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ABSTRACT
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. 

Protoporphyrin IX (PPIX) has been used for photodynamic therapy. Mesenchymal 
cancer cells adapt to tumor microenvironments for growth and metastasis possibly in 
association with miRNA dysregulation. In view of the effect of PPIX on cancer-related 
genes, and its potential to inhibit tumor growth and migration/invasion, this study 
investigated whether PPIX enables mesenchymal liver tumor to restore dysregulated 
miRNAs, and if so, whether it sensitizes the cancer cells to chemotherapy. In addition, 
we explored new target(s) of the miRNA(s) that contribute to the anti-cancer effects. 
Of the ten miRNAs predicted by the 3’-UTR of HIF-1α mRNA, PPIX treatment increased 
miR-199a-5p, leading to the inhibition of E2F3 expression which is upregulated in 
mesenchymal liver tumor. miR-199a-5p levels were downregulated in HCC with E2F3 
overexpression. An approach modulating epithelial-mesenchymal transition provided 
the expected changes in miR-199a-5p and E2F3 in vivo. PPIX prevented tumor cell 
growth and migration/invasion, and had a synergistic anti-cancer effect when 
combined with chemotherapeutics. In a xenograft model, PPIX treatment decreased 
overall growth and average tumor volume, which paralleled E2F3 inhibition. Overall, 
PPIX inhibited growth advantage and migratory ability of cancer cells and sensitized 
mesenchymal liver tumor cells to chemotherapeutics.

INTRODUCTION

Aggressive tumor cells are often resistant to 
chemotherapeutic agents and may undergo the epithelial-
mesenchymal transition (EMT) process through increases 
of zinc finger E-box binding homeobox 1/2 (Zeb1/2), 
snail, and twist, and the loss of E-cadherin [1]. In 
addition, EMT promotes cancer cell migration, invasion, 
and metastasis [2]. Several porphyrin-based chemicals 
have been approved for the treatment of certain cancers 
(Photofrin® and Foscan®) or actinic keratosis (Levulan® 
and Metvix®) due to their light-absorbing properties [3, 4]. 
Silencing of ferrochelatase, an enzyme responsible for the 
last step of heme biosynthesis, promoted 5-aminolevulinic 
acid (ALA)-induced photodynamic anti-cancer effect 
by increasing intracellular protoporphyrin IX (PPIX) 
content [5]. In a previous study, we found that PPIX has 

an anti-tumor effect in colon cancer cells. However, it 
was unclear whether PPIX has an effect against tumor 
cells with the EMT phenotype. In the present study, we 
investigated whether PPIX treatment antagonizes the 
proteins specifically overexpressed during the process of 
EMT, and if so, whether PPIX sensitizes tumor cells to 
chemotherapy.

MicroRNAs (miRNAs) bind with the 3′-untranslated 
region (3’-UTR) of complementary target mRNAs 
and cause degradation and/or translational repression 
[6]. Dysregulation of miRNAs is a common feature of 
malignant tumors, and may function to promote oncogene 
activation and/or downregulate tumor suppressors [7, 8]. 
A specific miRNA expression profile is developmentally 
controlled and is changed with differentiation in different 
cell types. Aberrant expression of miRNAs may contribute 
to tumor cell proliferation and migration/invasion [7, 9]. 
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Previously, we found that PPIX suppresses HIF-1α by 
inhibiting the chaperone activity of HSP90 [10]. We 
also observed that PPIX treatment with cobalt chloride 
decreased HIF-1α level at time zero in an experiment 
using cycloheximide, indicative of an additional inhibition 
of de novo protein synthesis. Since HIF-1α levels are 
controlled by transcriptional and translational mechanisms 
[11], we wondered whether the effect of PPIX on HIF-1α 
could also result from post-transcriptional alterations by 
miRNAs.

Microenvironments where a supply of oxygen and 
nutrients are considerably limited play a crucial role in 
angiogenesis and cancer cell migration/invasion [12, 
13]. The E2F transcriptional factors are the downstream 
targets of a certain tumor suppressor (i.e., retinoblastoma 
gene), playing a role in cell proliferation, apoptosis, 
differentiation, and tumor development [14, 15]. Since 
aggressive functions of cancer cells with phenotypic 
changes are orchestrated by various molecules and 
signaling pathways in the need of adaptation to tumor 
microenvironments, we were interested in other molecules 
regulated in conjunction with HIF-1α accumulation, 
and found that E2F3 expression was also controlled by 
common miRNAs interacting with the HIF-1α mRNA.

