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Targeting mTOR for the treatment of AML.  New agents and 
new directions.

Jessica K. Altman, Antonella Sassano, and Leonidas C. Platanias
1 Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical 
School, and Jesse Brown VA Medical Center, Chicago, IL

Correspondence to: Leonidas C. Platanias, email: l-platanias@northwestern.edu

Keywords: Acute myeloid leukemia, mTOR, TORC2, TORC1, rapamycin, kinase, signaling, chemotherapy, cell survival

Received: June 7, 2011, Accepted: June 13, 2011 Published: June 15, 2011

Copyright: © Altman et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

AbstrAct:
Despite recent advances in the field, the treatment of patients with acute myeloid 
leukemia (AML) remains challenging and difficult. Although chemotherapeutic agents 
induce remissions in a large number of patients, many of them eventually relapse and 
die. A major goal for the development of new approaches for the treatment of AML 
is to enhance the antileukemic effects of standard chemotherapeutics and to design 
effective combinations targeting non-overlapping cellular pathways. The PI3K/Akt/
mTOR signaling pathway plays a critical role in survival and growth of malignant 
cells and its targeting has been the focus of extensive work and research efforts 
over the last two decades. It now appears possible that a major limitation of the first 
generation of mTOR inhibitors can be overcome by a new class of catalytic inhibitors 
of mTOR. There is emerging evidence that such compounds target both TORC1 and 
TORC2 and elicit much more potent responses against early leukemic precursors in 
vitro. In addition, recent studies have shown that combinations of such agents with 
cytarabine result in enhanced antileukemic responses in vitro, raising the prospect 
and potential of use of these agents in combination regimens for the treatment of AML. 

INtrODUctION

Untreated, acute myeloid leukemia (AML) is a 
fatal hematological malignancy. Although remissions 
can be achieved with intensive chemotherapy, the disease 
relapses in a large number of cases and progression and 
death frequently occurs [1-5]. The current treatment 
strategies, involving combinations of cytarabine with an 
anthracycline, result in substantial toxicity and morbidity. 
This is a particularly serious problem in the case of 
older adults with the disease, who frequently have less 
favorable outcomes than younger patients. Undoubtedly, 
there is an urgent need for new treatments and therapeutic 
approaches. AML appears to result from mutations 
of key genes that ultimately lead to deregulation and 
constitutive activation of cellular cascades that promote 
cell growth and mediate anti-apoptotic and pro-survival 
responses. Such changes result in deregulation of normal 
hematopoiesis and promote malignant transformation 
leukemogenesis [6-10]. 

 A major problem in efforts to treat and cure AML 

is the inability to efficiently target and eliminate leukemia 
initiating cells (LICs), which are the cells that initiate 
and maintain the leukemic phenotype [10, 11]. The 
majority of LICs are quiescent and therefore not sensitive 
to various chemotherapeutic drugs that target and kill 
rapidly dividing cells [12, 13]. This fact explains in part 
the difficulty in eliminating leukemia with chemotherapy 
and the relapses seen in the majority of patients, despite 
initially achieving complete responses with classical 
chemotherapy regimens. Aberrant activation of pro-
survival signaling cascades in leukemia stem cells and 
early committed leukemic precursors may also act 
protectively and promote their survival, providing a 
potential therapeutic outlet and elements that can be 
targeted for the treatment of leukemias [12, 14].

tHE PI3’ KINAsE/mtOr PAtHWAY

The PI3’ kinase/AKT/mTOR pathway is a key 
regulatory network of signaling cascades in mammalian 
cells, whose coordinated operations regulate and promote 
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important cellular activities and functions [15, 16]. 
Via controlling activation of the mTOR kinase and its 
downstream effectors, this cellular network ultimately 
regulates mRNA translation of genes that encode for 
pro-oncogenic proteins and, thus, promote malignant cell 
survival [15-18]. Interestingly, this network of signals 
is also engaged and activated by growth suppressive 
cytokines such as interferons (IFNs) [19-21], suggesting 
a competition between factors that suppress growth 
and mitogenic signals for the use and regulation of 
this pathway. PI 3’ kinase (PI3’K) is a lipid kinase that 
controls formation of distinct signaling complexes on 
the membrane of cells [22]. Activation of PI3’K leads 
to engagement of the kinase PDK1 which subsequently 
phosphorylates AKT on threonine 308 (Thr 308), 
ultimately leading to engagement and activation of AKT 
[23], which in turn phosphorylates many and activates 
multiple downstream substrates and effectors, leading 
to the generation of signals that promote survival and 
proliferation [24, 25].

