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ABSTRACT
Diminished ovarian function occurs early and is a primary cause for age-related 

decline in female fertility; however, its underlying mechanism remains unclear. This 
study investigated the roles that genome and epigenome structure play in age-related 
changes in gene expression and ovarian function, using human ovarian granulosa 
cells as an experimental system. DNA methylomes were compared between two 
groups of women with distinct age-related differences in ovarian functions, using both 
Methylated DNA Capture followed by Next Generation Sequencing (MethylCap-seq) 
and Reduced Representation Bisulfite Sequencing (RRBS); their transcriptomes were 
investigated using mRNA-seq. Significant, non-random changes in transcriptome and 
DNA methylome features are observed in human ovarian granulosa cells as women 
age and their ovarian functions deteriorate. The strongest correlations between 
methylation and the age-related changes in gene expression are not confined to 
the promoter region; rather, high densities of hypomethylated CpG-rich regions 
spanning the gene body are preferentially associated with gene down-regulation. 
This association is further enhanced where CpG regions are localized near the 3’-end 
of the gene. Such features characterize several genes crucial in age-related decline in 
ovarian function, most notably the AMH (Anti-Müllerian Hormone) gene. The genome-
wide correlation between the density of hypomethylated intragenic and 3’-end regions 
and gene expression suggests previously unexplored mechanisms linking epigenome 
structure to age-related physiology and pathology.
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INTRODUCTION

Since the first assisted conception in 1978, assisted 
reproductive technologies (ART) have enabled infertile 
couples to give birth to 4 million children. Assisted 
reproductive technologies (ART) have now circumvented 
most etiologies of male and female infertility; however, 
it has low success in overcoming subfertility related 
to female age. Even with ART, only 12.2% of women 
between age 41 and 42, or 4.2% of women older than 42 
achieve live births with their own oocytes, compared to 
40.1% live birth rate in women younger than 35 seeking 
ART [1]. Due to this low success with ART in older 
women and the increased delay in childbearing during the 
last 40 years, age-related decline in female fertility has 
become the largest and most difficult problem to be solved 
in the field of human reproduction.

Age-related decline in female fertility is mainly 
driven by ovarian aging, or diminished ovarian function 
associated with age [2]. Decline in ovarian function 
is clearly demonstrated by reduced response rates to 
ovarian stimulation during ART as women age, and by the 
restoration of high birth rate in older women using oocytes 
donated from young women [2]. The end point of ovarian 
aging, i.e., ovarian failure, is manifested as menopause. 
Menopause occurs at an average age of 51 and is associated 
with dramatic increase in many age-related diseases.

Diminished ovarian function is generally attributed 
to decreased quantity and quality of oocytes and their 
surrounding granulosa cells during ovarian aging, although the 
underlying mechanisms causing this age-related loss remain 
unclear. Transcription studies have suggested indirectly that 
some age-related changes in oocyte gene expression may 
involve epigenetic machinery [3, 4]. However, epigenetic 
change as a potential mechanism underlying ovarian aging 
process has never been directly investigated, even though 
epigenetic dysregulation has been proposed to play a critical 
role in aging and age-related diseases [5–7].

Loss of ovarian function is one of the most universal 
features of the aging phenotype in humans and other 
primates, thus the investigation of epigenetic mechanisms of 
ovarian aging addresses not only a fundamental question in 
human reproduction, but should also provide an efficacious 
system for the study of aging in general. Further, the easy 
accessibility of granulosa cells made possible by ART 
procedures, as well as the relative homogeneity to which 
these cells can be purified, make this an excellent system 
to study age-related epigenetic alterations. Granulosa 
cells remain dormant in ovaries for up to several decades 
while being subjected to frequent micro-environmental 
changes associated with ovulation; accordingly, epigenome 
alterations in these cells may truly reflect the interaction 
between the genome and environment.

Perturbations in DNA methylation have been 
described as a feature of aging in mammals [8–11] and 
are common in cancerous tissues [6–8, 12]. Such aging-
associated perturbations can be shared among multiple 

cell types or have tissue-specific characteristics [8, 13–15]. 
Although initially described as an epigenetic mark for gene 
silencing [16, 17], DNA methylation has more recently 
been shown to have varying relationships with transcription 
dependent upon specific genomic contexts [18]. Until 
recently, the great majority of studies focused on methylation 
in the promoter region adjacent to the transcription start site 
(TSS), which blocks transcription initiation. Advances in 
genome-wide approaches have revealed that methylation 
in the gene body does not block transcription elongation 
[19, 20] and may have a role in regulating splicing [21, 22]. 
However, little is known about the relationship between 
methylation at the 3’-end of the gene and transcription in 
animal or human cells.

We conducted the first mRNA-seq and genome-
wide DNA methylation study of women with age-related 
differences in ovarian function, and found distinctive 
changes in DNA methylome and transcriptome structures 
in ovarian granulosa cells as women age and their ovarian 
functions deteriorate. DNA methylome features were linked 
to gene expression changes in many genomic regions, 
and an especially strong correlation was noted when the 
enrichment in methylation was mapped to the 3’-end of the 
gene, i.e. in proximity to the transcription end site (TES).