Of the miRNAs putatively interacting with the 
HIF-1α mRNA, we narrowed our focus to the effect of 
PPIX on miR-199a-5p because the particular miRNA 
regulates cancer-related genes and its expression levels 
decrease in various cancers including liver, colon, breast, 
bladder, and testicular cancers [16–19]. In addition, 
treatment of cancers with miR-199a-5p mimic enhances 
chemosensitivity by regulating autophagy [17, 20]. We 
discovered that PPIX treatment markedly increased miR-
199a-5p levels in tumor cells, and this effect resulted in 
the inhibition of E2F3, a key regulator of G1/S transition 
and tumor growth [21]. Moreover, our results obtained 
from cell-based studies and/or animal experiments indicate 
that PPIX sensitizes a mesenchymal type of cancer cells to 
chemotherapeutic agents so that combinatorial treatments 
of PPIX with representative chemotherapeutics may 
synergistically inhibit growth advantage and migrating 
capability of malignant liver tumor cells.

RESULTS

HIF-1α overexpression in mesenchymal HCC 
cells and chemosensitization by PPIX

To confirm the relationship between EMT and HIF-
1α, we measured basal HIF-1α expression in a series of 
liver tumor cell lines, and found that HIF-1α levels were 
greater in cancer cells with mesenchymal phenotype (i.e., 
SNU398, SNU449, SNU878, and SK-Hep1) than in those 
with epithelial phenotype (i.e., Hep3B, HepG2, and PLC/
PRF5) (Figure 1A). Mesenchymal characteristics were 
verified by vimentin upregulation as well as E-cadherin 

repression (PLC/PRF-5 is classified as an epithelial cell 
type despite slight expression of vimentin [22]). Of note, 
PPIX treatment (3 μM) almost completely inhibited HIF-
1α overexpressed in SK-Hep1, SNU398, and SNU449 
cells (Figure 1B). Moreover, PPIX downregulated 
Zeb1/2, snail, slug, and twist levels in SK-Hep1 cells in a 
concentration- and time-dependent manner (Figure 1C and 
1D), consistent with the finding that hypoxia facilitates 
EMT with HIF-1α overexpression [23, 24].

To determine whether PPIX treatment 
chemosensitizes mesenchymal liver tumor cells to anti-
cancer agents, we next assessed the effect of PPIX alone 
or in combination with chemotherapeutic agents on the 
cytotoxicity of a representative mesenchymal liver tumor 
cell. In this experiment, we used doxorubicin and cisplatin 
because these agents alone or in combination with others 
have been widely applied for cancer chemotherapy but 
elicit chemoresistance through miRNA dysregulation [20, 
25, 26]. Although PPIX treatment alone was moderately 
cytotoxic to SK-Hep1, a combinatorial treatment of 
PPIX with either doxorubicin or cisplatin synergistically 
enhanced cytotoxic activities as compared to each 
treatment alone (Figure 1E). Our results indicate that 
PPIX has a cytotoxic and chemosensitizing effect on 
mesenchymal liver tumor cell.

Upregulation of miR-199a-5p by PPIX

Since miRNAs orchestrate post-transcriptional 
regulation of HIF-1α, we were interested in the effect of 
PPIX on the expression of miRNAs that interact with the 
3’-UTR region of HIF-1α mRNA. Analysis of TargetScan 
6.1 database and miRanda enabled us to extract the known 
or putative miRNAs predicted to bind to the mRNA 
(Figure 2A). Of the miRNAs extracted using computer 
algorithms, PPIX treatment substantially increased miR-
199a-5p levels and to moderate degrees those of miR-519d 
and -20b in SK-Hep1 cells (Figure 2B and 2C). Since 
the rest of the miRNAs were unchanged in subsequent 
experiments, we narrowed our focus to miR-199a-5p, 
a liver-enriched miRNA, because fold-increase of the 
miRNA was the greatest and basal expression of the other 
miRNAs was relatively low. We also confirmed the ability 
of PPIX to increase miR-199a-5p in other mesenchymal 
tumor cells, SNU878 and SNU449 (Figure 2D).

