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ABSTRACT
Ovarian cancer (OV) ranks fifth in cancer deaths among women, yet there remain 

few informative biomarkers for this disease. Microsatellites are repetitive genomic 
regions which we hypothesize could be a source of novel biomarkers for OV and have 
traditionally been under-appreciated relative to Single Nucleotide Polymorphisms 
(SNPs). In this study, we explore microsatellite variation as a potential novel source of 
genomic variation associated with OV. Exomes from 305 OV patient germline samples 
and 54 tumors, sequenced as part of The Cancer Genome Atlas, were analyzed for 
microsatellite variation and compared to healthy females sequenced as part of the 
1,000 Genomes Project. We identified a subset of 60 microsatellite loci with genotypes 
that varied significantly between the OV and healthy female populations. Using these 
loci as a signature set, we classified germline genomes as ‘at risk’ for OV with a 
sensitivity of 90.1% and a specificity of 87.6%. Cross-analysis with a similar set of 
breast cancer associated loci identified individuals ‘at risk’ for both diseases. This 
study revealed a genotype-based microsatellite signature present in the germlines 
of individuals diagnosed with OV, and provides the basis for a potential novel risk 
assessment diagnostic for OV and new personal genomics targets in tumors.

The American cancer society estimated there would 
be 21,980 new cases of ovarian cancer (OV) and 14,270 
deaths in 2014 [1] with epithelial ovarian carcinoma 
accounting for approximately 90% of all cases [2], making 
ovarian cancer the most lethal gynecological cancer in 
the United States [3], and the fifth most deadly cancer 
in women. The 5-year survival rate is approximately 
50% because early diagnosis is not usually possible as 
symptoms of this cancer are nonspecific and common 
testing methods are not likely to detect this disease in the 
early stages [4].

Recently there have been an emergence of large-
scale -omics projects whose goal is to allow accurate and 
complete analysis of the mutational profile of disease, 
and the availability of this data has already yielded 
novel insights into the mutational spectrum of several 
cancers, including ovarian cancer [5, 6]. However, the 
analysis of genomic variation is not yet complete as there 
remains a largely overlooked source of variation at certain 
genomic regions such as microsatellites. Microsatellites 
are low complexity, repetitive DNA regions that have 

been associated with morphological changes and 
human diseases, notably with triplet repeat instability 
disorders [7], and have traditionally been thought of 
as having extremely high levels of polymorphism and 
heterozygosity, compared to high complexity DNA 
sequences [8]. However, our analysis of all available loci 
has shown that 98% of microsatellite loci are invariant, 
that is have less than a 1% polymorphism rate (manuscript 
in preparation). Microsatellites are ubiquitous and are 
over-represented in the human genome compared to 
expected levels that would be present by chance [9]. 
Their high frequency and relative invariance in disease-
free populations make microsatellites good candidates 
to become informative markers for cancer and disease 
progression. Recently, algorithms specifically designed 
to accurately assess variation within microsatellites 
have been developed [10–13]. The growing availability 
of high-quality next-generation sequencing data, our 
accurate microsatellite genotyping algorithm and the 
ability to do genomics on a population scale have now 
combined to allow us to analyze microsatellite variation en 
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masse. We have performed an analysis of microsatellites 
on a population level to (A) determine the normal range 
of variation, defined as variation found in individuals 
sequenced as part of the 1000 Genomes Project (1kGP), 
(B) use the genotype distribution at each microsatellite 
locus among healthy individuals as the baseline for 
comparison to genomes from individuals diagnosed 
with epithelial ovarian cancer from The Cancer Genome 
Atlas (TCGA) to assess the ability of greater OV-
associated microsatellite variation as a potential novel 
risk assessment method and (C) use matching tumor and 
germline genotype distributions to identify “hot spots” 
for acquired variation in tumors as a potential personal 
genomics tool.

RESULTS

Establishing the normal range of microsatellite 
variation from the 1kGP

In order to evaluate microsatellite instability in 
cancer patient data from TCGA, we first needed to 
establish a baseline for variation within the healthy 
population at each microsatellite locus. To do this 
we analyzed variation at each microsatellite locus in 
249 females of European ancestry from the 1kGP data set 
ethnically matched to the OV cancer population of The 
Cancer Genome Atlas (TCGA). As our control set was 
from the 1,000 genomes project, no medical or phenotype 
information was provided for these individuals. At the time 
of sequencing, this population consisted of people who 
had not been diagnosed with cancer, therefore it should not 
be enriched for cancer-associated variants; however, given 
that a woman’s lifetime risk of developing ovarian cancer 
is 1:72, we would expect that approximately 3 individuals 
in the healthy cohort will develop OV.

For comparisons to the OV data set, data from 
249 females of European ancestry sequenced by the 
1kGP was used to determine baseline variation. This 
control population was originally used for a similar study 
to identify a set of microsatellites that could distinguish 
Breast Cancer germline samples from the healthy 
population [14]. The same control group is used in this 
study to allow comparisons between the two signature 
microsatellite sets.

Microsatellite variation in OV

Next-generation sequencing data from 305 germline 
samples from females diagnosed with OV, were obtained 
from TCGA [15]. The genotype at all microsatellite loci 
with at least 15X read depth coverage was determined. 
We then identified the most common genotype present 
within the healthy population and designated it as the 
‘modal’ genotype. All other genotypes are then considered 
non-modal. For each population then we determined the 

frequency of modal and non-modal genotypes at each 
locus. Comparison of this frequency between the healthy 
and OV populations led to identification of 60 statistically 
significant microsatellite loci (Table 1) that passed 
stringent Type 1 and False Discovery tests (p < 0.001 by 
Fisher’s exact test and adjusted p < 0.01 by Benjamani 
Hochberg).