RESULTS

Gene transcription as well as genomic DNA 
methylation patterns in ovarian granulosa cells were 
compared between two groups of women: (i) oocyte donors 
(n = 20) who were young (age 26 ± 2.2 years) and had robust 
response to ovarian stimulation during assisted reproductive 
technology (ART) (mean number of oocytes retrieved = 25); 
versus (ii) poor responders (n = 20) who were older (age 
40 ± 2.3 years) and responded poorly to ovarian stimulation 
during ART (oocytes retrieved ≤ 4 and peak estradiol level 
≤ 1000 pg/ml). The first group served as healthy controls. 
The second group represented the majority of women in their 
early 40s who have the natural age-related decline of ovarian 
functions and therefore respond poorly to ovarian stimulation 
during ART. DNA methylomes were investigated using both 
Methylated DNA Capture followed by Next Generation 
Sequencing (MethylCap-seq) and Reduced Representation 
Bisulfite Sequencing (RRBS) methods.

Transcriptome differences

Six individuals in each group were randomly selected 
and their poly-A (+) selected RNA libraries were indexed 
and sequenced on the same lanes (Gene Expression 
Omnibus Accession Number: GSE62093). Although these 
12 individuals were randomly chosen, their transcriptomes 
fell into two distinct clusters that were consistent with their 
differences in age and ovarian function (Figure S1A). Both 
balanced and unbalanced permutation analyses, consisting 
of 1324 different possible sample combinations in the two 
groups, demonstrated that their transcriptome differences 
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reflected biological differences between groups, rather than 
random individual differences (Figure S1B, S1C).

Several bioinformatics tools were applied to analyze 
the transcriptome data, and these generated comparable 
results (see Methods for details). After eliminating 
genes with high variability among samples based on 

the dispersion graphs (Figure 1A), we identified 3397 
genes that were differentially expressed (FDR < 0.05), 
with 1809 down-regulated in the poor responder group 
(Figure 1B, 1C). Among these differentially expressed 
genes, a number are known to be closely associated with 
ovarian function (e.g. AMH [23], TNFRSF11A, INHBB 
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Figure 1: Transcriptome overview. (A) Dispersion graph of all genes from mRNA-seq. Genes under the common coefficient variation 
threshold (red line) were included in further analysis by EdgeR (qCLM). (B) MA plot of all the genes from mRNA-seq. Genes in red 
showed statistically significant differential expression (FDR < 0.05). (C) Chromosomal distribution of genes with statistically significant 
differential expression. Blue: genes with increased expression in poor responder group. Red: genes with decreased expression in poor 
responder group. Dark red: overlapping regions.
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[24], BMP4, BMP6, BMP7, GDF9, DICER1 [25]). For 
example, TNFRSF11A (also known as RANK) plays a key 
role in apoptosis [26] and is up-regulated in mice with 
environmental toxin induced ovarian failure [27]. GWAS 
studies have shown that SNPs of this gene are related to 
the age of menopause [28, 29]. The expression level of this 
gene was much higher in the poor responder group than 
the oocyte donor group (logFC = 1.79, FDR = 6.6 × 10−3).

IPA pathway analysis revealed these differentially 
expressed genes to be highly represented in multiple 
pathways (Figure S2), several of which are known key 
players in ovarian functions. For example, the polo-
like kinase pathway, which was down-regulated in poor 
responders, plays a major role in cell cycle arrest of 
granulosa cells during their luteinization in the periovulatory 
period [30]. The G2/M cell cycle DNA damage checkpoint 
pathway, also down-regulated in the poor responder group, 
was shown to be significantly associated with the age of 
menopause in large-scale GWAS studies [31].

Genome-wide DNA methylation analysis

A primary objective of our study was to investigate 
whether DNA methylation in granulosa cells may be an 
underlying mechanism contributing to (or in some instances 
protecting against) age-related changes in gene expression 
and ovarian function. To this end, we next compared 
DNA methylomes in ovarian granulosa cells from oocyte 
donors versus poor responders using two approaches: 
MethylCap-seq for broader genomic coverage, and RRBS 
for absolute quantification. (Gene Expression Omnibus 
Accession Number: GSE63470). Due to very limited 
amount of materials available from each poor responder, 
samples containing equal amounts of granulosa cell DNA 
were pooled from 10 individuals in each group. A second 
set of experiments pooling granulosa cell DNA samples 
from independent donor and poor responder groups (ten 
individuals each) was then performed. In addition, three 
technical RRBS repeats were performed with one paired set 
of DNA samples from donor and poor responder groups.

In analyzing the data from these experiments, it 
was important to establish interrelationships between the 
bisulfite- and affinity-enrichment- based approaches. Within 
36 bp regions of direct overlap, CpG density-adjusted 
MethylCap-seq coverage and RRBS-measured methylation 
showed an approximately linear correlation (albeit with high 
scatter); (Fig S3 A, B) further, such localized 36 bp MeCAP 
data could be fitted to enrichment for encompassing 250 
bp peak features (Figure S3 C, D). Although the first and 
second experiments were drawn from independent sets of 
individuals, 95.3% of those 250-bp regions that exhibited 
differential methylation between oocyte donors and poor 
responders (n = 16377) changed concordantly (Figure S4).