Identification of E2F3 as a new target  
of miR-199a-5p

Given the effect of PPIX on miR-199a-5p 
expression along with its dysregulation in HCC, we next 
explored the novel target(s) of miR-199a-5p to find the 
underlying basis of PPIX’s anti-cancer effect. First, we 
created an integrative network using putative targets of 
the miRNAs affected by PPIX (i.e., miR-199a-5p, -519d, 
and -20b) because combinatorial regulation is a feature 
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Figure 1: Inhibition of EMT markers by PPIX in mesenchymal cancer cell lines. (A) HIF-1α expression and EMT markers 
in liver tumor cell lines. (B) Inhibition of HIF-1α by PPIX treatments. SK-Hep1 cells were incubated in a medium containing 3 μM 
PPIX for 1–12 h, whereas SNU398 and SNU449 cells were treated with 3 μM PPIX for 3 h. Equal loading of proteins was verified by 
immunoblottings for HIF-1β. (C) The concentration-response of PPIX in SK-Hep1 cells. The cells were incubated with the indicated 
concentrations of PPIX for 3 h. (D) The time-course effects of PPIX. SK-Hep1 cells were treated with 3 μM PPIX for 1–12 h. Equal loading 
of proteins was confirmed by immunoblottings for β-actin. (E) Chemosensitization of mesenchymal liver tumor cells by PPIX. SK-Hep1 
cells were exposed to PPIX (3 or 10 μM) with or without the indicated concentrations of doxorubicin (left) or cisplatin (right) for 48 h. 
Value represents the mean ± S.E. from four independent experiments (treatment mean significantly different from vehicle- or PPIX-treated 
group, **P < 0.01, or vehicle group, #P < 0.05).
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of miRNA regulation and a given miRNA may have 
multiple targets in similar signaling pathways (Figure 3A). 
In this approach, we focused on 25 candidate genes that 
have the potential to be controlled by miR-199a-5p in 
association with cancer growth or EMT. Forty three genes 
were additionally chosen as putative targets of miR-
519d and -20b. In the integrated analysis, E2F3, HIF1-α, 
ACVR1B, and FZD4 were linked as key molecules to 

cell proliferation, angiogenesis, TGF-β signaling, and 
Wnt signaling sub-networks, respectively (Figure 3A). 
Specifically, E2F3 was a key bridging molecule to the cell 
proliferation network.

In subsequent experiments, we determined the 
ability of miR-199a-5p to inhibit E2F3 using Luc-E2F3 
3’-UTR reporter construct, and found that miR-199a-5p 
mimic transfection inhibited de novo synthesis of E2F3 by 
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Figure 2: Induction of miR-199a-5p by PPIX. (A) A list of miRNA candidates targeting HIF1A. The miRNAs were found using 
TargetScan 6.1 and miRanda. (B) The effect of PPIX on the expression of miRNAs targeting HIF1A. The levels of miRNAs were determined 
by qRT-PCR assays in SK-Hep1 cells treated with 3 μM PPIX. (C) Sequence motifs of the 3’-UTR of HIF1A match seed sequences of 
candidate miRNAs. (D) The levels of miR-199a-5p after PPIX treatment in mesenchymal HCC cells. qRT-PCR assays for miR-199a-5p 
transcripts in SNU878 or SNU449 cells. For B and D, the data represent the mean ± S.E. from 3 or 4 different independent experiments 
(significantly different from vehicle-treated control, *P < 0.05; **P < 0.01; N.S., not significant).



Oncotarget3922www.impactjournals.com/oncotarget

A) B)

 HEK293 

 Con
vector

 HepG2 

E2F3
3’UTR 

Con
 m

im
ic

miR
-19

9a
-5p

 

mim
ic

Con
 m

im
ic

miR
-19

9a
-5p

 

mim
ic Anti

-N
C

Anti
-

miR
-19

9a
-5p

D)

 E2F3

HIF-1a

-         +         -         +

PPIX
+         -         +         - Anti-NC

Anti-miR
-199a-5p

b-actin

 HepG2 

0
0.2
0.4
0.6
0.8
1.0
1.2

0

0.5

1.0

1.5

 E2F3

Con
tro

l PPIX

1       3       6      12   (h)

Con
tro

l

PPIX
Con

tro
l

PPIX

SNU449SNU878

C)
SK-Hep1

 E2F3

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

b-actin

b-actin

E2F3
3’UTR 

DAPK2

FGF5

FGF12

PDGFRA

MAGI3

PTEN

BCR

CRK

CBL

STAT3

FGF4

MAPK1

TGFBR1

XIAP

CASP9

CASP3

APPL1

STK4

BMP2

RASSF1

TGFBR2

WNT2

FZD7

FZD6

FZD4

FZD3

WNT7B

TDGF1

AKT3

ACVR1B

TGFB2

RB1

CCND3

E2F3CDKN1A

CDKN1B

TFDP1

E2F2
CDK4

ETS1

PPARD

TCF7L1

CDK6

CCND1

E2F1

EGLN1 HIF1A

SLC2A1

EPAS1

VEGFA

RUNX1

OS9

SOS1

KIT

JAK1

SOCS6

PIK3R1

DLG1

COL4A1

ITGA3

SMAD4

LAMC1

LAMA3

EGLN3

CBFB

Angiogenesis

Wnt receptor signaling

TGF-b receptor signaling

Cell proliferation

SP1

CDK2

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
pr

ot
ei

n
 le

ve
ls

 (f
ol

d)