Genotyping of microsatellites using methods that 
dramatically improve the accuracy of microsatellite 
allele calling [10], allowed us to evaluate microsatellite 
loci based on the genotype rather than haplotype. Sixty 
microsatellite loci were identified as significantly 
differentiating OV from healthy individuals (Table 1). 
Of these, only 13 (21.7%) had a modal genotype in the 
1kGP that was either heterozygotic with only one of the 
two prominent alleles represented by the reference allele 
length or homozygotic and differed from the reference 
allele length for that microsatellite (Table 1). This 
substantiates our comparison based on the modal genotype 
within a population as being able to identify additional 
significant differences that may not have been identified 
using a single microsatellite allele length as a reference.

Three of the sixty informative microsatellite loci 
were exonic, and an additional locus has been identified 
in human mRNA (Table 1). One of the genes, MTMR11 
(Entrez gene ID: 10903), is a member of the protein 
tyrosine phosphatase family, and has been shown to 
be downregulated in some HER2 breast cancers [16]. 
Another of the genes, APOA4 (Entrez gene ID: 337), 
has previously been identified as a potential biomarker 
for malignant tumor differentiation in OV [17]. The 
third exonic microsatellite was in the 3’UTR of TATA-
binding protein TBP (Entrez gene ID: 6908). TBP and its 
associated factors (TAFs) make up transcription factor 
IID and coordinate transcription by RNA polymerase 
II. The 3’UTR is a common target for regulation by 
miRNA and therefore microsatellite variation in this 
region could potentially have effects on protein stability 
and, in the case of TBP, broader effects on cellular 
transcription.

Variation of intronic microsatellites has been shown 
previously to be capable of affecting mRNA splicing and 
may contribute to disease [18, 19]. Of the 60 informative 
microsatellite loci, 5 are associated with known spliced 
ESTs (Table 1). These include a microsatellite associated 
with KPNA2 (Entrez gene ID: 3838), a protein involved 
in nuclear transport and a potential regulator of DNA 
recombination and cell proliferation which has been shown 
to be upregulated in OV [20–22], and a microsatellite 
associated with KAT7 (Entrez gene ID: 11143), a lysine 
acetyltransferase that may act as a coactivator of TP53-
dependent transcription [23].

Our analysis does not attempt to draw direct 
functional relationships between the OV-associated 
microsatellite genotypes and altered protein function, 
but functional annotation enrichment analysis of terms 
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Table 1: Statistically significant loci that differentiate healthy from OV cancer germlines. Loci 
demarked in bold were also informative for breast cancer using a similar approach. Encode and other 
element designations (from the UCSC browser) are as follows: 1 – Transcription factor binding site, 
2 – DNaseI hypersensitivity locus, 3 – Spliced EST, 4 – H3K27Ac mark (found near active regulator 
elements), 5 – human mRNA.
Microsatellite Locus Motif Region Gene Encode 

element / 
other

1kGP 
samples 

genotyped

Percent 
1kGP 
Non-

modal

OV 
Samples 

Genotyped

Percent 
OV 

Non-
modal

Relative 
Risk

chr5:122714135–
122714152

A intron CEP120 50 10% 70 64% 6.4

chr2:91886031–
91886042

A intergenic – 186 14% 240 48% 3.4

chr5:133944044–
133944059

T intron SAR1B 17 29% 13 100% 3.4

chr5:158511580–
158511594

A intron EBF1 1 33 24% 38 82% 3.4

chr10:69699479–
69699497

AT intron HERC4 79 14% 120 39% 2.8

chr2:223339530–
223339550

T intron SGPP2 22 36% 41 85% 2.3

chr7:81695843–
81695858

A intron CACNA2D1 42 38% 83 87% 2.3

chr18:21120382–
21120397

A intron NPC1 1, 2 42 43% 60 93% 2.2

chr13:49951024–
49951057

ATAG intron CAB39L 140 26% 217 52% 2.0

chr2:234368716–
234368729

A intron DGKD 20 50% 114 93% 1.9

chr11:30438959–
30438973

T intron MPPED2 40 53% 87 14% 1.8

chr12:75901962–
75901976

A intron KRR1 41 51% 94 12% 1.8

chr9:5798652–
5798666

A intron ERMP1 22 45% 91 2% 1.8

chr19:30106131–
30106147

T intron POP4 30 53% 41 95% 1.8

chr14:91928846–
91928860

T intron SMEK1 2 28 54% 42 95% 1.8

chr1:149900986–
149901001

A exon MTMR11 2, 3, 5 37 51% 54 89% 1.7

chr9:52626–52640 A intergenic - 44 55% 90 92% 1.7

chr3:98299708–
98299720

A intron CPOX 56 46% 42 10% 1.7

chr20:44333327–
44333340

T intron WFDC10B 80 45% 90 76% 1.7

(Continued )
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Microsatellite Locus Motif Region Gene Encode 
element / 

