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ABSTRACT
Epidermal Growth Factor Receptor (EGFR) targeted therapies have yielded 

variable results in clinical trials for breast and head and neck cancers, despite EGFR 
overexpression in these malignancies. Primary resistance to these therapies is 
common, with secondary resistance often arising due to the overexpression of other 
receptor tyrosine kinases (RTKs) and increased downstream signaling from these 
RTKs. Additionally, non-RTK-driven mechanisms also contribute to anti-EGFR therapy 
resistance. This review highlights the role of AXL, MET, and RON families of RTKs in 
tumor progression and resistance to anti-EGFR therapies, focusing on breast and head 
and neck cancers. In breast cancer, the review discusses the intricate relationship 
between EGFR expression and therapeutic outcomes, emphasizing the challenges and 
potential strategies for enhancing EGFR-targeted treatments. It details how EGFR 
inhibition affects tumor progression and survival in head and neck cancer, noting 
that small molecule inhibitors and monoclonal antibodies, such as cetuximab, can 
lead to trans-activation of other RTKs. The review further explores non-RTK-driven 
resistance mechanisms in breast cancer, including EGFR activation through EGF-related 
ligands, nuclear localization of EGFR, and the overexpression of resistance-conferring 
proteins. In head and neck cancer, resistance is also mediated by TLR4-MyD88 signaling 
activation, loss of tumor suppressor genes like PTEN, activating mutations in PI3K, 
and involvement of STAT3. By synthesizing current insights on both RTK and non-RTK 
mediated resistance against anti-EGFR therapies, this review aims to guide future 
research and improve therapeutic strategies for these cancers.

INTRODUCTION

Receptor tyrosine kinases (RTKs) constitute a 
family of highly conserved proteins that are overexpressed 
in multiple cancers, making them prime candidates for the 
development of targeted therapies. RTKs are characterized 
by structural features, including an extracellular domain 
responsible for ligand binding, a transmembrane domain, 
and an intracellular domain with kinase activity. In their 

inactivated state, RTKs may exist as monomers or in a 
closed conformational state, but upon ligand binding, 
they can dimerize, leading to the phosphorylation of 
tyrosine residues within the intracellular domain (i.e., 
EGFR family members) [1]. However, some RTKs 
dimerize even in the absence of ligands (i.e., the insulin 
receptor) [2, 3] with RTK dimers formed in the absence 
of ligands becoming further stabilized with ligand binding 
[3]. Dimerization is then followed by phosphorylation 
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events which subsequently activate downstream signaling 
pathways, such as Phosphatidylinositol 3-kinase/protein 
kinase B/mechanistic target of rapamycin (PI3K/Akt/
mTOR), Janus kinase 2/signal transducer and activator 
of transcription (JAK2/STAT), Focal adhesion kinase 
(FAK), Nuclear factor-kB (NF-kB) and Mitogen-activated 
protein kinase/extracellular-signal-regulated kinase (RAS/
MAPK/ERK), which play crucial roles in cell growth, 
survival, and proliferation. In cancers, RTKs often exhibit 
overexpression, gain-of-function mutations, chromosomal 
rearrangements, and genomic amplifications, resulting in 
their constitutive activation [4]. Consequently, the aberrant 
activation of signaling pathways downstream of RTKs 
can lead to uncontrolled cell growth contributing to tumor 
formation and progression.

The epidermal growth factor receptor EGFR, 
known as HER(Human Epidermal Growth Factor)1 
is overexpressed in both breast and head and neck 
cancers [5, 6]. This receptor plays a crucial role in cell 
proliferation, angiogenesis, apoptosis inhibition, motility, 
metastasis, and adhesion, making it an attractive target for 
therapeutic intervention. Anti-EGFR therapy has shown 
promise in specific clinical trials for head and neck cancer. 
However, in breast cancer, the response to anti-EGFR 
therapy has been mixed owing to the diverse phenotypes 
and inter-tumoral heterogeneity. The occurrence of 
primary and secondary resistance (resistance to therapy 
developed after the patient’s initial response to the therapy) 
to EGFR targeted therapies are the emerging challenges 
that are faced by the patients. Treatment resistance hinders 
treatment efficacy and limits long-term benefits. In both 
breast and head and neck cancers, in addition to resistance 
to anti-EGFR therapy, additional obstacles include a 
lack of reliable biomarkers for predicting therapeutic 
responsiveness. Overcoming these roadblocks is essential 
to unleash the full potential of EGFR-directed therapy.

