, being 
the cell birth rate 0.1% to 1% of the CLL clone per day[3]. 
CLL cells mainly receive proliferative signals in tissue 
compartments, such as lymph nodes (LN) and BM, where 
CLL cells form aggregates of activated, proliferating cells 
called “proliferation centers” or “pseudofollicles”[4]. 

Within this tissue microenvironment, CLL cells receive 
advantageous signals from accessory cells such as T 
cells[5], mesenchymal stromal cells[6] and nurse-like 
cells[7]. These signals are propagated through diverse 
receptors, such as CD40[8], Toll-like receptors (TLR)
[9], CXCR4[10] and the B cell receptor (BCR)[11], 
which activate downstream signaling pathways that 
ultimately promote proliferation, modulate cell adhesion 
and chemotaxis and protect CLL cells from spontaneous 
and drug-induced apoptosis. Residual leukemic cells 
residing in these protective niches after treatment are 
therefore potentially contributing to minimal residual 
disease (MRD) persistence and to the disease relapse 
virtually observed in all patients after chemotherapy 
even after achievement of complete remission[12],[13].
Further characterization of primary CLL cells found in 
the proliferative niches can facilitate the discovery and 
study of new therapeutic targets specifically expressed by 
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this proliferative and chemoresistant subset of CLL cells, 
which could ultimately help to eradicate MRD. 

With the aim of better defining proliferating primary 
CLL cells, we characterized primary CLL cells cultured 
ex vivo in conditions mimicking the microenvironment 
found in the proliferative centers and compared them to 
proliferating subclones of CLL cells found in PB from 
patients with active disease, which likely represent cells 
that have been stimulated in the proliferation centers while 
residing in the LN or BM before becoming quiescent again 
in PB [14]. The herein described ex-vivo culture system 
induced proliferation of primary CLL cells that shared 
physiologic and immunophenotypic characteristics with 
those proliferating CLL cells found in vivo, providing 
an easily reproducible system for the ex vivo testing of 
new drugs specifically targeting this clinically relevant 
compartment of CLL cells.

RESULTS

Effects of BMSC, CD40 and CpG ODN in 
proliferation, cell cycle and viability of primary 
CLL cells

With the aim of partially ex vivo mimicking the 
microenvironment found in the proliferative centers, 
we cultured primary CLL cells in 5 different culture 
conditions: in suspension, co-cultured with the BMSC 
cell line UE6E7T-2, with soluble CD40L, with CpG ODN 
and with the combination of all elements: BMSC, CD40L 
and CpG ODN. Next, we analyzed the effects in terms 
of proliferation and survival after 24, 48 and 72 hours of 
culture. In this setting, proliferative responses, measured 
as increase in expression of Ki-67, were significantly 
observed after 48 hours in CLL cells cultured with BMSC, 
CD40L and CpG ODN (Figure 1A) (mean % Ki-67 
positive cells: 4.41±1.41 cultured with BMSC, CD40L and 
CpG ODN vs. 0.42±0.10 in suspension, P<0.01) and were 

Figure 1: The co-culture of primary CLL cells with BMSC, CD40L and CpG ODN induces proliferation of CLL cells. 
Primary CLL cells were cultured with BMSC, with CD40L, with CpG ODN or with BMSC, CD40L and CpG ODN. Cellular analyses were 
performed after 24, 48 and 72 hours of culture. (A) Mean % of Ki-67-positive cells from 8 patients was analyzed by flow cytometry. (B)Cell 
cycle distribution was assessed in primary CLL cells from 8 patients by PI staining by FC. (C) Viability was assessed in primary CLL cells 
from 8 patients by Annexin V and PI staining (D) MTS assay of co-cultured CLL cells. The mean optical density (OD) values at 490nm ± 
SEM from triplicates from 4 patients are depicted in the graph. 
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even higher after 72 hours when, as we had previously 
observed [15], the co-culture with BMSC, CD40L and 
CpG ODN induced a Ki-67 expression of 10.71% ± 2.51% 
vs. 1.18%±0.34% in suspension (P<0.001).Interestingly, 
when we analyzed the effect of every stimulus 
independently we observed that none of them increased 
Ki-67 expression significantly (mean % Ki-67 positive 
cells: 1.18±0.34 cultured in suspension vs. 2.52±0.74 
cultured with BMSC vs. 1.41±0.44 cultured with CD40L 
vs. 4.42±1.75 cultured with CpG ODN, P=n.s.). 