other

1kGP 
samples 

genotyped

Percent 
1kGP 
Non-

modal

OV 
Samples 

Genotyped

Percent 
OV 

Non-
modal

Relative 
Risk

chr4:186188374–
186188387

A intron SNX25 75 47% 127 12% 1.7

chr11:62565909–
62565944

AA 
AAGA

intron NXF1 37 38% 90 0% 1.6

chr11:116691512–
116691528

ACAG exon APOA4 5 156 53% 222 84% 1.6

chr11:110128926–
110128940

A intron RDX 3 42 40% 78 5% 1.6

chr17:63747018–
63747031

A intron CEP112 1, 2, 3 48 40% 118 6% 1.6

chr9:133498230–
133498244

A intron FUBP3 37 41% 83 8% 1.5

chr6:49815874–
49815887

T intron CRISP1 54 41% 108 11% 1.5

chr8:121518869–
121518882

T intron MTBP 39 36% 72 6% 1.5

chr12:22676634–
22676648

A intron C2CD5 52 40% 97 12% 1.5

chr10:93579112–
93579132

T intron TNKS2 43 37% 103 8% 1.5

chr17:47899281–
47899294

A intron KAT7 3 30 33% 81 2% 1.5

chr3:50095097–
50095118

T intron RBM6 61 36% 76 8% 1.4

chr7:36465607–
36465621

T intron ANLN 90 44% 154 21% 1.4

chr19:21558016–
21558032

TG intron ZNF738 159 48% 186 27% 1.4

chr12:106500161–
106500174

A intron NUAK1 1, 2 53 32% 121 5% 1.4

chr17:57078816–
57078830

A intron TRIM37 1, 4 33 27% 100 1% 1.4

chr1:169555368–
169555380

A intron F5 1 82 28% 161 4% 1.3

chr2:203680555–
203680567

A intron ICA1L 99 24% 177 1% 1.3

chr4:22444252–
22444266

A intron GPR125 77 26% 111 4% 1.3

chr20:5167156–
5167168

T intron CDS2 2, 5 61 23% 146 0% 1.3

chr17:66041872–
66041885

T intron KPNA2 3 69 30% 159 10% 1.3

chr6:76728584–
76728597

A intron IMPG1 68 24% 111 3% 1.3

(Continued )
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associated with the set of genes containing the 60 OV 
loci revealed enrichment of rRNA processing/ ribosome 
biogenesis genes (p = 0.037). Ribosome biogenesis is a 
limiting factor that must be overcome in tumorigenesis 
[24] and therefore individuals with minor alterations in 
rRNA processing may be at increased risk of cancer.

Risk classifier

The presence of predominantly modal or non-modal 
genotypes at each of the 60 significant loci within the OV 
germline samples was used to create a ‘Cancer Profile’ for 
OV. We assembled a risk classifier based on the fraction 

Microsatellite Locus Motif Region Gene Encode 
element / 

other

1kGP 
samples 

genotyped

Percent 
1kGP 
Non-

modal

OV 
Samples 

Genotyped

Percent 
OV 

Non-
modal

Relative 
Risk

chr10:22515002–
22515024

A intergenic - 54 22% 111 2% 1.3

chr5:86679677–
86679690

T intron RASA1 4 67 21% 116 1% 1.3

chr15:89811883–
89811895

T intron FANCI 47 19% 135 1% 1.2

chr10:94266331–
94266345

T intron IDE 2 82 18% 75 0% 1.2

chr18:2960513–
2960525

A intron LPIN2 1,2,4 67 18% 90 0% 1.2

chr15:64972761–
64972788

TG intron ZNF609 121 23% 208 8% 1.2

chr16:10783089–
10783101

A intron TEKT5 66 17% 130 0% 1.2

chr4:71888333–
71888347

T intron DCK 2 49 16% 111 0% 1.2

chr1:236721453–
236721465

A intron HEATR1 101 17% 150 1% 1.2

chrX:11187894–
11187905

T intron ARHGAP6 61 16% 187 2% 1.2

chr11:89534160–
89534172

A intron TRIM49 80 15% 131 1% 1.2

chr6:89638989–
89639003

A intron RNGTT 94 15% 130 1% 1.2

chr4:141448596–
141448609

T intron ELMOD2 100 14% 157 1% 1.1

chr6:170881390–
170881402

T 3utrE TBP 3,5 78 13% 221 0% 1.1

chr8:107704941–
107704954

A intron OXR1 119 13% 188 0% 1.1

chr7:31132236–
31132248

T intron ADCYAP1R1 2 114 12% 192 2% 1.1

chr8:30933817–
30933828

T intron WRN 132 10% 230 0% 1.1

chr7:122757720–
122757732

A intron SLC13A1 92 9% 183 0% 1.1

chr19:20829219–
20829233

AC intron ZNF626 203 5% 281 0% 1.1
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of callable loci in each sample (healthy and cancer) for 
which the genotype matched the Cancer Profile. Based on 
the ROC curve (Figure 1) we determined the threshold for 
calling a germline genome as ‘cancer-like’ or having an 
OV-signature to be 83%. Therefore individuals having the 
cancer-associated microsatellite genotype at ≥ 84% of the 
signature microsatellite loci are classified by our method 
as ‘Cancer-like’ or potentially having an increased risk 
of OV. Using this cut-off, we classified the OV germline 
genomes as at risk for OV with a sensitivity of 90.1% and 
specificity of 87.6%. Excluding those samples in which 
less than 10% of the signature loci were genotyped, 264 of 
the 293 OV germline samples were identified as ‘cancer-
like’ whereas only 26 of the 209 healthy females were 
flagged as having an increased risk for OV or ‘cancer-like’ 
(Figure 2). The 1kGP-EUF samples had a mean of 20.1 
± 8.8 of the 60 loci genotyped with 13.1± 7.4 identified 
as matching the cancer genotype whereas the OV 

germline samples had a mean of 25.0 ± 9.9 loci genotyped 
and 22.7 ± 9.0 loci identified as matching the cancer 
genotype (Table 2). This confirms that both populations 
were comparable in the per-exome mean number of loci 
genotyped, and that the difference lies in the number of 
loci that match the cancer profile.