Due to intrinsic differences between the two 
methodologies, MethylCap-seq and RRBS methods 
generated strikingly different coverage with respect to 
age-related methylation patterns and change. CpG island 

overlap was found to be 3.5% and 44% for MeCAP 
peaks and RRBS regions, respectively. The median CpG 
methylation level for RRBS data was 9.5%, whereas that 
of MeCAP was 88% (as determined from the subset of 
RRBS data localized within MeCAP peaks).

An initially puzzling observation with respect 
to age-related change was that MethylCap-seq peaks, 
but not RRBS regions taken as a whole, tend toward 
hypermethylation. The MethylCap-seq-specific asymmetry 
is not evident where single experiments and all loci are 
considered (Figure 2A, 2C), but becomes prominent when 
requirements for higher enrichment and for consistent, 
statistically significant change in duplicate experiments 
are imposed (Figure 2B, 2D). The explanation for these 
observations relates to the very different genome coverage 
profiles of the two methods noted above. This became 
evident when we plotted read position representation vs. 
binned methylation levels from the oocyte donor group; 
in so doing, we noticed a bimodal distribution, with the 
highest values corresponding to either very low (10%) or 
very high (90%) levels of methylation (Figure 3A, 3B). 
We then asked whether this distribution might shift in the 
older poor responders, which led us to plot changes in 
methylation in older poor responder group compared to 
young oocyte donors as a function of donor methylation 
levels. As seen in Figure 3, within the range of 10% to 
90%, all four RRBS and both MethylCap-seq datasets 
demonstrated a genome-wide age-related drift toward 
more extreme levels of methylation (Figure 3C). This 
trend could be most accurately quantified for triplicate-
repeat RRBS data derived from the first set of individuals 
(Figure 3D); here, at a high level of methylation (85 to 
95%, in green regions), most loci (67%) showed increased 
methylation in the poor responder group compared to 
young oocyte donors. By contrast, more loci (67%) 
showed decreased methylation in the poor responder 
group at a low level (5 to 15%) of methylation.

A key prediction from preceding analysis is that 
the change bias seen in the MethylCap-seq results will 
likewise be evident in RRBS results where the two 
datasets overlap, i.e., where RRBS read positions fall 
within MeCAP peaks. This is indeed the case (Figure 2E), 
with the asymmetry in RRBS data increasing in accord 
with greater stringency of the criteria for MeCAP peak 
change. We conclude that the MethylCap-seq results 
which reveal elevated methylation in poor responders 
are independently validated by the RRBS experimental 
data. Overall, these highly significant results illustrate a 
genome-wide age-related drift away from intermediate 
toward either high or low levels of methylation.

Correlations between transcriptome and DNA 
methylome changes

Building on the foundation of consistent and 
distinctive patterns of change in both transcriptomes 
and DNA methylomes in granulosa cells from these two 
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Figure 2: Overview of MethylCap-seq and RRBS datasets. (A) Histogram of loci binned by average methylation fold change 
in two sets of MeCap-seq experiments. Minimum enrichment 5-fold for higher value in comparison (n = 2,534,732). X-axis: log2(average 
enrichment in oocyte donor group (enrD)/average enrichment in poor responder group (enrPR)); e.g., x = −1 means 2-fold increase in 
methylation in poor responder group compared to oocyte donor group. (B) Histogram of loci binned by methylation fold change. Minimum 
enrichment 15-fold for higher value in comparison and change significant (two-sided T test; p < 0.05) for duplicate MeCap-seq experiments 
(n = 15,783). (C) Histogram of RRBS results binned by change in fractional 5’-methylcytosine (fmc). Data from first of triplicate RRBS 
datasets. In this and other figures, inclusion of loci (read positions) in the analysis required > = 2 CpGs (read length 36 bp) and read depth 
> = 20. X-axis: difference between oocyte donor group (fmcD) and poor responder group (fmcPR) (n = 221,331). (D) Histogram of RRBS 
results binned by average fmc change, where value was significant (two-sided t-test; p < 0.05) for triplicate RRBS datasets (n = 11,356). 
(E) Agreement in methylation change measurements between MeCap-seq and RRBS datasets. RRBS experiments yielded 33503 loci 
with consistent change (fmcD - fmcPR) in triplicate technical repeats (increase/decrease (I/D) ratio 1.11 (17661/15842)). This reference 
ratio was compared (Fisher’s exact test) to ratios obtained for RRBS locus subsets mapped within the boundaries of MeCap peaks. As an 
initial control (†), RRBS data from the first technical repeat were aligned within MeCap peaks with an I/D ratio of 1.02 (first experiment, 
minimum enrichment 2-fold; normalized from 1.12 by an iterative algorithm); the RRBS subset ratio returned by this filter was 1.27  
(n = 58533). As a second control (††), RRBS data from triplicate repeats (reference set) were aligned within MeCap peaks that exhibited 
an increase in methylation in duplicate experiments (qualitative agreement); this filter yielded a RRBS subset ratio of 2.18 (n = 2302). To 
test for RRBS-MeCap agreement, RRBS loci that exhibited significant change in triplicate repeats (two-sided T test; increase/decrease ratio 
1.23; n = 11356), were aligned within MeCap peaks that showed a significant increase (median 1.67) in duplicate experiments; this shifted 
the RRBS subset ratio upwards to 3.82 (n = 439; Fisher’s exact test *p < 1.27 × 10−30). A similar test for agreement was done by selecting 
RRBS loci with significant change that aligned within MeCap peaks that displayed an increase of > = 1.5-fold (median 1.94) in duplicate 
experiments; here the RRBS subset ratio was shifted to 4.61 (n = 314; Fisher’s exact test **p < 1.24 × 10−27).
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groups of women, we set out to determine how the age-
related alterations in gene expression may be associated 
with epigenome structure at the level of DNA methylation. 
The most straightforward approach was to search for genes 
that exhibit both methylation and transcription change. 
This approach does yield examples, the most interesting 
identified in the present study being the UHRF1 (Ubiquitin-
like with PHD and ring finger domains 1) gene. UHRF1 
expression is down-regulated in the poor responder group 
(logFC = −1.44, FDR = 0.014). For a 450 bp peak spanning 
the eleventh and twelfth coding exons, increasing levels 
of methylation were found in concordant MethylCap-seq 
datasets, as well as in triplicate RRBS data within the peak 