In this report, we aim to review RTK signaling 
pathways using breast and head and neck cancer as model 
systems, given their relatively high levels of EGFR 
expression. The primary focus will be on the mechanisms 
behind anti-EGFR resistance, which can arise from both 
RTKs and non-RTKs in both cancer types. By gaining a 
thorough understanding of these resistance mechanisms, 
we can gain valuable insights to inform the design of 
future clinical trials and facilitate the development of more 
targeted and effective anti-cancer therapies.

THE ROLES OF RECEPTOR TYROSINE 
KINASES IN TUMOR PROGRESSION 
AND THERAPY RESPONSE

Breast cancer 

Breast cancer exhibits overexpression of multiple 
RTKs, including EGFRs, vascular endothelial growth 
factor receptors (VEGFRs), platelet-derived growth factor 

receptors (PDGFRs), insulin-like growth factor receptors 
(IGFRs), and fibroblast growth factor receptors (FGFRs). 
These receptors initiate signaling cascades that regulate 
cancer stemness, angiogenesis, and metastasis [3–5]. A 
meta-analysis involving more than 11,000 breast cancer 
patients revealed that elevated levels of RTKs, including 
HER2, EGFR and FGFR, are associated with increased 
breast cancer aggressiveness and decreased overall and 
disease-free survival [7]. The known mechanisms by 
which RTKs promote breast cancer progression, maintain 
cancer stem cell phenotypes and drug resistance involve 
the regulation of MAPK, JAK/STAT, and phosphoinositide 
3-kinase (PI3K)/Akt pathways [8–11], as shown in 
Figure 1.

The unique and aberrant overexpression and/or 
activation profiles of RTKs in breast cancers, particularly 
HER2, hepatocyte growth factor receptor (MET), and 
EGFR, make them promising prognostic markers and 
therapeutic targets for disease management. The HER2 
receptor, overexpressed in more than 10% of breast 
cancers, leading to aggressive tumor phenotypes, has 
been effectively targeted with Trastuzumab (Herceptin), a 
humanized monoclonal antibody [12, 13]. Clinical studies 
have shown that adjuvant chemotherapy with Trastuzumab 
increased patient survival and reduced the risk of death in 
metastatic HER2 overexpressing breast cancer [14]. 

MET is another receptor tyrosine kinase that 
plays a role in breast cancer cell growth, invasion and 
angiogenesis. It is recognized as a poor prognostic factor 
in invasive breast cancer, irrespective of other prognostic 
markers like HER2 and EGFR [15, 16]. These data 
suggest that therapies targeting MET signaling pathways 
may also be worth exploring as potential treatment options 
for MET-positive breast cancers.

The HGF (hepatocyte growth factor)/MET pathway 
plays an important role in normal mammary development 
and various breast cancer progression processes, including 
migration, invasion, and tubulogenesis [17–19]. Both 
paracrine and autocrine HGF-dependent MET signaling 
play significant roles in breast cancer progression [20, 21]. 
Specific MET mutations are also known to control the 
progression of primary cancers to metastatic disease; a 
germline mutation of MET, MET-T1010I, was found in 
patients with metastatic breast cancer and is sufficient 
to induce tumor formation and invasion in-vivo [22]. 
MET has been found to co-express and/or crosstalk with 
members of the EGFR family, such as HER2, in breast 
cancer, leading to oncogenesis and drug resistance 
via activation of PI3K/Akt and Ras/MAPK pathways 
[23]. HER2 and MET were found to be co-expressed 
in HER2-positive breast tumors and further abolishing 
MET signaling was able to sensitize these cancer cells to 
Trastuzumab treatment [24]. 