As aberrant activation of the PI3’K/AKT/mTOR 
pathway promotes malignant cell proliferation and 
survival [15, 26, 27], several studies have sought to 
examine the implications of constitutive activation of 
this pathway in tumorigenesis. There is now extensive 
evidence that deregulation of this pathway contributes to 
the tumorigenic potential, a more aggressive phenotype 
and poorer prognosis in several malignancies [28-30]. In 
addition, activation of this pathway has been associated 
with chemotherapy resistance [31, 32], underscoring the 
importance of this signaling cascade as a therapeutic 
target for the treatment of various tumors. For all these 
reasons, there has been a major interest in the development 
of pharmacologic inhibitors of the PI3K/AKT/mTOR 
pathway for various solid tumors and hematological 
malignancies, which has further intensified after the 
detailed mapping and characterization of the pathway the 

last several years. 
The mammalian target of rapamycin (mTOR) is a 

central element of the pathway and a key kinase activated 
downstream of PI3K/AKT. This kinase was originally 
identified in yeast [33], and subsequent work established 
that it is conserved in eukaryotic organisms. mTOR is 
present in two distinct and functionally diverse cellular 
complexes: TORC1 and TORC2 (Fig. 1). Each of these 
2 complexes have common and distinct subunits and 
effectors and ultimately engage different downstream 
elements and activate distinct effector pathways. As 
shown in Fig. 1, the interaction of mTOR with Raptor 
(regulatory-associated protein of mTOR) defines the 
TORC1 complex [34-37]. TORC1 is generally perceived 
as rapamycin-sensitive and beyond mTOR and Raptor, it 
also contains mLST8 [35-37]. The two major substrates 
for TORC1 are the S6 kinase (S6K) and the translational 
repressor 4E-BP1, which binds to and negatively controls 
the function of the eukaryotic initiation factor 4E (eIF4E) 
[16, 19, 35-39]. After its phosphorylation/activation by 
mTOR, S6K regulates downstream engagement of two 
major substrates, the S6 ribosomal protein (rpS6) and the 
eukaryotic initiation factor 4B (eIF4B) [16, 35-39] (Fig.2). 
In addition, there is recent evidence that it phosphorylates 
and negatively regulates the expression of PDCD4 (Fig. 
2), a tumor suppressor protein with inhibitory activities 
on cap-dependent translation via its ability to block the 
function of the translation initiation factor eIF4A and the 
integration of eIF4A into the eIF4F complex [40-44]. This 
protein undergoes phosphorylation by S6K, followed 
by degradation by the ubiquitin ligase βTRCP (45), 
suggesting a mechanism by which the mTOR pathway 
may be targeting and inhibiting tumor suppressor elements 
with regulatory effects on mRNA translation. In addition, 
to regulating activation of S6K, the mTORC1 complex is 
responsible for phosphorylation of the (eIF4E)–binding 
proteins (4E-BP) 1 and 2 on several sites, leading to 

Figure 1: tOrc1 and tOrc2 complexes and inhibitory effects of different mtOr inhibitors. The rapalogs (shown in 
black), inhibit selectively TORC1, while the catalytic TOR inhibitors, (shown in red), inhibit both TORC1 and TORC2.  
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their de-activation and detachment from eIF4E [19, 35-
39]. Such dissociation allows eIF4E activation, which is 
a critical event for the initiation of mRNA translation by 
oncogenic proteins in eukaryotes.

In contrast to TORC1, whose major function is 
control of signals for the initiation of mRNA translation, 
the TORC2 complex plays a different role in normal and 
malignant cells. The TORC2 complex includes mTOR, 
Rictor (rapamycin-insensitive companion of mTOR), 
SIN1, and mLST8 [35-37, 46-48]. The primary function 
of TORC2 is the control of phosphorylation of AKT on 
Ser 473 [35-37], a site whose phosphorylation is essential 
for activation of AKT resulting in induction of its kinase 
domain. Beyond AKT, additional substrates for TORC2 
activity have been identified, including PKCα, [49-51] 
and SGK1 [52, 53]. Notably it was recently shown that 
PKCα gene expression is inducible in AML cells resistant 
to chemotherapy [54].