Furthermore we analyzed the ratio of CLL cells 
in G1, S and G2/M phases after 72 hours of culture in 
the above described different culture conditions. Cell 
cycle analysis showed that the addition of CpG ODN to 
CLL cells culture induced an entry into S/G2/M phase, 
this increasing with the addition of BMSC and CD40L 
(Figure 1B) (mean % cells in S phase with CpG ODN 
vs. suspension: 7.56±0.89 vs. 2.81±0.38, P<0.001; mean 
% cells in S phase with BMSC+CD40L+CpG ODN vs. 
suspension: 8.99±1.26 vs. 2.81±0.38, P<0.001; mean % 
cells in G2/M phase with BMSC+CD40L+CpG ODN vs. 
suspension: 2.54±1.27 vs. 0.89±0.28, P=n.s.).

Viability assays showed that none of the analyzed 
co-culture conditions induced significant changes in 
CLL cells viability until 72 hours. At this time point, 
both BMSC and CD40L alone protected primary CLL 
cells from spontaneous apoptosis although statistical 
significance was not reached (Figure 1C) (mean % of 
viable cells in suspension vs. co-cultured with BMSC vs. 
with CD40L: 47.95±5.27 vs. 65.05±7.02 vs.53.53±5.95, 
P=n.s.). In contrast, the addition of CpG ODN induced 
a significant decrease in the percentage of viable cells 
which was not restored with the addition of BMSC and 
CD40L (mean % of viable cells in suspension vs. with 
CpG ODN: 47.95±5.27 vs. 22.88±4.26, P<0.01; mean 
% of viable cells in suspension vs. BMSC+CD40L+CpG 
ODN: 47.95±5.27 vs. 25.22±3.11, P<0.01). Since we 
observed the higher proliferation rate concomitant with 
the lower percentage of alive cells, especially after 72 

hours of culture, we measured metabolic activity using an 
MTS-based cell assay. We observed that the results were 
comparable to Ki-67 analysis, being the co-culture with 
BMSC, CD40L and CpG ODN the condition inducing 
the highest degree of proliferation after 72 hours. These 
results strongly suggest that the lower percentage of viable 
cells simultaneously observed with an increase in Ki-67-
positive cells and metabolic activity is probably caused by 
exhaustion of nutrients in the culture media due to a rapid 
CLL cell turnover. 

Finally, we did not observe any significant 
correlation between the induction of proliferation or 
survival by the co-culture with BMSC, CD40L and CpG 
ODN and clinical stage, CD38, ZAP-70 expression or the 
mutational status of IGHV genes (Table 1).

Immunophenotypical differences between resting 
and proliferative primary CLL cells from PB

With the aim of comparing primary CLL 
cells cultured ex vivo in conditions mimicking the 
microenvironment found in the proliferative centers 
with proliferating subclones of CLL cells found in PB 
from patients with active disease, we initially analyzed 
proliferating CLL cells from 40 patients diagnosed 
with CLL. For this, we analyzed by FC the differential 
expression of CD38, CD49d, CD62L and the chemokine 
receptors CXCR4, CXCR5 and CCR7 in Ki-67 positive vs. 
Ki-67 negative CLL cells (Figure 2A). Mean percentage of 
Ki-67 expression in CLL samples was 1.40±0.26 (range, 
0.05-7.41). Ki-67-positive CLL cells showed higher 
expression levels of CD38 (mean MFI of CD38 expression 
in Ki-67 positive cells vs. Ki-67 negative cells: 57.46±8.43 
vs. 25.41±3.83, P<0.001). The expression levels of 
integrin CD49d and selectin CD62L were also higher 
in Ki-67 positive CLL cells than in Ki-67 negative cells 
(mean MFI of CD49d expression in Ki-67 positive cells 
vs. Ki-67 negative cells: 44.92±10.15 vs. 39.53±10.43, 
P<0.01; mean MFI of CD62L expression in Ki-67 positive 