Although our signature loci were identified through 
comparison of the germline exomes of individuals 
diagnosed with OV to the control ‘healthy’ population, we 
found that when we analyzed the 54 OV tumor samples, 
40 (74%) were classified as ‘cancer-like’ by our method, 
whereas only 14 (26%) were not identified as ‘cancer-
like’ (Figure 2). Twenty-nine of the OV tumors were 
matched with germline samples. Table 2 shows that of 
these, both the tumor and germline were identified as 
‘OV’ for 21 individuals (72%). There were an additional 
7 individuals (33%) for which only the germline was 
identified as ‘OV’ and only one individual (4.8%) whose 

Figure 1: ROC curve using OV germline genotypes at the 60 microsatellite loci which had significantly different 
genotype distributions between OV and normal genomes.

Figure 2: Microsatellite variation signature evaluated as a composite of the 60 statistically significant loci. The non-
overlapping distributions (healthy and cancer germline) is illustrative of the power to distinguish those populations. The dashed line marks 
where the 83% cut-off for calling a sample “OV-like” lies.
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germline was not identified as ‘Cancer-like’ while the 
tumor sample was. There were no individuals for which 
neither the germline nor the tumor exome was classified 
as ‘Cancer-like’ by our method.

Concordance of genotypes between the matched 
OV samples

We examined the matched germline and tumor 
samples in greater detail. We are able to genotype a similar 
number of microsatellites in the matched samples, with 
a mean of 33966 ± 3008 loci genotyped in the germline 
samples and a mean of 33881 ± 3621 in the tumor 
samples. A mean of 30013 ± 3042 loci were genotyped in 
both samples, and of those an average of 99.6% of those 
were concordant (had no change in genotype) between 
the two samples (Table 3). There was a mean of 135 loci 
per matched pair for which the genotype was discordant. 
However, we found that the discordance was primarily 
due to the tumor being homozygotic at a locus that was 
genotyped as heterozygotic in the germline (Table 4). Loss 
of heterozygosity (LOH) has been associated with OV 
[25], and the high percentage of discordant loci showing a 
loss of an allele is consistent with potential LOH.

Cross-analysis with BC

The link between OV and breast cancer (BC) is 
well documented [26], however most of the studies have 
focused on hereditary BC/OV which can be attributed 
to BRCA1/2 [27]. There may also be some overlap in 
risk between non-hereditary BC and OV. We examined 
the overlap in the loci identified in this study as markers 
for OV risk and those identified in a similar study of BC 
individuals [14]. Fifteen of the 60 OV-associated loci 
were also identified as significant between BC and healthy 
individuals (demarked with blue, Table 1). We analyzed 
647 BC germline samples obtained from TCGA using the 
OV profile and found that 193 (30%) of the BC individuals 
fall above the 83% cut-off of loci match the OV profile and 
were therefore classified by our method as ‘cancer-like’ 
for OV (Figure 3A). The overlap seen here in both the 15 
loci that were included in both cancer-signature sets and 
the individuals that were classified has ‘cancer-like’ for 

both the signatures suggests that the link between BC and 
OV carries through in our method. In the reciprocal study, 
we analyzed each of the OV germlines at the published 
BC loci [14] and found that 181 (70%) of the 259 OV 
individuals were also classified as ‘cancer-like’ for BC 
as compared to 564 (87%) of BC individuals classified 
as ‘cancer-like’ using the BC signature (Figure 3B). Of 
the 259 OV exomes that could be evaluated by both 
signatures, 166 (64.1%) were classified as ‘cancer-like’ 
using both the BC and OV signature loci sets while 66 
(25.5%) were classified as ‘cancer-like’ by just the OV 
signature set and 15 (6.8%) by just the BC set. Only 
twelve individuals were not classified as ‘cancer-like’ 
using either signature. Conversely, of the 190 1kGP-EUF 
exomes that were evaluated by both signatures, 11 (5.8%) 
were identified as cancer-like by both signatures whereas 
135 (71%) were not identified as cancer-like by either 
signature.

DISCUSSION

Currently there are few biomarkers for early 
detection of OV, and our evaluation of an OV-signature 
of microsatellite variation could prove to be a valuable 
additional resource for identifying those individuals 
who would benefit from increased surveillance for OV. 
Our analysis of microsatellites from OV genomes from 
TCGA is unique in that it not only assesses genomic 
microsatellite variations that arise in tumors, which 
are well known to be unstable, but it can identify 
low, but significant, levels of genomic microsatellite 
variation within the germline compared to the general 
population. We were able to identify a distinct subset 
of 60 microsatellite loci associated with OV, each of 
which has power to differentiate the germlines of healthy 
females from those that have developed ovarian cancer. 
Individually, these also inform as to possible mechanism 
and are potential new therapeutic targets, but together as 
a set, they could be used to identify genomes that carry an 
‘OV risk signature’. The most significant finding is that 
we were able to identify the OV signature in the germline 
of OV patients, not the tumor, therefore, variation at these 
loci has potential use as a risk-assessment screening 
method and may be included along with other analyses 

Table 2: The mean numbers of OV and BC signature loci genotyped are within standard deviation 
for each population
Population OV Loci 

GenotypedMean (SD)
OV “Cancer-like” 

LociMean (SD) / %
BC Loci 

GenotypedMean (SD)
BC “Cancer-like” 