(78% in the oocyte donor group, 92% in the poor responder 
group; p value < 0.028). At one CpG site (chr19:4950849 
(Build37.2)) with significant change in these triplicate 
RRBS datasets (69~74% in the oocyte donor group, 87–
94% in the poor responder group; p value < 0.0033), the 
methylation levels were also validated using EpiTYPER 
assay (71% in the oocyte donor group, versus 89% in the 
poor responder group). UHRF1 is recognized as a main 
‘‘hub protein’’ involved in the fidelity and integration of 
epigenetic information, linking DNA methylation, histone 
modifications, and heterochromatin formation [32, 33]. Its 
over-expression plays an important role in the pathogenesis 
of ovarian cancer and various other cancers [34–36].
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Figure 3: Bimodal distribution and change in DNA methylation levels. (A) Percentage of loci binned by DNA methylation 
for all oocyte donor loci with consistent change in triplicate RRBS technical repeats (n = 33,503). (B) Percentage of loci binned by DNA 
methylation: plot restricted to subset of RRBS read positions with consistent change (fmcD - fmcPR) > = 0.075 (n = 6,556). Gray points: 3 
technical replicates from one set of donors. Red points: RRBS from second independent set of individuals. Black line: average from the four 
datasets. (C) Heatmap depiction of loci binned by oocyte donor enrichment. Green: increased methylation in poor responders relative to 
donors; red: decreased methylation in poor responders. Each binned value derived from minimum locus count of 200. (D) Plot of increase/
decrease ratios as a function of binned fractional methylation values from oocyte donors (triplicate RRBS determinations from first set of 
individuals). Each binned value derived from minimum locus count of 20. Probability estimates (Fisher’s test) represent increase/decrease 
(I/D) locus counts for binned subsets vs. reference set (I/D ratio 1.11 (17661/15842)).
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Beyond examples such as UHRF1, we detected 
no overall statistical correlation between transcription 
and methylation change. Conversely, analyses of the two 
MeCap-seq datasets revealed, somewhat surprisingly, that 
DNA methylation enrichment alone had a strong statistical 
association with gene expression. Furthermore, as we 
examined the enrichment patterns within 2676 autosomal 
genes with highly significant differential expression 
(FDR < 0.05, |logFC| > 0.5), we found that the location 
of DNA methylation enrichment influenced its linkage to 
expression. Compared to control genes without enrichment 
in DNA methylation, genes with methylation enrichment 
at either the 5’-end (≤ 2000bp from the Transcriptional 
Start Site (TSS)), or within the gene body (≥ 3000bp from 
the TSS and Transcriptional End Site (TES)), did not 
correlate with the direction of change in gene expression 
(Figure 4A). By contrast, an elevated percentage of genes 
with methylation enrichment at their 3’-ends (≤ 2000bp 
from TES) showed decreased expression in the poor 
responder group (p <0.01) (Figure 4A).

To gain further insight into this correlation near 
3’-ends, we aligned MeCap-seq enrichment data to 
transcription end sites. This alignment revealed that 1464 
autosomal genes with significantly decreased expression 
in the poor responder group had higher MethylCap-seq 
enrichment in proximity to TES, compared to genes that 
were up-regulated in this group or those with minimal 
change in expression (FDR > 0.05, |logFC| < 0.3) between 
the two groups (Figure 4B). The 3’-end subregion with 
the highest enrichment differences and the strongest 
correlation with the down-regulation of gene expression 
localized within 1300 to 500bp upstream from the TES 
(Figure 4A subregion and 4B shaded area). The varied 
levels of methylation near 3’-ends were in large part due to 
differential CpG contents among the three groups of genes 
(up-regulated, down-regulated, and minimal change in 
expression). Of note, such differences were not observed 
for aligned promoter regions, where the corresponding 
comparisons revealed methylation to be independent of 
the direction of gene expression change (Figure 4C).