Table 1: Ki-67 expression and viability relative to suspension according to clinical and 
biological parameters. 
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cells vs. Ki-67 negative cells: 37.87±10.03 vs. 31.48±9.41, 
P<0.05) while the expression levels of all the chemokine 
receptors analyzed were significantly lower (mean MFI 
of CXCR4 expression in Ki-67 positive cells vs. Ki-67 
negative cells: 172.3±20.03 vs. 223.2±22.35, P<0.001; 
mean MFI of CXCR5 expression in Ki-67 positive cells 
vs. Ki-67 negative cells: 343.4±31.37 vs. 428.7±38.18, 
P<0.001; mean MFI of CCR7 expression in Ki-67 positive 
cells vs. Ki-67 negative cells: 110.1±8.07 vs. 149.2±10.65, 
P<0.001)(Figure 2A).

The co-culture of primary CLL cells with 
BMSC, CD40L and CpG ODN promotes an 
immunophenotype comparable to that from 
proliferating CLL cells found in PB

As described above, we observed that the co-
culture of primary CLL cells in conditions mimicking 
the microenvironment of the proliferative centers 
induced the proliferation of CLL cells in terms of Ki-67 
expression, MTS-based cell proliferation assay and cell 
cycle entry. In order to compare the immunophenotype 
of proliferating CLL cells found in vivo with the ex-vivo 
stimulated CLL cells, we analyzed the modulation of the 
expression of CD38, CD49d, CD62L, CXCR4, CXCR5 
and CCR7 in primary CLL cells after 48 hours of co-
culture as compared to CLL cells in suspension (Figure 
2B). Primary CLL cells in co-culture showed an increase 
in the expression of CD38, CD49d and CD62L (mean 
MFI of CD38 expression in co-culture vs. in suspension: 
151.9±42.56 vs. 60.16±4.79, P<0.05; mean MFI of CD49d 
expression in co-culture vs. in suspension: 202.8±22.8 vs. 
184.3±22.48, P<0.05; mean MFI of CD62L expression in 
co-culture vs. in suspension: 993.9±123.7 vs. 626.0±76.49, 
P=n.s.). In addition, co-culture of CLL cells induced a 
downregulation of the expression level of CXCR4 (mean 
MFI of CXCR4 expression in co-culture vs. in suspension: 
247.6±41.23 vs. 741.0±160.3, P<0.001) while CXCR5 and 
CCR7 expression levels were not significantly modulated 
(mean MFI of CXCR5 expression in co-culture vs. in 
suspension: 1122±121.0 vs. 906.6±94.32, P=n.s.; mean 
MFI of CCR7 expression in co-culture vs. in suspension: 
221.4±13.79 vs. 225.0±23.43, P=n.s.). 

To determine whether the co-culture of PBMC from 
patients with CLL with BMSC, CD40L and TLR9L also 
stimulated T cells we analyzed the expression of Ki-67, 
CD38 and CD69 expression in CD3+ mononucleated cells 
(Figure 2C). Taking into account that only samples with 
at least 85% of CLL cells were included in our study, we 
observed a mean percentage of T cells of 4.02±0.84 at 
baseline, which was not significantly altered after 48 hours 
in co-culture. However, the co-culture did significantly 
increase Ki-67, CD38 and CD69 expression in T cells 
(Figure 2C) indicating that T cells were also activated 
under these co-culture conditions. 

The co-culture of primary CLL cells with BMSC, 
CD40L and CpG ODN preferentially increases the 
proliferative CXCR4dimCD5br compartment

We also characterized the proliferative and resting 
compartments of CLL cells found in PB using differences 
in the expression of CD5 and CXCR4 by FC as previously 
defined by Calissano, C et al[16] (Figure 3A). The 
percentage of CLL cells falling into each compartment was 
similar to the previously observed distribution[16] (Figure 
3B) (mean % CLL cells: 4.52±0.82 in CXCR4dimCD5bright 
fraction vs. 75.78±2.05 in CXCR4intCD5int fraction vs. 
13.83±1.53 in CXCR4brightCD5dim fraction, P<0.001). As 
expected, the proliferative compartment defined as the 
CXCR4dimCD5bright fraction was significantly enriched 
in Ki-67 positive cells (Figure 3C) (mean % Ki-67 
positive cells: 3.28±1.12 in CXCR4dimCD5bright fraction 
vs. 2.63±0.85 in CXCR4intCD5int fraction, P=n.s.; vs. 
0.36±0.21 in CXCR4brightCD5dim fraction, P<0.01). As 
we previously reported[15], co-culturing CLL cells for 
48 hours induced an increase in the percentage of CLL 
cells within the CXCR4dimCD5brightcompartment (Figure 
3D) whereas the proportion of CXCR4intCD5int and 
CXCR4brightCD5dim cells was not significantly affected 
(mean % CXCR4dimCD5bright cells: 23.16±7.25 in co-
culture vs. 5.67±2.52 in suspension, P<0.05). 