LociMean (SD) / %

1kGP-EUF 20.1 (8.8) 13.1 (7.4) / 65% 15.5 (6.4) 8.9 (3.9) / 57%

OV Germline 25.0 (9.9) 22.7 (9.0) / 91% 16.5 (6.5) 13.4 (5.5) / 81%

OV Tumor 30.2 (6.7) 26.7 (6.9) / 88% NA NA

BC Germline 20.5 (7.7) 6.2 (7.2) / 79% 17.1 (4.9) 14.7 (4.3) / 86%
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Table 3: Concordance between genotype calls for those loci that were genotyped in matched tumor 
and germline samples
Participant ID (from 
CGHub)

Microsatellite 
loci genotyped in 
germline samples

Microsatellite 
loci genotyped in 
tumor samples

Microsatellite 
loci genotyped in 

both samples

Percent of loci 
whose genotype 
did not change

Total loci with a 
genotype change

99f1ae02–86ec-4d93–
8cd4–650bf6f02c10

34520 35000 31644 99.56% 140

4e6f88de-7624–4719-
8234–4c9e5b2e2988

36203 38368 32978 99.59% 134

c0c3caab-9277–4a31-
a96c-c607e38d5ccc

37073 38394 32796 99.58% 138

bc4bc342–20bf-40c3-
af26–2c6f942da93d

34085 33010 30611 99.54% 142

d7f82e34–5b34–4e8c-
a0cf-d7561bcea43c

33219 34426 31315 99.72% 88

15170c7f-5880–4fb6–
82ce-68d3df0dfb68

34699 32049 28937 99.55% 130

1d192835–524e-429d-
bf74–3c4727acb446

26236 30068 24182 99.57% 103

067c5c61-d147–4b08-
ab8a-32c30969d564

32870 32752 29467 99.59% 120

fe402983–70da-44db-
b7b1-c32702ddde26

33095 34636 30829 99.55% 139

25a0a9e6–4f5b-45d8–
8f34-abfd31d5ff1b

28086 30409 26132 99.53% 123

94bd4c68–4bfc-4db3–
9365-97c867747133

38903 35810 33186 99.44% 185

538acb2a-c4ca-4656-
a91c-841a42dbf15f

30982 30940 28150 99.59% 116

9bf16a89–2fc7–4c08–
93bc-3105eec5c3cc

36652 35583 30508 99.50% 153

f007fa7a-7da9–4cb0–
8aea-623af1a122c5

37568 39147 33420 99.49% 172

bc3e0b74-ea09–46a5–
9f61–16bd15ffd883

28946 38352 27525 99.30% 192

44493c23–82e9–4d9f-
8e3c-7b3f9ae44970

31361 32433 28154 99.53% 132

700e91bb-d675–41b2-
bbbd-935767c7b447

32455 31604 29193 99.62% 111

8783e4b0–2b62–
45d5–8cd9-
f5a71cc0138e

33192 33002 29848 99.63% 109

d0673efd-3315–4dd5–
8ab6–912bfa07dceb

32512 33874 29947 99.45% 166

60cce7ac-d27d-44a6–
9873-ecf91da5e906

35536 33135 30532 99.50% 153

(Continued )
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Table 4: Microsatellite loci whose genotypes between matched tumor and germline samples were 
discordant predominantly showed loss of an allele
Participant ID (from 
CGHub)

Total Number of 
discordant loci

Percent of discordant 
loci with LOH

Percent of discordant 
loci with an allele 

gain

Percent of discordant 
loci with no 

concordant allele

99f1ae02–86ec-4d93–
8cd4–650bf6f02c10 140 78% 21% 1%

4e6f88de-7624–4719-
8234–4c9e5b2e2988 134 72% 25% 2%

c0c3caab-9277–4a31-
a96c-c607e38d5ccc 138 65% 28% 7%

bc4bc342–20bf-40c3-
af26–2c6f942da93d 142 80% 15% 4%

d7f82e34–5b34–4e8c-
a0cf-d7561bcea43c 88 39% 60% 1%

15170c7f-5880–4fb6–
82ce-68d3df0dfb68 130 75% 19% 5%

1d192835–524e-429d-
bf74–3c4727acb446 103 79% 17% 5%

067c5c61-d147–4b08-
ab8a-32c30969d564 120 69% 28% 3%

Participant ID (from 
CGHub)

Microsatellite 
loci genotyped in 
germline samples

Microsatellite 
loci genotyped in 
tumor samples

Microsatellite 
loci genotyped in 

both samples

Percent of loci 
whose genotype 
did not change

Total loci with a 
genotype change

a85f6f9c-1e1d-44fc-
85eb-3b2d96cfbc61

34736 34209 31701 99.56% 138

66dc6379-a98b-498f-
8109-e3a811d043ea

38597 37074 33637 99.57% 144

ee0a4a13–613e-4c5d-
96c3–8083a013702d

33755 35583 31398 99.61% 122

a88b7e66–5f12–4023-
a7e2-fcfbd1f25977

33402 30381 28370 99.51% 138

cbc5b936-ead5–4858-
ab90-e639402789b0

38030 35882 33150 99.52% 158

7248cd60-be22–44bc-
bc58-f644db0940a2

36368 20670 19339 99.81% 36

14c58def-60ee-48e0-
a74b-da4eb77ef344

33007 33671 30530 99.61% 119

8a6d2ce3-cc57–451b-
9b07–8263782aa23f

33456 34118 30483 99.48% 160

4d71dd15-cd01–4dae-
ad70–6dc325140207

35475 37981 32405 99.53% 151

(Continued )
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Participant ID (from 
CGHub)