Anti-NC
Anti-miR
-199a-5p

R
el

at
iv

e 
pr

ot
ei

n
 le

ve
ls

 (f
ol

d)

-      +      -      +
+      -      +      - Anti-NC

Anti-miR
-199a-5p

-      +      -      +
+      -      +      -

HIF-1a E2F3

PPIX PPIX

N.S. N.S.
P < 0.01 P < 0.01

Figure 3: Inhibition of de novo synthesis of E2F3 by either miR-199a-5p or PPIX treatment. (A) An integrative network 
using putative targets of miR-199a-5p, -519d, and -20b affected by PPIX. Sub-networks were grouped and each subset core gene was 
bordered and colored. (B) E2F3 3’-UTR luciferase assays. Indicated cells were transfected with control mimic (or anti-NC) or miR-
199a-5p mimic (or anti-miR-199a-5p) in combination with E2F3 3’-UTR reporter construct. (C) Inhibition of E2F3 expression by PPIX 
treatment. Immunoblottings were done on the lysates of SK-Hep1 cells treated with 3 μM PPIX for the indicated times (upper). SNU878 
or SNU449 cells were incubated with 3 μM PPIX for 3 h (lower). (D) The effect of anti-miR-199a-5p transfection on E2F3 and HIF-1α 
expression. HepG2 cells were treated with 3 μM PPIX for 3 h after transfection with anti-NC (control) or anti-miR-199a-5p for 72 h (left). 
The band intensities of E2F3 or HIF-1α relative to β-actin were quantified by scanning densitometry of the immunoblots (right). The data 
represent the mean ± S.E. from 3 different independent experiments (significantly different from vehicle-treated control, *P < 0.05; N.S., 
not significant).
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directly binding to the 3’-UTR of its mRNA; miR-199a-5p 
mimic decreased luciferase expression from Luc-E2F3 3’-
UTR in HEK293 cells, whereas scrambled control miRNA 
transfection had no effect (Figure 3B). Consistently, treatment 
with anti-miR-199a-5p significantly enhanced luciferase 
activity in HepG2 cells, confirming the ability of miR-199a-
5p to inhibit E2F3. In addition, treatment of SK-Hep1 cells 
with PPIX notably diminished E2F3 levels, beginning from 
1 h up to 12 h (Figure 3C upper). PPIX inhibition of E2F3 
was verified in other mesenchymal tumor cell lines (Figure 
3C lower). Treatment of HepG2 cells with anti-miR-199a-
5p diminished the inhibitory effects of PPIX on E2F3 and 
HIF-1α (Figure 3D), supporting the role of PPIX in E2F3 and 
HIF-1α inhibition, as mediated by increase of miR-199a-5p.

Upregulation of E2F3 in human HCC samples 
and in an animal model

To understand biological relevance of the identified 
target in clinical situations, E2F3 levels were compared in 
the samples obtained from a group of HCC patients (Figure 
4A). E2F3 protein levels were significantly upregulated in a 
large fraction of human tumor specimens (51 out of 59 sets of 
paired HCC and adjacent non-tumor samples). In the existing 
GEO database (GSE25097), E2F3 mRNA levels were also 
greater in HCC than in adjacent non-tumor liver tissues 
(Figure 4B). In an effort to confirm a clinical relevance of 
miR-199a-5p dysregulation and E2F3 upregulation, we 
measured miR-199a-5p expression in human samples (n = 
59, in each group); miR-199a-5p levels were significantly 
lower in HCC specimens than in adjacent non-tumor liver 
tissues, indicative of miR-199a-5p dysregulation in tumor 
samples (Figure 4C). Moreover, E2F3 was upregulated 
when miR-199a-5p level was low in the HCC samples 
(Figure 4D). To assess whether E2F3 levels were higher in 
an aggressive type of cancer, we comparatively evaluated the 
protein levels in a set of epithelial and mesenchymal liver 
tumor cells. E2F3 levels were greater in all of the classified 
mesenchymal tumor cell lines compared with the epithelial 
ones (Figure 4E) (The basal E2F3 levels were inconsistent 
in Hep3B). As a continuing effort to find the link between 
EMT and E2F3 overexpression in liver tumor, we took an 
advantage of the ability of Gα12 to promote EMT of liver 
tumors [27]. Interestingly, Gα12-depletion using a shRNA 
approach (shR) in a SK-Hep1-xenograft model significantly 
increased miR-199a-5p level (Figure 4F). Immunoblottings 
verified decreases of E2F3 and HIF-1α in shR xenograft 
tissues, showing that an approach modulating EMT provided 
the expected changes in both miR-199a-5p level and E2F3 
expression in vivo.