Given MethylCap-seq results indicating a role 
for high CpG content in proximity to the TES, we 
sought to determine whether the RRBS data would be 
confirmatory. This could be demonstrated, but in the 
course of the analysis, two other important parameters 
linking transcriptome and genome/methylome structure 
came to light. The first of these relates to the density of 
bisulfite read positions (bsDens) embedded within gene 
transcription units, where bsDens is presumably a proxy 
for GC or CpG density. By plotting the ratio of down-
regulated to up-regulated expression (D/I ratio) as a 
function of median bsDens values, it can be seen that D/I 
increases very significantly from the lowest to highest 
sorted bsDens quintiles (Figure 5A). By way of reference, 
the lowest quintile corresponds to median gene body 
coverage of GC-rich regions of 17.3% (where the minimal 
unit for GC-richness is > 50% over 100 bp). The highest 

bsDens quintile corresponds to 79.3% of gene bodies 
spanned by GC-rich domains. A somewhat comparable 
relationship is seen in the MethylCap-seq experiments, 
but only for lower MeCAP peak densities and with less 
significant p values (Figure 5B).

The second parameter influencing D/I transcriptome 
ratios is gene body methylation. To obtain a preliminary 
evaluation of this parameter, we again plotted the D/I 
expression ratio as a function of median quintile bsDens 
values, but this time for subsets of genes with high vs. 
low methylation. The rationale for comparing quintile 
plots of gene subsets is that the contribution of the bsDens 
variable is effectively normalized, allowing bias from the 
latter determinant to be removed from the comparison. 
As seen in Figure 6A, B, these high and low methylation 
subsets diverge, albeit in a complex pattern. Similarly, we 
used the quintile plotting strategy to obtain a preliminary 
estimate of the role of bisulfite read density position, 
comparing the full gene set to a subset where all bsDens 
values are localized within the 3’ terminal quarter of gene 
length (Figure 6C, 6D). As shown from this plot, the D/I 
expression ratio is again elevated in association with TES 
proximity to GC-rich regions.

It should be noted that a number of gene examples 
which have been studied in relation to age-related decline 
in ovarian function have properties consistent with the 
parameters identified above. In this context, the most 
interesting example is the Anti-Müllerian Hormone 
(AMH) gene, which has a very high GC content (96.6% of 
gene body is > 50% GC-rich), has a partially methylated 
CpG island close to its TES (Figure 7), and exhibits 
decreased expression in poor responders. AMH plays a 
key role in primordial follicle recruitment [23] and is a 
widely used marker for diminished ovarian reserve [37, 
38]. Expression of AMH in the poor responder group was 
strikingly down-regulated (logFC = −2.92, FDR= 5.9 × 
10−13) in our dataset. As determined by triplicate RRBS 
results, the CpG island that spans the gene 3’-end was 
methylated at 13% vs. 8.7% in young donors and poor 
responders, respectively (p < 0.02).

An alternative strategy to evaluate potential linkage 
between transcriptome patterns and either methylation 
or TES proximity of GC-rich regions is to evaluate 
these variables while holding bsDens constant. This was 
accomplished by determining the gene body bsDens value 
for a queried gene subset, then randomly sampling high 
and low GC-rich pools from the reference gene set so as 
to yield a closely matching median bsDens value. The 
sampling procedure was then repeated 10,000-fold to 
generate non-parametric estimates for the significance of 
observed subset D/I expression values.

Applying this strategy to investigate the role of 
RRBS-measured DNA methylation initially yielded only 
results of borderline significance (Figure 8A). However, 
restricting the analysis to a subset of genes with a 
moderately high RRBS read density (bsDens > 0.5, or in 
the upper 40th percentile, which corresponds to 55% of 
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Figure 4: Relationship between location of DNA methylation enrichment in MeCap-seq data and the direction 
of gene expression change. (A) Genes with significant differential expression (FDR < 0.05) were selected for overlap by 2kb 
regions with > = 5-fold MeCap enrichment; direction of expression change was then correlated with the gene subdomain to which 
methylated regions mapped ( p values calculated using Fisher’s exact test, compared with the control.)
(i).  control: genes with significant expression change not overlapping methylation-enriched regions (n = 723 vs. 665, 

genes with decreased vs. increased expression in the poor responder group, respectively).
(ii). 5’ end: center of methylation enrichment located within gene, ≤ 2000 bp from TSS (n = 76 vs. 61; p > 0.05).
(iii). mid region: center of methylation enrichment located > 3000 bp from either TSS or TES (n = 375 vs. 329; p > 0.05).
(iv). 3’ end: center of methylation enrichment located ≤ 2000 bp from TES (n = 178 vs. 89; *p = 1.3 × 10−5).
(v).  3’ end subregion: center of methylation enrichment located within a window of −1300 to −500 bp from TES (n = 85 

vs. 28; *p = 9.7 × 10−7). This subregion was chosen based on Figure 4b shaded area.
(B) Near the 3’-end (TES), genes with decreased expression in poor responder group (red, n = 1464) showed increased 
MeCap enrichment, compared to genes with minimal expression changes (black, n = 7,315) and those with increased 
expression (blue, n = 1212). The window showing the greatest difference in enrichment was −1300 to −500 bp from the 
TES (gray rectangle). (C) Near the 5’-end (TSS), no difference in MeCap enrichment was observed among genes with 
decreased expression (blue), increased expression (red), and minimal expression change (black).
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GC-rich regions) yielded more striking methylation-related 
deviations (Figure 8B). From these plots we infer that for 
GC-rich regions distributed across the entire gene body, 
hypomethylated domains tend to correspond to increased 
D/I expression ratios, whereas a weaker converse effect is 
observed for moderately hypermethylated domains.