Total Number of 
discordant loci

Percent of discordant 
loci with LOH

Percent of discordant 
loci with an allele 

gain

Percent of discordant 
loci with no 

concordant allele

fe402983–70da-44db-
b7b1-c32702ddde26 139 64% 30% 6%

25a0a9e6–4f5b-45d8–
8f34-abfd31d5ff1b 123 66% 32% 2%

94bd4c68–4bfc-4db3–
9365-97c867747133 185 71% 28% 1%

538acb2a-c4ca-4656-
a91c-841a42dbf15f 116 72% 27% 1%

9bf16a89–2fc7–4c08–
93bc-3105eec5c3cc 153 69% 29% 3%

f007fa7a-7da9–4cb0–
8aea-623af1a122c5 172 71% 27% 2%

bc3e0b74-ea09–46a5–
9f61–16bd15ffd883 192 82% 13% 6%

44493c23–82e9–4d9f-
8e3c-7b3f9ae44970 132 70% 27% 3%

700e91bb-d675–41b2-
bbbd-935767c7b447 111 66% 32% 2%

8783e4b0–2b62–
45d5–8cd9-
f5a71cc0138e

109 73% 22% 5%

d0673efd-3315–4dd5–
8ab6–912bfa07dceb 166 73% 23% 4%

60cce7ac-d27d-44a6–
9873-ecf91da5e906 153 73% 25% 3%

a85f6f9c-1e1d-44fc-
85eb-3b2d96cfbc61 138 67% 29% 4%

66dc6379-a98b-498f-
8109-e3a811d043ea 144 69% 28% 3%

ee0a4a13–613e-4c5d-
96c3–8083a013702d 122 67% 30% 2%

a88b7e66–5f12–4023-
a7e2-fcfbd1f25977 138 81% 16% 3%

cbc5b936-ead5–4858-
ab90-e639402789b0 158 72% 25% 3%

7248cd60-be22–44bc-
bc58-f644db0940a2 36 83% 14% 3%

14c58def-60ee-48e0-
a74b-da4eb77ef344 119 80% 19% 1%

8a6d2ce3-cc57–451b-
9b07–8263782aa23f 160 83% 15% 3%

4d71dd15-cd01–4dae-
ad70–6dc325140207 151 64% 32% 4%
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in informing a physician’s decision on patient care and 
monitoring of an individual. The specificity of this assay 
is too low to be used as a general population screen, so 
would be most appropriately applied to the subset of 
women who have a family history of breast or ovarian 
cancer or other risk factors such as unexplained infertility 
[28, 29]. In addition to analyzing OV germline exomes 
at the 60 signature loci, we were able to perform a cross-
analysis of OV and BC using the OV loci found here and 
55 loci that were previously published as differentiating 
BC from normal. Fifteen loci were joint loci, i.e. were 
identified in both risk sets including in genes that have 
roles in DNA repair (e.g. WRN and FANCI) or roles in 
transcription regulation (TBP). The overlap in informative 
loci found in both OV and BC may represent those loci 
that increase broad-spectrum cancer risk. In addition, we 
were able to identify 30% of breast cancer exomes as ‘at 
risk’ for OV whereas 70% of OV were classified as ‘at 
risk’ for BC. This may indicate enhanced susceptibility to 
a second primary tumor development in these patients. As 
more genomic data becomes available it will be critical 
to validate these observations, and determine how these 
variants imply mechanism, as part of translating these 
findings into clinical utility.

METHODS

Data sets

A set of 249 exomes from healthy European 
females was used as the control group to establish the 
expected microsatellite genotypes. These individuals were 
exome sequenced at high coverage by the 1000 Genomes 
Project [30]. These were compared to exome sequencing 
data from 305 germline samples from individuals with 
ovarian cancer (OV) and 54 tumor samples (29 of which 
were matched), which were sequenced by The Cancer 
Genome Atlas for study phs000178.v5.p5 [6]. Because of 
the documented assembly inaccuracies at microsatellite 
loci for all the data emerging from all nextgen sequencing 
projects, we did not use the assemblies provided to make 
microsatellite genotype calls, instead each microsatellite 
was re-built using the raw data and our verified 
algorithms [11]. The raw sequencing reads obtained 
for this study through NCBI SRA were downloaded, 
decrypted, and decompressed using software by NCBI 
SRA. Then they were filtered based on the quality 
score requirements set forth by the 1000 Genomes 
Project [30].

Figure 3: Cross analysis of the OV and BC samples and significant loci sets. (A) Evaluation of the 1kGP-EUF healthy control, 
OV and BC germline exomes using the OV-signature set of microsatellites. (B) Evaluation of the 1kGP-EUF healthy control, OV and BC 
germline exomes at the BC-signature set of microsatellites.
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Microsatellite-based genotyping

Quality filtered reads from The Cancer Genome 
Atlas [6], were aligned to the human reference genome 
(NCBI36/hg18) using BWA [31]. Our microsatellite-
based genotyping uses non-repetitive flanking sequences 
to ensure reliable mapping and alignment at microsatellite 
loci by filtering out all microsatellite-containing reads 
that do not completely span the repeat as well as provide 
additional unique flanking sequence on both sides [10]. 
We then use the unique flanking sequence along with 
a small portion of the repeat for local alignment of the 
read to the correct genomic locus. We perform this same 
procedure on those reads that were not aligned to the 
reference by BWA, obtaining additional coverage at 
some loci. Only loci with a coverage of at least 15x in a 
given sample (healthy or cancer genomes) are considered 
“callable” and genotyped. See supplemental methods for 
additional details.