Inhibition of mesenchymal tumor cell growth 
and migration/invasion

Given the role of E2F3 in the promotion of cancer 
cell proliferation, we next determined the effect of PPIX 

on DNA synthesis using [3H]-thymidine incorporation 
assay. PPIX treatment inhibited the serum-inducible 
rate of DNA synthesis in SK-Hep1 cells (Figure 5A, 
left). Consistently, miR-199a-5p mimic transfection 
(48 h) significantly diminished tumor cell proliferation 
(Figure 5A, middle). Knockdown of E2F3 (siE2F3) also 
suppressed the rate of DNA synthesis (Figure 5A, right), 
suggesting that E2F3 attribute at least in part to cancer 
cell proliferation. Thus, the ability of PPIX to inhibit 
cancer cell may be associated with E2F3 suppression by 
miR-199a-5p. In addition, transfection with miR-199a-
5p mimic significantly inhibited migration of SK-Hep1 
cells (Figure 5B). Furthermore, we verified the ability of 
PPIX to inhibit serum-induced tumor cell migration and 
invasion (Figure 5C). Together, these results show that 
increase of miR-199a-5p contributes to the inhibition of 
tumor cell growth and migration, which may account for 
the anti-tumor effect of PPIX.

The effects of PPIX on mesenchymal tumor 
xenograft model

To understand the miR-199a-5p-mediated anti-cancer 
effect of PPIX more in depth, we used a mesenchymal 
tumor xenograft animal model derived from SK-Hep1. 
Approximately 90% of BALB/c nude mice formed visible 
and palpable tumor mass two weeks after an injection of 
SK-Hep1 cells (n = 8 or 9, in each group). PPIX treatment 
(0.3 or 1.0 mg/kg body weight, P.O. every other day 
for two weeks) significantly reduced the overall tumor 
growth rate and tumor weight (Figure 6A). We verified a 
significant increase of miR-199a-5p in the tumor specimens 
after treatments with PPIX (1.0 mg/kg) (Figure 6B). PPIX 
treatment also tended to increase miR-519d and -20b 
levels. Immunoblottings confirmed decreases in E2F3 
and HIF-1α levels after PPIX treatments (Figure 6C). 
Moreover, PPIX at the dose of 0.3 or 1.0 mg/kg suppressed 
the induction of E2F3, Ki-67, and CD31 in the xenograft 
tumors (Figure 6D), verifying the ability of PPIX to 
inhibit tumor cell proliferation and angiogenesis. With the 
repression of molecular markers, PPIX facilitated tumor 
cell death, as shown by increased intensities of TUNEL 
staining (Figure 6D). The lack of changes in body weight, 
serum alanine aminotransferase, aspartate aminotransferase 
activities, and total bilirubin content supported that PPIX 
treatments had no deleterious effect on liver function (Figure 
6E and 6F). These results provide an evidence that PPIX 
effectively inhibits the growth and angiogenic advantage 
of mesenchymal liver tumor cell as a consequence of the 
increase of miR-199a-5p targeting E2F3 and HIF-1α.

DISCUSSION

Hepatocellular carcinoma (HCC) is one of the 
most prevalent cancers in the world and is classified as 
a poor prognostic tumor [25]. The high mortality rate of 
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HCC patients is mainly associated with late diagnosis, 
tumor metastasis, and recurrence after surgical resection 
[28]. Promising therapy for HCC metastasis is currently 
very limited. Moreover, EMT phenotype represents 
chemoresistance, metastasis, and poor prognosis in 
HCC. Identification of chemicals that have the ability 

to specifically inhibit the targets responsible for tumor 
aggressiveness would benefit from HCC therapy [28]. 
Our results demonstrate that PPIX treatment inhibited 
the expression of vimentin, Zeb1/2, snail, slug, and 
twist, EMT markers upregulated in mesenchymal HCC 
cells, supportive of its anti-cancer potential against HCC 
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Figure 5: The effects of PPIX on cell proliferation and migration/invasion. (A) Inhibition of DNA synthesis by PPIX treatment, 
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with EMT phenotype. Consistently, PPIX exhibited a 
potent anti-cancer activity in the mesenchymal liver 
tumor cell.