The co-culture of primary CLL cells with BMSC, 
CD40L and CpG ODN induces ZAP-70 expression

Among the diverse molecular pathways of 
crosstalk between CLL cells and their microenvironment, 
BCR signaling has been recognized as one of the most 
important [17][18]. The expression of the protein tyrosine 
kinase ZAP-70 has been associated with increased 
BCR signaling in CLL [19] which translated into 
increased proliferation and migrative capacity of ZAP-
70 positive subclones, based on in vitro and in vivo data 
[20],[21],[22],[23]. Clinically, ZAP-70 expression has 
been correlated with IgVH mutational status, disease 
progression and survival[24]. Therefore, we hypothesized 
that ZAP-70 expression could be upregulated in  
proliferating CLL subclones. In order to test this, we 
assessed ZAP-70 expression in CLL cells from PB 
according to Ki-67 expression and subsequently in 
primary CLL cells co-cultured in proliferative conditions. 
Firstly, we observed that the Ki-67 positive fraction 
of CLL cells from the PB was significantly enriched in 
ZAP-70 positive cells (Figure 4A) (mean % of ZAP-
70 expression: 83.93±2.40 in Ki-67 positive cells vs. 
29.22±4.20 in Ki-67 negative cells, P<0.001). We also 
determined ZAP-70 expression according to CXCR4 and 
CD5 expression and interestingly, we observed that the 
proliferative CXCR4dimCD5bright fraction was also enriched 
in ZAP-70 positive cells (Figure 4B) (mean % ZAP-70 
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Figure 2: The co-culture of primary CLL cells with BMSC, CD40L and CpG ODN promotes an immunophenotype 
comparable to that from proliferating CLL cells found in PB. (A) PBMC from 40 patients diagnosed with CLL were used to 
analyze by FC the differential expression of CD38, CD49d, CD62L, CXCR4, CXCR5 and CCR7 in Ki-67-negative vs. positive CLL cells. 
(B) Primary CLL cells from 12 patients were cultured in suspension or in co-culture with BMSC, CD40L and CpG ODN for 48 hours 
and the expression ofCD38, CD49d, CD62L, CXCR4, CXCR5 and CCR7 were analyzed. (C) PBMC from 10 patients diagnosed with 
CLL were cultured in suspension or in co-culture with BMSC, CD40L and CpG ODN for 48 hours and the percentage of T cells and their 
expression levels of Ki-67, CD38 and CD69 were analyzed. (*P<0.05, **P<0.01, ***P<0.001, ns: non significant, paired T-test).
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positive cells: 67.35±3.66 in CXCR4dimCD5bright fraction 
vs. 38.71±3.87 in CXCR4intCD5int fraction, P<0.001; vs. 
19.29±3.04 in CXCR4brightCD5dim fraction, P<0.001). In 
order to elucidate if signals from the microenvironment 
could directly modulate the expression of ZAP-70, we 
cultured primary CLL cells in suspension or co-cultured 
with BMSC, CD40L and CpG ODN for 48 hours and 
observed that the percentage of ZAP-70 positive cells was 
significantly increased (Figure 4C and 4D) (mean % ZAP-
70 positive cells: 61.50±7.33 in co-culture vs. 16.91±4.23 
in suspension, P<0.01). This was further confirmed 
by western blot, where we also observed ZAP-70 up-
regulation in primary CLL cells co-cultured with BMSC, 
CD40L and CpG ODN for 48 hours. To clarify which of 
these stimuli contributed to ZAP-70 up-regulation, we 
cultured primary CLL cells with BMSC, CD40L or CpG 
ODN separately, and assessed ZAP-70 expression by 
western blot. We observed a marked ZAP-70 up-regulation 
as a consequence of either CD40 or TLR9 stimulation 
alone (Figure 4E). 