Lastly, the same repeated sampling strategy was 
applied to check for RRBS-based confirmation of the role 

of 3’-end localization of GC-rich domains on age-related 
transcriptome differences. Here we determined D/I 
expression ratios and estimated probability values where 
all informative bisulfite read positions were confined to a 
specified gene body quartile. Only for the TES-proximal 
quartile subset were both an elevation of the D/I ratio 
and a significant positive correlation observed between 
down-regulation of gene expression and bisulfite read 
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by comparison of quintile and relevant control (“all”) gene count pairs using Fisher’s exact test.
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position (Figure 8C, 8D). This relationship was found to 
hold whether all genes were considered (D/I = 2.16; p 
< 0.0044), or the analysis was restricted the upper 40th 
percentile subset for GC-richness (D/I = 2.7; p < 0.011).

DISCUSSION

Unlike most other organs, human ovarian function 
declines sharply and uniformly from the third decade, 
and all major functions are completely lost by the early 
fifth decade. The postmenopausal phase makes up a large 
proportion of a woman’s life span and has direct impact 
on age-related diseases. Beyond this impact, the uniform 
age-related decline in ovarian function and early-onset 

end point in ovarian aging make human ovarian granulosa 
cells an excellent experimental system for aging research. 
The high degree of agreement among independent sets of 
individuals in our study supports this conclusion.

Comparisons of both transcriptome and DNA 
methylation patterns in granulosa cells from older women 
with natural age-related decline in ovarian function (poor 
responders) to those from young healthy donor controls 
revealed clear differences between the two groups. We 
found that the direction of methylation change can be 
understood, at least in part, as a function of young donor 
(control) methylation levels; thus, increased methylation 
is predominant at more highly methylated donor sites, 
whereas decreased methylation occurs frequently at poorly 
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Figure 6: Association of the direction of gene expression change with bisulfite peak density and methylation levels 
in RRBS data (analysis 1). X-axis: Median RRBS locus density in each quintile. Bisulfite densities (bsDens) were calculated as: 
100 * (number of bisulfite loci within the gene *36)/gene length in bp. Y-axis: Ratio (number of genes with decreased expression in poor 
responders: number of genes with increased expression) Black points (panels A – D): plot derived from RRBS reference gene set (same as 
Figure 5, panel A; n = 15203). (A) Red points: gene subset with average intragenic methylation level of RRBS loci < 0.5. (B) Red points: 
subset with average intragenic methylation level of RRBS loci > 0.5. (C) Red points: gene subset with RRBS loci localized within 5’-end 
quartile of gene length, i.e., distance from TSS to the most 3’-proximal locus less than 25% of total gene length. (D) Red points: subset 
with RRBS loci localized within 5’-end quartile of gene length, i.e., distance from TSS to the most 5’-proximal locus greater than 75% of 
total gene length.
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methylated donor sites. This genome-wide age-related 
drift toward more “extreme” levels of methylation has not, 
to our knowledge, been reported previously.

Using the set of bioinformatics tools developed for 
this study, we were able to link DNA methylation levels 
to gene expression changes across the transcriptome, and 
thereby to identify several unique characteristics of these 
associations on the genomic level. One major finding was 
that the strongest correlation between DNA methylation 
and age-related variation in gene expression was observed 
when the 3’-end of the gene was GC-rich, as demonstrated 
by high methylation enrichment in the MeCap-seq data 
or peak density in the RRBS datasets. This association 
was supported by three lines of evidence: (i) among all 
genes with significant differential expression (FDR < 0.05, 
|logFC| > 0.5), genes with methylation enrichment at the 
3’-end were more likely to be down-regulated in the poor 
responder group (Figure 4A); (ii) genes that were down-
regulated in the poor responder group showed higher levels 
of MeCap-seq enrichment in proximity to TES, compared 
to those with up-regulation or no change (Figure 4B); (iii) 
when the RRBS peaks were distributed solely in the 3’-end 
quartile of gene length, a significantly higher percentage 
of genes down-regulated in the poor responder group, as 
compared to the rest of the genes (Figure 6C, D; Figure 
8C, 8D). The relationships between methylation level and 

gene expression change were more complex (Figure 6A, B; 
Figure 8A). When only genes with moderate to high GC-
richness were considered (i.e. bsDens > 40th percentile), 
low methylation levels (< 50% methylated) were clearly 
associated with an elevated percentage of down-regulated 
genes (i.e., D/I ratio > 2) (Figure 8B).

Although methylation of the promoter region 
is well established as a silencing mechanism, and the 
gene body has recently been recognized as a major 
mechanism for regulating gene expression in many 
tissues [18, 39], methylation at 3’-end of the gene has 
received little attention except in plants [40]. One earlier 
study did show that increased methylation at 3’-UTR of 
a tumor suppressor gene p15INK4b resulted in decreased 
transcription of this gene in primary lymphoma [41]. 
Another study in colorectal cancer demonstrated tumor 
specific DNA methylation of CpG islands located in 3' 
exons was associated with up-regulation of IPF1/PDX1 
and OTX1 gene expression [42]. In a recent manuscript, 
Yu et al. reported a group of 3’ CpG islands that 
gained methylation during human embryonic stem cell 
differentiation, and regulated transcriptional activation via 
a CTCF-blocking mechanism [43]. With respect to age-
related gene expression change, the relationship to 3’-end 
methylation has not, to our knowledge, been previously 
explored on the genomic level in animal or human cells.