Unfortunately, liver cancers are resistant to most 
of chemotherapeutic agents and a promising therapy for 
HCC metastasis is yet unavailable. Although cancer cells 
display chemoresistance against doxorubicin and cisplatin 
[29–31], several studies have reported regimens using the 
drugs as an alternative therapy of HCC [31, 32]. It has been 
shown that HIF-1α and P-glycoprotein levels are positively 
correlated with each other and their overexpression 
facilitates multidrug resistance in cancer [33]. An important 
aspect of our study is that PPIX treatment synergistically 
enhanced the anti-cancer effect of doxorubicin or cisplatin 
in a mesenchymal tumor cell line. Additionally, we found 
that PPIX treatment inhibited P-glycoprotein in a time-
dependent manner (Supplementary Figure 1). Since the 
uses of doxorubicin or cisplatin have been limited due to 
lack of efficacy and dose-related adverse events including 
cardiomyopathy, nephrotoxicity, and myelosuppression 
[34, 35], our results raised potential of PPIX as an adjuvant 
for anti-cancer therapy. It is expected that therapeutically 
applicable doses of the anti-cancer agents may be reduced 
when applied in combination with PPIX, to avoid serious 
adverse effects of chemotherapy. Previously, we showed 
that hemin, a derivative of PPIX, inhibits HIF-1α and 
restrains neo-angiogenesis [36]. High levels of PPIX 
may cause apoptosis of cancer cells in p53-dependent or 
-independent pathways [37]. However, it remains obscure 
how certain porphyrins inhibit cell growth and cancer 
progression. Since PPIX treatment inhibits the expression 
of major EMT markers increased in mesenchymal cells, the 
target of PPIX is likely to be associated with repression of 
the proteins.

Mature miRNAs bind imprecisely with the 3’-UTR 
regions of complementary target mRNAs and manage 
diverse enzymatic and regulatory functions. TargetScan 
6.1 and miRanda computer algorithms enabled us to 
select the putative miRNAs interacting with the 3’-UTR 
of HIF-1α mRNA, and discover the unexpected ability 
of PPIX to increase miR-199a-5p, -519d, and -20b. 
Among them, miR-199a-5p is one of the most abundant 
miRNAs in the liver. miR-199a-5p and miR-199a-3p 
are both processed from the same precursor, and their 
levels are lessened in several human cancers including 
HCC [34, 35]. Cisplatin treatment decreases miR-199a-
5p, which may account for cancer chemoresistance in 
advanced HCC in association with autophagy activation 
[20]. Consistently, it has been shown that delivery of miR-
199a-5p sensitizes cancer cells to doxorubicin [18, 26]. In 
our previous study, metabolite of oltipraz (M2) was found 
to elevate miR-199a-5p and -20a/b levels, leading to the 
inhibition of HIF1A translation in colon cancer cells [38]. 
Here, we report the much greater effect of PPIX on miR-
199a-5p (i.e., ~20 fold increase). Our findings showing 
a substantial increase of miR-199a-5p by PPIX and the 

link between miR-199a-5p dysregulation and HCC may 
explain the effectiveness of this agent in mesenchymal 
HCC, substantiating the therapeutic potential of PPIX as a 
chemosensitizing agent. p53 may interact with Drosha and 
facilitate the processing of primary miRNA to precursor 
form [39]. Since PPIX causes cancer cell apoptosis by 
interacting with p53 [37], we speculate that p53 may be a 
regulator of pri-miR-199a-5p processing.

An important finding of this study is the identification 
of E2F3 as a new target of miR-199a-5p and of the 
inhibitory effect of PPIX on E2F3. Interestingly, all of 
the miRNA candidates, except miR-18a/b, targeting 
HIF-1α have the same putative binding sites in the 3’-
UTR region of E2F3 mRNA. Thus, HIF-1α and E2F3 
may share common roles in the progression of cancers 
through the miRNAs identified. The E2F transcriptional 
factors are downstream targets of the firstly identified 
retinoblastoma gene (a tumor suppressor), playing a role 
in cell survival, death, and differentiation [14]. Of eight 
E2F members, E2F1–3 isoforms work as transcriptional 
activators, whereas E2F4–8 isoforms act as transcriptional 
repressors [40]. In particular, E2F3a, a major form of E2F3 
expressed in quiescent cells, plays a role in regulating G1/S 
transition, facilitating tumor growth and apoptosis [21, 41]. 
In the current study, we found E2F3 overexpression with 
decrease of miR-199a-5p in mesenchymal liver tumors. 
Thus, inhibition of E2F3 by PPIX through miR-199a-5p 
may contribute to suppressing mesenchymal liver tumor 
growth advantage. Other miRNAs such as miR-20a, -34a, 
-125b, -200b, -217, and -503 may also suppress E2F3 and 
induce cancer cell apoptosis [42–44].