Primary CLL cells in co-culture develop marked 
chemoresistance to treatment with fludarabine 
and bendamustine

The microenvironment found in the proliferative 
centers has been shown to provide direct pro-survival 
signals and to protect CLL cells from the effect of 
chemotherapeutical agents[7],[25]. Consequently, this 
proliferative and chemoresistant compartment of CLL 
cells has been hypothesized to be potentially responsible 
for MRD persistence and disease relapse. In this regard, to 
evaluate the role of co-culture on the chemoresistance of 
primary CLL cells, we co-cultured primary CLL cells for 
48 hours and subsequently treated them with increasing 
doses of fludarabine or bendamustine for additional 24 
hours. Interestingly, as we previously described[15], the 
co-culture of CLL cells in these conditions inhibited at 
such extend the capacity of fludarabine to induce apoptosis 
that it was not possible to calculate its LD50, whereas LD50 
of fludarabine in CLL cells in suspension was 416μM 

Figure 3: The proliferative CXCR4dimCD5br compartment of CLL cells is promoted by the co-culture with BMSC, 
CD40L and CpG ODN. PBMC from 40 patients diagnosed with CLL were used to analyze the expression of CXCR4 and CD5 by FC. 
(A) Representative contour plot of CXCR4 and CD5 expression by CLL cells from one patient. (B) Mean percentage ± SEM of CLL cells 
in the three compartments defined by CXCR4 and CD5 densities are depicted in the graph (**P<0.01, ***P<0.001, one-way ANOVA). (C) 
Mean percentage ± SEM of Ki-67 expression in the three compartments (*P<0.05, **P<0.01, ***P<0.001, one-way ANOVA). (C) Primary 
CLL cells from 7 patients cultured in suspension or in co-culture with BMSC, CD40L and CpG ODN for 48 hours were used to analyze the 
expression of CXCR4 and CD5. (*P<0.05, two-way ANOVA, Bonferroni’s post-test. Graph shows mean ± SEM).
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(95% CI 125.5-1379) (Figure 5A). For CLL cells treated 
with bendamustine, LD50 of CLL cells in proliferative 
conditions was 5.18 times higher than for CLL cells in 
suspension (Figure 5B). 

To determine the molecular mechanisms related 
to this co-culture-induced chemoresistance we analyzed 
the expression of the anti-apoptotic proteins Mcl-1 and 
Bcl-2, which are up-regulated in CLL cells and provide 
them with protection against apoptosis induced by 
chemotherapy[26],[27]. After 48 hours of co-culture 
only the expression of Mcl-1 was significantly increased 
(Figures 5C, 5D and 5E), further highlighting its role in 
CLL resistance to chemotherapy.

DISCUSSION

Compelling evidence suggests that the crosstalk 
between CLL cells and accessory cells in the BM and/or 
lymphoid tissue microenvironments plays a relevant role 
in the natural history of CLL by promoting tumoral cell 
survival, proliferation and drug resistance (Reviewed in 
Burger et al[4]). Therefore, further characterization of the 
different cells and stimuli participating in this process is 
of great interest in order to define new therapeutic targets 
aimed at interfering with this favorable condition. Based 
on these considerations, the aim of this study was to 
further characterize this proliferative and chemoresistant 
CLL compartment by firstly studying the phenotypic 

Figure 4: The co-culture of primary CLL cells with BMSC, CD40L and CpG ODN markedly enhances ZAP-70 
expression. (A) PBMC from 40 patients diagnosed with CLL were used to analyze ZAP-70 expression in Ki-67 negative vs. positive 
CLL cells (***P<0.001, paired T-test). (B) ZAP-70 expression in CXCR4 and CD5 compartments of CLL cells from PBMC from 40 
patients. (**P<0.01, ***P<0.001, one-way ANOVA. Graph shows mean ± SEM). (C) Primary CLL cells from 12 patients were cultured 
in suspension or in co-culture with BMSC, CD40L and CpG ODN for 48 hours and the expression level of ZAP-70 was analyzed by FC 
(**P<0.01, paired T-test). (D) One representative histogram of primary CLL cells from one patient after 48 hours in suspension or in co-
culture. (E) One representative immunoblot analysis of ZAP-70 expression.
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characteristics of proliferating CLL cells found in the 
PB of patients. Subsequently, we compared their features 
with those found after co-culture in conditions partially 
mimicking the microenvironment from the proliferation 
centers. This allowed us to describe an easily reproducible 
ex vivo system that will facilitate the study of this crucial 
CLL cell compartment and consequently, the discovery of 
new therapeutic targets. 