1 2960 (bp)

Figure 7: DNA methylation pattern of AMH gene. DNA methylation coverage was calculated by summing the reads from both 
groups in two experiments. Gene structure of AMH: thick blocks are exons, thin lines within the gene are introns. CpGi: CpG island. Three 
neighboring genes are shown in gray.
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It is known that many regulatory factors associated 
with mRNA 3’-end formation also collaborate in the 
initiation of transcription, and several of these factors are 
involved in setting up appropriate chromatin structure 
to facilitate efficient transcriptional elongation and 
termination [44, 45]. An aging-related example that may 
illustrate such mechanisms is the regulatory element 
AE3’, found in the 3’-UTR of FIX, which is responsible 
for an age-related increase in coagulation factor IX mRNA 
levels [46, 47]. Our data, however, are equally consistent 
with the possibility that gene 3’-ends may play a role 
in complex RNA processing or RNA export regulatory 
networks, and may thereby contribute to altered gene 
expression associated with aging. It is also possible that 

GC-richness in proximity to TES, or elsewhere within the 
gene body, may result in transcription blockage, since it 
has been demonstrated in vitro that GC-rich homopurine-
homopyrimidine stretches produce such blockage through 
formation of R-loops [48]. R-loops have been associated 
with genome instability [49], and it is plausible that they 
could similarly promote epigenome instability.

AMH, a key gene in age-related decline in ovarian 
function, stood out as a striking example linking the 
age-related down-regulation of gene expression and the 
partial, low-level methylation in such GC-rich regions 
spanning 3’-ends. This link between DNA methylation in 
proximity to TES and gene expression may be mediated 
by as yet unidentified sequence motifs, or may indicate 
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that methylation levels can serve as informative marks 
for the involvement of other regulatory mechanisms such 
as nuclear architecture, chromatin structures containing 
Polycomb group family members, transcription factors such 
as CTCF [43], or non-coding RNA. Further investigations 
are needed to determine how genome and epigenome 
structure near the 3’-end of the gene interact with these or 
other elements in the regulatory network of gene expression.

In conclusion, using next-generation sequencing 
approaches, we linked, for the first time, age-related 
decline of ovarian functions to distinctive gene expression 
changes and DNA methylation status in human ovarian 
granulosa cells. A genome-wide age-related drift toward 
more “extreme” levels of methylation was observed in 
both MeCap-seq and RRBS datasets. More importantly, we 
discovered a strong correlation between gene expression 
change and DNA methylation enrichment in proximity 
to TES, which has not previously been described on a 
genomic level in animal or human cells. Higher intragenic 
levels of GC-richness, as indicated by methylation 
enrichment in MeCap-seq or BS peak density in RRBS, 
especially when concentrated at gene 3’-ends, were 
associated with reciprocal changes in gene expression.

METHODS

Ethics 

All human materials used in this study were received 
under approval of the Office of Human Subjects Research at 
Eunice Kennedy Shriver National Institute of Child Health 
and Human Development, National Institutes of Health.

Sample collection and cell purification

Follicular fluid samples were collected from Shady 
Grove Fertility Research Center. At the time of oocyte 
retrieval, after the oocytes were collected for continued 
ART treatment per standard ART laboratory protocol, 
the remaining follicular fluid was collected rather than 
being discarded. Follicular fluid samples were collected 
anonymously from two groups of women: oocyte donors, 
and poor responders (oocytes retrieved ≤ 4 and peak 
estradiol level ≤ 1000 pg/ml).

Ovarian granulosa cells were purified from each 
follicular fluid sample with similar methods as previously 
described [50]. Briefly, samples were placed on a Ficoll-
paque gradient and centrifuged for 20 min at 900 × g at 
room temperature. The interphase was collected, and 
washed in DPBS. Collagenase was added for 4 minutes 
to disperse the cell clumps. After the cells were washed 
again with DPBS, CD45 labeled Dynabeads (Invitrogen, 
CA) were used to deplete leukocyte contaminations. The 
purity of each granulosa cell preparation was confirmed 
with flow cytometry (FACSCalibur; BD Biosciences, CA) 
using anti-CD45 (Miltenyi Biotec, CA) and/or anti-FSHR 
antibody (Assay Biotechnology, CA) (Figure S5). Over 

95% purity was achieved for all granulosa cell samples 
before being used in subsequent experiments.

RNA extraction and sequencing

Total RNA was extracted from purified granulosa 
cells using RNeasy Micro kit (Qiagen). RNA integrity and 
concentration were measured using RNA 6000 Nano kit 
(Agilent) on Agilent 2100 Bioanalyzer. All samples used 
for RNA-seq had RNA integrity number (RIN) of 9 or 
above.

For each sample, an mRNA sequencing library was 
prepared from 150ng of total RNA following Illumina 
TruSeq RNA low-throughput protocol. Briefly, poly-A 
containing mRNA was purified and fragmented. After 
cDNA synthesis, ends were repaired and adenylated. 
Indexed RNA adapters were ligated. All 12 indexed RNA-
seq libraries were pooled and loaded on the same three 
lanes on Illumina HiSeq2000 for sequencing. The mRNA 
library and sequencing was done at NIH Intramural 
Sequencing Center (Rockville, MD). Approximately 40 
million paired-end reads were achieved for each sample.