PPIX treatment elicits cancer cell apoptosis through 
its interaction with HSP90, causing p53 accumulation 
in cells by interrupting the binding between p53 and 
human double minute 2 [37]. While p53 represses HIF-
1α transcriptional activity via p300 [45], HIF-1α stabilizes 
wild-type p53 [46]. Thus, the inhibitory effect of PPIX 
on HIF-1α could result from the stabilization of p53. 
Moreover, their interaction becomes more complicated 
because p53 and HIF-1α are simultaneously activated in 
several stress conditions [23, 45, 46]. Consistently, HIF-
1α knockdown partially inhibited the proliferation of 
HCT116, an epithelial cancer cell line, in our previous 
experiment [36]. HCC cells frequently harbor mutated 
forms of p53 (i.e., null or minimal p53 activity) [47]. 
In our study, PPIX treatment inhibited HIF-1α in 
mesenchymal cells having mutated forms of p53 (SNU398 
and SNU449), implying that HIF-1α inhibition by PPIX 
may not solely depend on p53 accumulation.

PPIX distributes reasonably well within tissues and 
is metabolized quickly in normal tissue [8]. According to 
a study describing sono-dynamically induced anti-tumor 
effect of PPIX on hepatoma-22, PPIX in the plasma 
decreased at an early time presumably due to its rapid 
distribution, and the concentration maintained from 4 h 
to 72 h [48]. In a preliminary experiment, treatment with 
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0.3 or 1.0 mg/kg PPIX resulted in a comparable effect on 
E2F3, whereas 0.1 mg/kg PPIX had a mild effect. Since 
PPIX began to inhibit HIF-1α from the dose of 0.3 mg/kg, 
we chose 0.3 and 1.0 mg/kg in the xenograft experiment. 
Our results indicate a saturating and threshold effect of 
PPIX on E2F3 at the dose of 0.3 mg/kg, showing that 
PPIX sensitivity may be higher to E2F3 than HIF-1α. 
The effectiveness of PPIX at the relatively low dose on 
tumor was also verified by the outcomes of TUNEL, Ki-
67 and CD31 assays as well as qRT-PCR for miR-199a-
5p. CD31 is basally undetectable in SK-Hep1 despite its 
endothelial origin [49–51]. Thus, increase of CD31 in the 
xenograft assay represents angiogenic effect [52]. Overall, 
our findings support the conclusion that PPIX inhibits 
mesenchymal tumor growth and angiogenesis, which may 
depend on the increase of miR-199a-5p.

The synergistic increase in the anti-cancer efficacy 
of doxorubicin or cisplatin by PPIX in mesenchymal liver 
tumor cells shown in our data indicates that PPIX may 
be utilized for the treatment of aggressive HCC. This is 
supported by the ability of PPIX to increase a specific 
miRNA involved in the chemoresistance. Moreover, 
PPIX inhibited E2F3 as well as HIF-1α overexpressed 
in mesenchymal liver tumor cells. Thus, PPIX may be 
utilized as an adjuvant of cancer therapy to not only 
enhance chemosensitivity, but promote its anti-tumor 
and anti-angiogenesis activities. Our study opens up 
the possibility of PPIX as a potential candidate in the 
treatment of advanced HCC.

MATERIALS AND METHODS

Materials

PPIX was purchased from Frontier Scientific, 
Inc (Logan, UT, USA). 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyl-tetrazolium bromide (MTT), doxorubicin, 
cisplatin, and anti-β-actin antibody were provided by 
Sigma-Aldrich (St. Louis, MO, USA). Antibodies 
specifically directed against HIF-1α, HIF-1β, and 
E-cadherin were supplied by BD Biosciences Pharmingen 
(San Jose, CA, USA). P-Glycoprotein was purchased from 
Millipore (Billerica, MA, USA). Antibodies recognizing 
E2F3, Zeb1, Zeb2, vimentin, and twist were obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA), 
whereas anti-Snail and anti-Slug antibodies were from Cell 
Signaling Technology (Beverly, MA, USA). Hsa-miR-
199a-5p hairpin inhibitor was purchased from Thermo 
Scientific (Fremont, CA, USA), whereas scrambled control 
siRNA and siRNA specifically directed against E2F3 were 
provided from Dharmacon (Lafayette, CO, USA).

Cells and cell culture conditions

Human liver tumor cell lines (Hep3B, PLC/
PRF5, SK-Hep1, SNU398, SNU449, and SNU878) 

were obtained from the Korean Cell Line Bank (KCLB) 
(Seoul, Korea). HepG2 cell line was supplied from the 
American Type Culture Collection (Manassas, VA, USA). 
Hep3B, SK-Hep1, and HepG2 cells were maintained in a 
growth medium containing Dulbecco’s modified Eagle’s 
medium (DMEM), 10% fetal bovine serum (FBS), and 
1% penicillin-streptomycin whereas PLC/PRF5, SNU398, 
SNU449, and SNU878 cells were cultured in RPMI-1640 
media (Gibco, Gaithersburg, USA) containing 10% FBS 
and 1% penicillin-streptomycin at 37°C in a humidified 
atmosphere containing 5% CO2. For all experiments, cells 
were grown to 80–90% confluence at passages between 
10 and 30, and were deprived of serum for 16 h before 
PPIX treatment.