We co-cultured primary CLL cells with BMSC 
since they have been demonstrated to support the 
survival of CLL cells from both spontaneous and drug-
induce apoptosis [6],[7],[28],[29]. Moreover, it has 
been found that BMSC can activate resting CLL cells to 

increase their expression of CD38, as well as promote 
activation of CD71, CD69, CD25 and CD70[30]. Based 
on evidences from in vitro experiments with CD40L that 
indicate the importance of T cells with regards to CLL 
cell proliferation and survival[31],[32],[33][8],[34],[5], we 
added soluble CD40L to our co-culture system. Finally, we 
used the TLR9 agonists CpG ODN to stimulate primary 
CLL cells. Toll-like receptors have been described as 
potent activators of CLL cell proliferation, cytokine 
production and upregulation of costimulatory molecules 
involved in B cell-T cell interaction such as CD40, 
CD80, CD86, CD54 MHC class I and CD58[35][36]
[37]. Simultaneous stimulation with CD40/CpG ODN has 

Figure 5: Co-cultured CLL cells display a marked chemoresistance to fludarabine and bendamustine treatment. Primary 
CLL cells from 7 patients were cultured for 48 hours in suspension or in co-culture with BMSC, CD40L and CpG ODN; subsequently, 
increasing doses of fludarabine and bendamustine were added for additional 24 hours. LD50 curves for fludarabine (A) and bendamustine 
(B) are plotted on a logarithmic scale. (C) Quantification of Mcl-1 and Bcl-2 expression analyzed by western blot relative to GAPDH. Each 
bar represents the mean ± SEM from 7 patients (**P<0.01, ***P<0.001, two-way ANOVA, Bonferroni’s post-test). (D) Mcl-1 and Bcl-2 
expression relative to primary CLL cells in suspension.Each bar represents the mean ± SEM from 7 patients (**P<0.01, two-way ANOVA, 
Bonferroni’s post-test). (E) One representative immunoblot analysis of Mcl-1 and Bcl-2 expression.
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been studied previously in CLL cells, observing enhanced 
immunogenicity[35] and distinctive proliferation in IGHV 
unmutated CLL cells correlating with the development of 
drug resistance[36]. 

In addition, we observed a modulation of the 
immunophenotype of CLL cells that was remarkably 
comparable to that from proliferating CLL cells found 
in PB of patients. These phenotypical changes indicate 
that these CLL cells become activated and consequently, 
more aggressive as shown by enhanced CD38 and 
ZAP-70 expression, and more likely to interact with 
other cells as shown by enhanced CD49d and CD62L 
expression. Regarding chemokine receptors, we observed 
downregulation of CXCR4, CXCR5 and CCR7 in 
proliferating CLL cells from the PB, probably indicating 
a recent recirculation from BM or lymphoid tissue. In the 
ex vivo co-culture system this was partially reproduced: 
CXCR4 expression was downregulated, while CXCR5 
and CCR7 expression remained otherwise stable. 
This might be explained by the fact that our co-culture 
system included BMSC which produce the CXCR4 
ligand CXCL12[38], but not MSC from secondary 
lymphoid tissues which are the responsible for CXCL13 
and CCL19 production, ligands for CXCR5 and CCR7 
respectively[39],[40],[41]. Additionally, the co-culture 
also resulted in stimulation of T cells from patients with 
CLL, which probably contributed to the activation of CLL 
cells. Besides its prognostic value, ZAP-70 expression 
is linked to activation of CLL cells[19],[22],[42] and 
its expression correlates with that of Ki-67 in CLL 
patients[21]. ZAP-70 expression has been clinically and 
biologically linked to aggressive features in CLL, but 
its regulation is still largely unknown; interestingly, we 
showed that the proliferative fraction of CLL cells from 
the PB was markedly enriched in ZAP-70 positive cells, 
and that the herein described co-culture system induced 
the expression of ZAP-70 in proliferating cells. Both 
CD40 and TLR9 stimulation independently were able to 
provoke an increase in the expression of ZAP-70, although 
CD40L alone was not enough to induce proliferation. 
Functionally, we observed that this co-culture system 
promoted the proliferation of chemoresistant CLL cells, 
as shown in fludarabine and bendamustine-treated primary 
CLL cells, and that was accompanied by the induction of 
the expression of the anti-apoptotic proteins Mcl-1. This 
is in line with previous studies using not only stromal 
cells [28],[29],[43] but also CD40 [8],[44] and TLR9 
[9] stimulation in CLL cells culture systems[15]. In 
summary, our findings demonstrate that the co-culture of 
CLL cells with BMSC, CD40L and CpG ODN promotes 
the proliferation of chemoresistant primary CLL cells 
with a phenotype comparable to that from the circulating 
proliferative CLL cell. CLL therapy is heading towards 
targeted therapies as new and more effective drugs are 
emerging. This co-culture system has already been used 
for testing the survivin inhibitor YM155 which resulted 