Methylated DNA capture followed by next-gen 
sequencing (MethylCap-seq)

Genomic DNA was extracted from purified 
granulosa cells using QIAamp DNA mini kits (Qiagen). 
In each independent set of experiments, equal amounts of 
genomic DNA were pooled from 10 different individuals 
in each group (oocyte donors versus poor responders), after 
sonication and before MethylCap assays. We used 1–3 mg 
of fragmented DNA after pooling for each MethylCap 
assay. Methylated DNA Capture was performed as 
previously described [51, 52] by using MethylCap kit 
(Diagenode, NJ). Briefly, methylated DNA fragments were 
captured by incubating 2 μg of MethylCap protein (His6–
GST–MBD, Diagenode) with 1 μg of fragmented DNA in 
binding buffer at 4oC for 2 hours. Washed magnetic beads 
were then incubated with the capture reaction in binding 
buffer at 4oC for 1 hour. After the bead–GST–MBD–DNA 
complexes were washed, the captured DNA fragments 
were eluted with High Elution Buffer. Input DNA was 
also treated with High Elution Buffer. The enrichment 
of captured DNA after MethylCap kit was confirmed by 
comparison to the input DNA with qPCR using human 
H19 and UBE primer pairs (Eurofins MWG Operon).

Sequencing libraries were prepared following 
Illumina ChIP Sequencing protocol. The DNA was end-
repaired and ligated with Illumina sequencing single 
ended adaptors as described previously [51, 52]. After 
ligation, the DNA was enriched by 18 cycles of PCR 
with primers complementary to the single ended adaptor 
sequences followed by agarose gel size selection and 
purification.

For each MethylCap sequencing library, one to two 
lanes of 36 bp single-end sequencing were performed 
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on the Illumina Genome Analyzer II according to the 
manufacturer’s protocol at NIH Intramural Sequencing 
Center (Rockville, MD). Each sample achieved 
approximately 40 million reads.

Reduced representation bisulfite sequencing 
(RRBS)

We based our RRBS method on two previously 
published protocols [53, 54]. Briefly, 1 ug of genomic 
DNA from each pool of purified granulosa cells (see 
MethylCap-seq method section for details) was digested 
with MspI restriction enzyme (New England Biolabs 
[NEB]). The DNA samples were end-repaired, ligated 
to Illumina methylated DNA adaptors and separated on 
agarose gel to isolate 150 ~ 340 bp fragments. DNA was 
then bisulfite converted using EZ DNA Methylation Kit 
(Zymo Research) and amplified by PCR.

Each RRBS library was sequenced on two lanes on 
the Illumina Genome Analyzer II sequencer according 
to the manufacturer’s protocol at the NIH Intramural 
Sequencing Center (Rockville, MD). Each sample 
achieved approximately 40 million reads.

EpiTYPER assay

Quantitative high-throughput DNA methylation 
analysis was done by MassARRAY system as described 
elsewhere [55], using Sequenom MassARRAY 
quantitative methylation analysis system. Briefly, genomic 
DNA was isolated and treated with bisulfite as described 
above. Bisulfite treated DNA was amplified using nested 
primers covering CpG sites within the UHRF1 gene, 
spanning from Chr19:4950704 to Chr19:4950993. The 
primer sequences are available upon request. After Shrimp 
Alkaline Phosphatase treatment, the PCR products were 
used as a template for in vitro transcription and RNase A 
Cleavage for the T-reverse reaction as per manufacturer’s 
instructions (Sequenom hMC). The samples were 
desalted and spotted on a SpectroCHIP (Sequenom), 
followed by spectral acquisition on a MassARRAY 
Analyzer (Sequenom) at Einstein Epigenomics Core 
Facility. The resultant methylation calls were performed 
by the EpiTyper software v1.0 (Sequenom) to generate 
quantitative results for each CpG site.

Bioinformatics analysis

Transcriptome data was analyzed using STAR 
alignment followed by EdgeR [56, 57] or DESeq, or 
analyzed with the combination of Tophat, Cufflinks [58], 
and EdgeR. These different methods yielded comparable 
results. The gene expression results shown in this paper 
were generated from STAR/EdgeR (quantile-adjusted 
conditional maximum likelihood (qCML) method) 
pipeline. Ingenuity pathway analysis (IPA, http://www 
.ingenuity.com/) was used to identify biological networks 

that were over-represented in the list of genes with 
significant expression changes.

Reads from MeCap-seq experiments were aligned 
to human genome hg19 using Bowtie [59]. Bismark [60] 
was used for read mapping and methylation calling in 
RRBS datasets. Analyses of RRBS data were limited to 
reads that covered at least 2 CpG sites. Additional analyses 
were done using Perl scripts and C programs, which are 
available upon request (to B.H.). The gene annotation 
algorithms developed by B.H. for overlapping features 
at each genomic location are shown in the schematics 
(Figure S6). This set of programs allowed for detailed 
annotations at each genomic position, which were then 
used for fast searches and simultaneous comparisons of 
multiple genomic features.

This study utilized the high-performance 
computational capabilities of the Helix Systems (http://
helix.nih.gov) and the Biowulf Linux cluster (http://
biowulf.nih.gov) at the National Institutes of Health, 
Bethesda, MD.
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