Modal genotype determination

We compiled the genotypes from all the 1kGP-
EUF samples for each microsatellite locus. The genotype 
supported by the highest number of samples was 
determined to be the modal genotype. In cases where more 
than one genotype was equally represented, the genotype 
listed first in our compiled set was used consistently as the 
modal genotype.

Computing statistics for each  
microsatellite locus

2 X 2 tables were created for each locus for the 
1kGP-F normals and the OV germline samples that 
were called in at least 10 samples in each set: 1kGP-
EUF with modal/non-modal genotypes by OV germline 
with modal/non-modal genotypes. An R script computed 
the p-value for each locus using the two sided fisher.test 
function. The Benjamini-Hochberg cut-off was selected 
as 0.01% (FDR < 1/3750 (total number of loci with  
p-value < 1)) to make it unlikely that any locus is a false 
positive from our data set. 60 loci passed the FDR and 
were considered to be informative in distinguishing the 
healthy EUF from the cancer samples. Relative risk for 
each locus was computed as the percent of individuals 
with the non-modal genotype from the cancer set 
divided by the percent of individuals with the non-modal 
genotype in the normal set.

ENCODE, etc.

ENCODE and related data for the 60 informative 
microsatellite loci was obtained from the UCSC Genome 
Browser [32, 33].

Calculating the risk classifier

Using the 60 loci that significantly differentiated OV 
genomes from healthy genomes, we plotted an ROC curve 
for the sensitivity and specificity spectrum and identified 
the point of inflection as the cut off for identifying an 
exome as ‘cancer-like’. We then evaluated each exome 
at the 60 informative OV loci. Any individual exome 
in which fewer than 10% of the informative loci was 
genotyped was not included in the subsequent analyses.

Ontology

GO enrichment analysis of genes associated with 
the 60 signature loci was performed using DAVID [34, 
35] functional annotation tools (p < 0.1), Genedecks [36] 
and GSEA [37]. Pathway enrichment was performed using 
Panther [38].

ACkNOWLEDGMENTS

This work was funded by the Virginia 
Bioinformatics Institute Medical Informatics Systems 
Division director’s funds and the National Institute of 
Health, National Human Genome Research Institute, 
1,000 Genomes Project Dataset Analysis Grant (T-55818–
363-1). The high performance computing infrastructure 
on which this analysis was conducted was supported 
by a grant from the National Science Foundation (OCI-
1124123). This project was made possible through 
the analysis of data provided by the 1,000 Genomes 
Project and The Cancer Genome Atlas Project. We thank 
members of the Virginia Bioinformatics Institute core 
computing facility Michael Snow, Dominik Borkowski, 
David Bynum, and Vedavyas Duggirala for technical 
support. We thank Dr. Xiaowei Wu for consultation on 
the statistical methods implemented in this work. Finally 
we thank Karthik Velmurugan for assistance in coding 
one of the perl scipts for data analysis.

CONFLICT OF INTEREST

NCF, ZV and LJM declare no conflict of interest. 
HRG is owner and founder of Genomeon, LLC, which 
has licensed these findings, however, Genomeon did not 
provide funding or direction for this study.

REFERENCES

1. Society AC. American Cancer Society: Cancer Facts and 
Figures 2014. Atlanta, GA: American Cancer Society; 2014.

2. Del Carmen MG. Primary epithelial ovarian cancer: diag-
nosis and management. Educational Book for the American 
Society of Clinical Oncology. 2006 edition. Alexandria, 
VA: American Society of Clinical Oncology; 2006.



Oncotarget11419www.impactjournals.com/oncotarget

3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer 
statistics, 2009. CA Cancer J Clin. 2009; 59:225–249.

4. Lutz AM, Willmann JK, Drescher CW, Ray P, 
Cochran FV, Urban N, Gambhir SS. Early diagnosis of 
ovarian carcinoma: is a solution in sight? Radiology. 2011; 
259:329–345.

5. Network CGA. Comprehensive molecular portraits of 
human breast tumours. Nature. 2012; 490:61–70.

6. TCGA CGARN: Integrated genomic analyses of ovarian 
carcinoma. Nature. 2011; 474:609–615.

7. Pearson CE, Nichol Edamura K, Cleary JD. Repeat insta-
bility: mechanisms of dynamic mutations. Nature reviews 
Genetics. 2005; 6:729–742.

8. Ellegren H. Microsatellite mutations in the germline: impli-
cations for evolutionary inference. Trends Genet. 2000; 
16:551–558.

9. Dieringer D, Schlotterer C. Two distinct modes of micro-
satellite mutation processes: evidence from the complete 
genomic sequences of nine species. Genome research. 
2003; 13:2242–2251.

10. McIver LJ, Fondon JW 3rd, Skinner MA, Garner HR. 
Evaluation of microsatellite variation in the 1000 
Genomes Project pilot studies is indicative of the qual-
ity and utility of the raw data and alignments. Genomics. 
2011; 97:193–199.

11. McIver LJ, McCormick JF, Martin A, Fondon JW 3rd, 
Garner HR. Population-scale analysis of human microsatel-
lites reveals novel sources of exonic variation. Gene. 2013; 
516:328–334.

12. Highnam G, Franck C, Martin A, Stephens C, Puthige A, 
Mittelman D. Accurate human microsatellite genotypes 
from high-throughput resequencing data using informed 
error profiles. Nucleic acids research. 2013; 41:e32.

13. Gymrek M, Golan D, Rosset S, Erlich Y. lobSTR: A short 
tandem repeat profiler for personal genomes. Genome 
research. 2012; 22:1154–1162.