specifically active to target the proliferative and drug 
resistant CLL cell compartment[15]. Therefore, this study 
provides a model for a co-culture system which might 
serve as a basis for testing these new drugs, particularly 
in combination, to better select the most active treatment 
for this disease. 

METHODS

Isolation and culture of primary CLL cells

Peripheral blood mononuclear cells (PBMC) from 
64patients diagnosed with CLL were obtained by Ficoll-
Paque Plus (GE Healthcare, Buckinghamshire, United 
Kingdom) density gradient and subsequently criopreserved 
until analysis. Only samples with ≥85% of CLL cells 
(CD19+/CD5+ cells, as assessed by flow cytometry (FC)) 
were included in the study. Written informed consent 
was obtained from all patients in accordance with the 
Declaration of Helsinki and the study was approved by 
the local clinical investigation ethical committee. 

Cell lines

The UE6E7T-2 human bone marrow stromal cells 
(BMSC) cell line was obtained from Riken Cell Bank 
(Ibaraki, Japan). Cells were cultured at 37ºC in 5% CO2 
atmosphere in Dulbecco’s Modified Eagle Medium 
(DMEM; Gibco, Carbbad, CA, USA) supplemented with 
2mM L-glutamine, 10% heat-inactivated fetal bovine 
serum (FBS) and 50μg/mL penicillin/streptomycin. The 
T cell acute lymphoblastic leukemia cell line Jurkat was 
obtained from ATCC and was cultured in RPMI 1640 
medium supplemented with 2mM L-glutamine, 10% heat-
inactivated FBS and 50μg/mL penicillin/streptomycin.

Co-culture conditions

BMSC were seeded at a concentration of 1.5x104 
cells/mL in 24-well plates and incubated for 24 hours to 
allow cells to adhere. CLL cells were cultured at a ratio 
of 100:1 (1.5 x106cells/mL) on confluent layers of BMSC 
in RPMI medium. Cells were stimulated with 1μg/mL 
CD40L (Peprotech, London, United Kingdom) and/or 
1.5μg/mL CpG ODN (ODN2006; Invivogen, San Diego, 
CA, USA) when indicated. CLL cells were harvested by 
gently washing off, leaving the adherent stromal cell layer 
intact.

Flow cytometry

Intracellular staining of Ki-67 was performed using 
a fluorescein isothiocyanate (FITC)-labeled antibody 
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against Ki-67 (Becton Dickinson, Franklin Lakes, NJ, 
USA) after fixation and permeabilization using the 
BD Intrasure kit (Becton Dickinson) following the 
manufacturer’s instructions. Surface staining of cells was 
performed using the following monoclonal antibodies 
conjugated with the indicated fluorochrome: CD19-
phycoerythrin (PE) and CD5-allophycocyanine (APC) 
(Becton Dickinson). To characterize the phenotype of 
proliferative and resting compartments of CLL cells,we 
used the following antibodies: CD19-energy coupled 
dye (ECD), CD5-phycoerythrincyanine 5.5 (PC5.5) 
(Beckman Coulter, Brea, CA, USA), CD3-PE-cyanine 7 
(Cy7), CXCR4-APC, CXCR5-APC, CCR7-APC, CD49d-
APC, CD62L-APC, Ki-67-FITC (Becton Dickinson), and 
CD38-PE (EBioscience, San Diego, CA, USA). The rates 
of T cell activation and proliferation were analyzed by 
determining the expression of Ki-67, CD69 and CD38 in 
CD3+ cellsusing the following antibodies: Ki-67-FITC, 
CD38-PE (EBioscience), CD5-PC5.5 (Beckman Coulter), 
CD3-PE-Cy7 and CD69-APC (Becton Dickinson). Cells 
were acquired in a NaviosTM cytometer (Beckman Coulter) 
and the results were analyzed using the FCS Express 4 
software (De Novo Software, Los Angeles, CA, USA).