MET also co-signals with other RTKs, such as 
RON, also widely known as the macrophage stimulating 1 
receptor (MST1R), which is overexpressed or constitutively 
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active in more than 50% of human breast cancer cases 
[25]. Ligand-induced activation of MET can promote 
transphosphorylation of RON, which plays an important 
role in the MET signaling cascade [26]. RON signaling 
has been shown to promote mammary tumor growth and 
therapy resistance in various breast cancer mouse models 
[27]. Due to the high homology between RON and MET, 
they share overlapping downstream signaling pathways 
and have been reported to crosstalk with the same receptor 
tyrosine kinases [28]. The association of RON with MET 
and EGFR has been investigated by immunoprecipitation 
and cross-linking experiments, demonstrating receptor 
transphosphorylation, which may play a role in predicting 
therapeutic response and drug resistance in breast cancer 
[26, 29, 30].

Head and neck cancer

Head and neck cancer is often treated with the 
combination of ionizing radiation therapy and systemic 
therapies, including chemotherapy and/or RTK inhibitors. 
In head and neck squamous cell carcinoma (HNSCC), 
the activation of various RTKs plays a significant role in 
disease progression and therapeutic resistance. EGFR has 

been found to be overexpressed and oftentimes aberrantly 
activated in HNSCCs, resulting in increased proliferation 
and pro-tumorigenic effects [6]. Besides EGFR 
overexpression, other factors such as increased ligand 
induced activation of EGFR can also cause enhanced 
proliferation. Moreover, inhibiting the translation of EGFR 
ligands like TGF-α (produced as a result of radiation 
exposure) results in decreased cancer cell proliferation 
[6]. Preclinical studies have shown that EGFR plays a 
radioprotective role in head and neck cancer, leading 
to decreased effectiveness in response to ionizing 
radiation [31]. Vandetanib, a multi-RTK inhibiting drug 
(targeting VEGFR-2, EGFR and RET), has been shown 
to reverse radioresistance both in vitro and in vivo in 
HNSCC, when given in combination with cisplatin [32]. 
Vandetanib was also well tolerated when administered 
with cisplatin and radiotherapy, with 86.7% of patients 
achieving loco-regional tumor control [33]. In addition 
to the EGFR RTK family, other RTKs like IGF-1R are 
frequently activated in up to 94% of patient samples and 
have been implicated in driving head and neck cancer 
progression [34]. Apart from its role in regulating VEGF 
production and tumor angiogenesis, the IGF signaling 
axis is responsible for the activation of anti-apoptotic 

Figure 1: Mechanisms of anti-EGFR therapy resistance mediated by receptor tyrosine kinases in breast cancer. 
Treatment with EGFR TKIs or anti-EGFR antibodies leads to homodimerization or heterodimerization of EGFR family receptors (HER2) 
and other cell surface receptor tyrosine kinases, such as AXL, MET and RON in a ligand-dependent and ligand-independent manner. The 
activation of receptor tyrosine kinases will activate downstream signaling pathways, such as RAS/MEK/ERK, PI3K/Akt, NF-kB and JAK/
STAT, which promote cancer survival, cell-cycle progression, invasion, and migration. Created with https://www.biorender.com/.
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signaling pathways, which in turn leads to upregulation 
of pro-survival pathways, namely MAPK and PI3K-Akt 
(Figure 2). Treatment of HNSCC mouse xenografts with 
monoclonal antibodies targeting both IGF-1R and EGFR 
has provided a significant reduction in tumor volume [34, 
35]. However, the mechanism by which IGF-1R crosstalks 
with EGFR and its impact on head and neck cancer disease 
progression remains elusive.

Another important RTK in head and neck cancer 
is MET. An upregulation of MET/HGF signaling is 
frequently observed. Binding of MET with its ligand 
HGF leads to autophosphorylation of the receptor 
and recruitment of signaling molecules, such as the 
p85 subunit of PI3K and Grb2/Sos complex which 
subsequently activate JNK and MAPK pathways leading 
to increased cell growth (Figure 2). In about 80% of 
head and neck cancer patient samples, MET is found 
to be overexpressed [36, 37]. Somatic mutations, such 
as Y1230C and Y1235D mutations have been detected 
in head and neck cancer driving invasion and an 
epithelial-to-mesenchymal transition (EMT) phenotype, 
respectively [35]. Moreover, head and neck cancer cells 
containing MET are more radioresistant due to the altered 

signaling mechanisms post irradiation [38]. MET/HGF 
signaling has also been shown to be responsible for the 
metabolic reprogramming seen in head and neck tumor 
cells [39]. When treated with HGF, HNSCC cells show 
an upregulation of glycolytic genes namely HK2, MCT1, 
and PFK1, indicating the glycolytic metabolism shift 
[40]. Additionally, the tumor microenvironment of 50% 
of HNSCC patients demonstrates an overexpression of 
HGF which has been reported to increase resistance 
to radiotherapy and to MET targeting tyrosine kinase 
inhibitor JNJ-38877605 via the association of PI3K-
GAB1 [6, 41].