Because of the high relevance of the mTOR pathway 
in malignancies, first generation mTOR inhibitors, 
including rapamycin and related drugs (rapalogs) have 
been tried extensively in various clinical contexts for the 
treatment of tumors of diverse cellular origin. Two rapalogs, 
temsirolimus (CCI-779) and everolimus (RAD001) have 
shown major activity and have been approved by the 
FDA for the treatment of renal cell carcinoma [55, 56]. 
Since then extensive clinical efforts have been ongoing in 
attempts to evaluate the clinical activity of the three major 
rapalogs (everolimus, temsirolimus and ridaforolimus) in 
the treatment of various solid tumors and hematological 
malignancies [57-60]. 

tArGEtING mtOr IN AML 

The simultaneous deregulation of pathways that 
control both transcription and mRNA translation of genes 
encoding for oncogenic proteins appears to play key roles 
in the pathogenesis and pathophysiology of AML. There 

has been extensive evidence that the PI3’K/AKT/mTOR 
pathway is aberrantly activated and deregulated in AML 
[61]. There is also some evidence that constitutive PI 
3’K activation in AML is mainly due to the activity of 
the PI3K p110δ isoform [62, 63]. In one study, a large 
percentage of samples from patients with AML were found 
to have constitutive AKT activation [64]. In addition, the 
AKT pathway was among the signaling cascades whose 
simultaneous activation with other pathways, such as 
PKCα and ERK, was found to confer a poor prognosis 
in AML [65]. Other recent studies used proteomic 
analysis or single-cell network profiling (SCNP) with 
flow cytometry, to predict the likelihood of response to 
induction chemotherapy for patients with AML [66, 67]. 
Remarkably, lack of response to induction chemotherapy 
in patients older than 60 years or patients with secondary 
AML was associated with increased phosphorylation of 
AKT induced by FLT-3 ligand [67]. 

Recognition of aberrations in the AKT/mTOR 
pathway has led to clinical trials with rapalogs in AML. 
Recher et al showed that rapamycin resulted in blast 
clearance in some patients with AML. However, the length 
of response was limited and not all patients responded 
[68]. There has been also some evidence that rapamycin 
and etoposide exhibit synergistic/enhancing effects on 
AML cells in vitro and in AML mouse models in vivo 
[69]. However, when a clinical trial involving the addition 
rapamycin to salvage chemotherapy (mitoxantrone, 
etoposide, and cytarabine) for the treatment of relapsed 
and refractory AML was performed, the authors failed to 
observe synergistic activity by the combination [70]. 

NEW APPrOAcHEs tO tArGEt tOrc1 
AND tOrc2 cOMPLEXEs IN AML

Although approaches to optimize the administration 
of rapalogs with chemotherapy [71], in various settings 
are still being examined, the use of these agents has 
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Figure 2: Effector elements downstream of mtOr that exhibit positive (in blue) or negative (in red) effects on mrNA 
translation.
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several limitations as discussed above. To overcome the 
limitations of the rapalogs, extensive efforts over recent 
years have been focused on the design and clinical 
development of agents that are catalytic inhibitors of 
mTOR and in addition to TORC1 suppress TORC2, or 
other agents that simultaneously target the PI3’K/AKT 
pathway. Several pan PI3K/AKT/mTOR inhibitors and 
dual TORC inhibitors have been developed and are being 
exploited [72-79]. Such efforts have also been extended 
to determine the effects of such compounds on leukemias. 
Recent studies demonstrated that the dual TORC1/
TORC2 inhibitors PP242 [80] or OSI-027 [81] are potent 
suppressors of both TORC1 and TORC2 activities in BCR-
ABL transformed cells. These catalytic inhibitors were 
shown to elicit potent antileukemic effects in vitro [80, 
81] and in vivo [81] on CML or Ph+ ALL cells, including 
cells expressing the T315I BCR-ABL mutation, which 
is resistant to the kinase inhibitors currently approved 
for use in the treatment of CML and Ph+ ALL (imatinib 
mesylate, nilotinib, dasatinib). 