Cell proliferation assay

Cell proliferation was measured using the 
CellTiter96TM Cell Proliferation Assay (Promega, 
Madison, WI, USA) which uses the cellular conversion 
of MTS tetrazolium compound into a colored formazan 
product. A total of 7.5 x104 CLL cells per well were seeded 
in a 96-well plate in 100μL of RPMI and 20μL of MTS. 
Plates were incubated for 1 hour at 37ºC and absorbance 
was measured in a plate reader at 490nm.

Cell cycle analysis

Propidium iodide (PI) was used to determine each 
phase of the cell cycle according to the DNA content of 
CLL cells. For this, cells were resuspended in ice-cold 
70% ethanol and incubated at -20ºC for 30 minutes. 
Cells were then washed twice with phosphate buffered 
saline (PBS) and resuspended in PBS containing 38nM 
sodium citrate, 10mg/mL ribonuclease A and 1μg/μL PI. 
Cells were finally incubated at 37ºC for 30 minutes and 
subsequently analyzed by FC.

Western blot analysis

Whole cell protein extracts were prepared from 
4.5x106cells using 50μL lysis buffer containing 20mM 
Tris(hydroxymethyl)aminomethane (Tris) pH 7.4, 1mM 
EDTA, 140mM NaCl, 1% NP-40 supplemented with 2mM 
sodium vanadate and protease inhibitor cocktail (Sigma-

Aldrich, San Louis, MO, USA) for 1 hour at 4ºC. Protein 
concentration was determined using the Bio-Rad protein 
assay (Bio-Rad, Hercules, CA, USA). Equal amounts 
of denatured protein were resolved by 10% SDS-PAGE 
and transferred to Immobilon-P membranes (Millipore, 
Bedford, MA, USA). Membranes were blocked for 
1 hour at room temperature (RT) in 5% milk/TBS-T. 
Membranes were incubated overnight at 4ºC with primary 
antibodies against ZAP-70, Mcl-1 and Bcl-2 (Santa Cruz 
Biotechnologies, Dallas, TX, USA), and GAPDH (Abcam, 
Cambridge, United Kingdom). Immunodetection was 
done with the corresponding IgG HRP-linked secondary 
antibodies (Dako North America, Glostrup, Denmark), 
and the ECL chemiluminescence detection system (GE 
Healthcare). Chemiluminescent images were acquired 
with the LAS-4000 system (Buckinghamshire, United 
Kingdom). Protein expression was subsequently quantified 
using the Image J 1.46r software (National Institutes of 
Health).

Reagents

Fludarabine and bendamustine (Sigma, St Louis, 
MO, USA)were dissolved in DMSO and stored at -20ºC.

Assessment of apoptosis

Apoptosis was assessed by analyzing the binding 
of annexin V-FITC and the incorporation of PI by FC. 
Annexin V/PI double negative cells were considered 
viable cells. Staining was performed according to the 
manufacturer’s instructions using the annexin V-FITC 
apoptosis detection kit (Bender Medsystems, Vienna, 
Austria). 

Statistical analysis

Results are expressed as the mean ± standard 
error of the mean (SEM) of at least three independent 
experiments. The statistically significant difference 
between groups was analyzed using the Mann-Whitney 
test or one or two-way ANOVA (t test), and P<0.05 was 
considered significant. Lethal dose 50 (LD50) values were 
calculated with GraphPad Prism software version 5.0 
(San Diego, CA, USA). Analyses were performed using 
the biostatistics software package SPSS version 17 (IBM, 
Chicago, IL, USA). Results were graphed with GraphPad 
Prism software. 
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