Immunoblotting assay

Cell lysates were prepared as previously described 
[36]. Equal loading of proteins was confirmed by 
immunoblotting for HIF-1β or β-actin. Scanning 
densitometry of the immunoblots was done using Adobe 
Photoshop (Photoshop CS6, San Jose, CA, USA).

MTT assay

MTT assays were carried out according to our 
previously published paper [53]. Cytotoxicity was defined 
by the change relative to untreated control.

Real-time PCR assay

Total RNAs were isolated with Trizol (Invitrogen, 
Carlsbad, CA, USA) and qRT-PCR assays for mRNAs 
were performed using LightCycler® DNA master SYBR 
Green-I kit (Roche, Mannheim, Germany). miRNAs 
levels were measured using miScript SYBR Green PCR 
kit (Qiagen) according to the manufacturer’s instruction.

Bioinformatic analyses

Gene targets of miR-199a-5p, -519d, and -20b with 
conserved seed-match were predicted by TargetScan 6.1 
algorithm. Statistically enriched signaling pathways of 
gene targets of miRNAs were ranked and categorized 
according to the KEGG pathway using DAVID software. 
The potential target genes of miRNAs of the most enriched 
pathway in cancer were extracted. The gene interaction 
network between the extracted genes was achieved 
according to the STRING v9.1 database and visualized by 
Cytoscape software.

Transfection of miRNAs

The cells were transfected with 100 pmol double-
stranded miR-199a-5p mimic (Bioneer, Daejeon, South 
Korea) or 100 pmol of miR-199a-5p hairpin inhibitor 
(Dharmacon, Lafayette, CO, USA) with respective 
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negative control using FuGENE® HD Reagent (Roche, 
Indianapolis, IN, USA). Transfection efficiency was 
assessed by immunoblotting or qRT-PCR assays. The 
nucleotide sequences for miR-199a-5p mimic are: 
5′-CCCAGUGUUCAGACUACCUGUUC-3′ (guide) and 
5′-ACAGGUAGUCUGAACACUGGGUA-3′ (passenger).

3’-UTR reporter assay

The plasmid containing Luc-E2F3 3’-UTR (Product 
ID: HmiT004527, GeneCopoeia, Rockville, MD, USA) 
was used in reporter assays.

Patient samples

Fifty nine paired samples of HCC tumor and 
surrounding normal liver tissues (NT) collected from 
2006 to 2009 were supplied by the Asan Medical Center 
(Seoul, Korea) after institutional review board approval 
(#2012–0133) in accordance with the ethical guidelines of 
the 1975 Declaration of Helsinki.

[3H]-Thymidine incorporation assay

[3H]-Thymidine incorporation assay was performed 
as previously described [36].

In vitro cell migration/invasion assays

An in vitro cell migration assay was done using 
a 24-well Transwell® as described previously [36]. Six 
visual fields were counted for each filter and each sample 
was assayed in triplicate.

Xenograft mouse model

Animal studies were conducted in accordance with 
the institutional guidelines for care and use of laboratory 
animals. To generate a xenograft tumor model, SK-Hep1 
cells (1 × 107 cells) were subcutaneously injected into the 
left flank of mice (n = 10, in each group). Mice with a 
tumor volume >150 mm3 were selected two weeks after 
the injection and randomly divided into three groups  
(n = 8 or 9, in each group). PPIX (0.3 or 1.0 mg/kg 
body weight) dissolved in 40% polyethylene glycol 400 
was orally administered to the mice every other day for  
2 weeks. In a xenograft tumor model, shCon or shR 
(Gα12)-SK-Hep1 (1 × 107 cells) were subcutaneously 
injected into the left flank of mice (n = 10, in each group). 
Tumor volumes were calculated using the following 
formula: tumor volume (cm3) = 0.52 × (width)2 × (length).

Immunohistochemistry

Tumor tissues were fixed in 10% formalin, 
embedded in paraffin, and the samples were cut by a 
microtome into 4 μm thick sections, and mounted on 

slides. Tissue sections were immunostained with the 
antibody directed against E2F3 (EMD Millipore, Billerica, 
MA, USA), Ki-67 (Diagnostic BioSystems, Pleasanton, 
CA, USA) or CD31 (Thermo Scientific, Fremont, 
CA, USA).

Statistical analysis

Statistical significance was assessed using SPSS 
20.0 by one-way analysis of variance procedures and 
unpaired or paired Student’s t-test.
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