14. McIver LJ, Fonville NC, Karunasena E, Garner HR. 
Microsatellite genotyping reveals a signature in breast 
cancer exomes. Breast cancer research and treatment. 2014; 
145:791–798.

15. Integrated genomic analyses of ovarian carcinoma: Nature. 
2011; 474:609–615.

16. Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, 
Villa-Moruzzi E. Expression profile of tyrosine phospha-
tases in HER2 breast cancer cells and tumors. Cellular 
oncology : the official journal of the International Society 
for Cellular Oncology. 2010; 32:361–372.

17. Li L, Xu Y, Yu CX. Proteomic analysis of serum of women 
with elevated Ca-125 to differentiate malignant from benign 
ovarian tumors. Asian Pacific journal of cancer prevention: 
APJCP. 2012; 13:3265–3270.

18. Lian Y, Garner HR. Evidence for the regulation of alter-
native splicing via complementary DNA sequence repeats. 
Bioinformatics. 2005; 21:1358–1364.

19. Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within 
genes: structure, function, and evolution. Molecular biology 
and evolution. 2004; 21:991–1007.

20. Ikenberg K, Valtcheva N, Brandt S, Zhong Q, Wong 
CE, Noske A, Rechsteiner M, Rueschoff JH, Caduff R, 
Dellas A, Obermann E, Fink D, Fuchs T, et al. KPNA2 is 
overexpressed in human and mouse endometrial cancers 
and promotes cellular proliferation. The Journal of pathol-
ogy. 2014; 234:239–252.

21. Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, 
Yun JP, Zhang Y, Jia WH, Zheng M. KPNA2 promotes cell 
proliferation and tumorigenicity in epithelial ovarian carci-
noma through upregulation of c-Myc and downregulation of 
FOXO3a. Cell death & disease. 2013; 4:e745.

22. Zheng M, Tang L, Huang L, Ding H, Liao WT, Zeng MS, 
Wang HY. Overexpression of karyopherin-2 in epithe-
lial ovarian cancer and correlation with poor prognosis. 
Obstetrics and gynecology. 2010; 116:884–891.

23. Iizuka M, Sarmento OF, Sekiya T, Scrable H, Allis CD, 
Smith MM. Hbo1 Links p53-dependent stress signaling to 
DNA replication licensing. Molecular and cellular biology. 
2008; 28:140–153.

24. Golomb L, Volarevic S, Oren M. p53 and ribosome 
biogenesis stress: the essentials. FEBS letters. 2014; 
588:2571–2579.

25. Allen HJ, DiCioccio RA, Hohmann P, Piver MS, 
Tworek H. Microsatellite instability in ovarian and other 
pelvic carcinomas. Cancer genetics and cytogenetics. 2000; 
117:163–166.

26. Schildkraut JM, Risch N, Thompson WD. Evaluating 
genetic association among ovarian, breast, and endometrial 
cancer: evidence for a breast/ovarian cancer relationship. 
American journal of human genetics. 1989; 45:521–529.

27. Ingham SL, Warwick J, Buchan I, Sahin S, O’Hara C, 
Moran A, Howell A, Evans DG. Ovarian cancer among 
8,005 women from a breast cancer family history clinic: no 
increased risk of invasive ovarian cancer in families testing 
negative for BRCA1 and BRCA2. Journal of medical genet-
ics. 2013; 50:368–372.

28. Tworoger SS, Fairfield KM, Colditz GA, Rosner BA, 
Hankinson SE. Association of oral contraceptive use, other 
contraceptive methods, and infertility with ovarian cancer 
risk. American journal of epidemiology. 2007; 166:894–901.

29. Jensen A, Sharif H, Olsen JH, Kjaer SK. Risk of breast can-
cer and gynecologic cancers in a large population of nearly 
50,000 infertile Danish women. American journal of epide-
miology. 2008; 168:49–57.

30. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks 
LD, Gibbs RA, Hurles ME, McVean GA, Consortium GP. 
A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073.

31. Li H, Durbin R. Fast and accurate short read alignment 
with Burrows-Wheeler transform. Bioinformatics. 2009; 
25:1754–1760.



Oncotarget11420www.impactjournals.com/oncotarget

32. Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, 
Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, 
Haeussler M, Harte RA, Heitner S, Hinrichs AS, et al. The 
UCSC Genome Browser database: update. Nucleic acids 
research. 2014; 42:D764–D770.

33. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, 
Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, 
Heitner SG, Lee BT, Barber GP, Harte RA, et al. ENCODE 
data in the UCSC Genome Browser: year 5 update. Nucleic 
acids research. 2013; 41:D56–D63.

34. Huang da W, Sherman BT, Lempicki RA. Systematic and 
integrative analysis of large gene lists using DAVID bioin-
formatics resources. Nature protocols. 2009; 4:44–57.

35. Huang da W, Sherman BT, Lempicki RA. Bioinformatics 
enrichment tools: paths toward the comprehensive func-
tional analysis of large gene lists. Nucleic acids research. 
2009; 37:1–13.

36. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, 
Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-
Madi A, Olender T, Golan Y, et al. GeneCards Version 3: the 
human gene integrator. Database : the journal of biological 
databases and curation. 2010; 2010:baq020.

37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, 
Golub TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proceedings of the 
National Academy of Sciences of the United States of 
America. 2005; 102:15545–15550.

38. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, 
Vandergriff J, Rabkin S, Guo N, Muruganujan A, 
Doremieux O, Campbell MJ, Kitano H, Thomas PD. The 
PANTHER database of protein families, subfamilies, functions 
and pathways. Nucleic acids research. 2005; 33:D284–D288.