The potent suppressive effects of dual TORC1/
TORC2 inhibitors on BCR-ABL-transformed cells, have 
raised the possibility that such agents may have activity 
in other leukemias and prompted us to perform additional 
studies to examine the spectrum of the antileukemic 
properties of OSI-027 in AML. In recently published 
work [82], we examined the effects of dual TORC1/2 
inhibition on various elements of the mTOR pathway 
in different AML cell lines and primary leukemia blasts 
from AML patients and compared them to the effects of 
the classic mTOR inhibitor rapamycin. As expected, only 
OSI-027 blocked TORC2-specific cellular events in AML 
cells, such as phosphorylation of AKT on Ser473 [82]. On 
the other hand, both OSI-027 and rapamycin were potent 
suppressors of the activation of the S6 kinase and the 
downstream phosphorylation of its target, S6 ribosomal 
protein [82] Importantly, phosphorylation of 4E-BP1 on 
Thr 37/46 was blocked by OSI-027, but not rapamycin, 
indicating that such phosphorylation is a rapamycin-
insensitive cellular event in AML cells (79). This is 
consistent with the emerging evidence in other systems 
for rapamycin-insensitive TORC1-mediated signals [83, 
84]. Our studies also established that OSI-027 is a potent 
suppressor of primitive leukemic precursors (CFU-L) 
from AML patients. Such effects were much more potent 
than the effects of rapamycin analyzed in parallel [82]. In 
addition, OSI-027 enhanced the inhibitory effects of low-
dose cytarabine (Ara-C), suggesting that combinations 
of dual TORC1/2 inhibitors with chemotherapy may 
provide an approach to enhance antileukemic responses 
of chemotherapy [82].

Altogether, the results of such work raise the 
prospect of future clinical trials using dual TORC1/
TORC2 inhibitors for the treatment of AML. Beyond OSI-
027 there are additional TORC1/2 inhibitors in clinical or 
pre-clinical development [73-77, 85] that may be good 

candidates for such studies. Another potential approach to 
generate antileukemic responses by complete inhibition of 
the mTOR pathway would be to block the PI3’K/AKT axis 
[86]. In fact, approaches to simultaneously block PI3’K 
and mTOR have been developed [87]. NVPBEZ235 is 
a molecule that inhibits the PI3’K and also both TORC1 
and TORC2 complexes [88]. Recent studies using this 
agent in AML have demonstrated potent inhibitory effects 
on PI3’K and TORC1/TORC2 complexes, including 
rapamycin-insensitive TORC1. It was also found to 
inhibit rapamycin-insensitive phosphorylation sites in 
4E-BP1 [89]. Such potent effects were associated with 
decreased cell proliferation and survival of leukemia cells 
and suppressed leukemic progenitor clonogenicity [89], 
raising the prospect of using such pan P13’K/AKT/mTOR 
inhibitors as a potential future approach for the treatment 
of AML.

sUMMArY

While inhibiting mTOR is a promising strategy for 
the treatment of malignancies, agents that selectively 
target TORC1 (rapalogs) have limited clinical activity and 
are unlikely to have major impact in the treatment of AML. 
The development of selective ATP-catalytic inhibitors, 
which have the capacity to block the functions of both 
TORC1 and TORC2 has resulted in new momentum in the 
research field of mTOR targeting in AML and is igniting 
important work with major therapeutic implications. 
Approaches to overcome the limitations of rapalogs for the 
treatment of leukemias are now possible, using either dual 
TORC1/2 inhibitors or pan–PI3K-TORC1/2 inhibitors. 
Our recent studies have established that beyond exhibiting 
potent antileukemic effects, dual TORC1/2 catalytic 
inhibition enhances the effects of cytarabine on primitive 
leukemic precursors from AML patients. These studies 
are very encouraging and suggest a potential role for 
these agents in the treatment of AML patients. They also 
raise the possibility that combinations of dual TORC1/2 
inhibitors with chemotherapeutic agents may provide a 
novel approach to target leukemic initiating stem cells and 
increase the probability of cure for AML patients.
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