APPROACHES TO TARGET EPIDERMAL 
GROWTH FACTOR RECEPTOR AS 
TREATMENT OPTIONS 

The Epidermal Growth Factor Receptor family 
plays a crucial role in signaling pathways that regulate 
cell growth, survival, differentiation, and proliferation. 
The EGFR (ErbB) family of transmembrane receptors 
consists of four members, including EGFR (ErbB1), 

Figure 2: Receptor tyrosine kinase pathways mediating cancer cell survival, proliferation, invasion and apoptosis 
contributing to treatment resistance in head and neck cancer. EGFR is bound by ligands like EGF or Amphiregulin or TGF-α 
which activate downstream signaling pathways like RAS-MEK-ERK, PI3K/AKT/mTOR and JAK/STAT3 leading to cell survival 
proliferation and metastasis. IGF-1R when activated by IGF1 can activate anti-apoptotic pathways, increase angiogenesis and increase cell 
survival. c-MET activation by HGF is another mechanism by which cells continue to grow and gain invasive properties via the RAS-MEK-
ERK signaling. Created with https://www.biorender.com/.
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HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4). They 
play essential roles in organ development and growth [42]. 
However, specific members, like HER2 and EGFR, are 
frequently found aberrantly expressed and dysregulated 
in breast cancer and head and neck cancer. Under normal 
physiological conditions, EGFR activation occurs through 
dimerization with itself or other receptors in the HER 
family or by binding of its canonical ligands, EGF, TGF-α, 
or amphiregulin (AREG) (Figure 2), leading to signaling 
activation through MAPK, JAK/STAT or PI3K/Akt/
mTOR pathways [6, 42–44]. 

EGFR overexpression: A prognostic marker and 
therapeutic target in breast cancer 

In breast carcinomas, EGFR overexpression has 
been associated with poor prognosis [44]. However, a 
number of clinical trials of EGFR-targeted therapy in 
breast cancer patients conducted in the 1990s and early 
2000s have reported mixed results (Table 1) [50–56], 
partly due to the heterogeneity of breast cancer, diverse 
patient populations, and divergent experimental 
methodologies, making it very challenging to evaluate 

Table 1: Clinical studies of EGFR-targeted therapies in breast cancer

Treatment Drug class Trial number Trial 
phase Patient selection Therapy type Primary 

endpoint Outcome

Cetuximab mAb NCT00232505 
[45] II

Stage IV Triple 
Negative Breast 
Cancer (TNBC)

Mono Overall 
Response Rate 

(ORR)

ORR: 6%

Mono+Carboplatin ORR: 17%

Cetuximab mAb NCT00463788 
[46] II Metastatic

TNBC
Cisplatin Overall 

Response Rate
ORR: 10%

Cisplatin+Cetuximab ORR: 20%

Cetuximab mAb N0436  
[47] II Metastatic

BC Cetuximab+irinotecan Overall 
Response Rate ORR: 11%

Panitumumab mAb NCT00894504 
[48] II Metastatic

TNBC

Panitumumab+ 
gemcitabine/
carboplatin

Overall 
Response Rate ORR: 42%

Cetuximab mAb NCT00600249 
[49] II TNBC Cetuximab+docetaxel

Pathological 
Complete 
Response 

(pCR)

pCR: 24%

Gefitinib EGFR TKI NCT00066378 
[50] II HR+Metastatic 

BC

Anastrozole+placebo Progression-
Free Survival 

(PFS)

PFS: 32%

Anastrozole+Gefitinib PFS: 32%

Gefitinib EGFR TKI NCT00229697 
[51] II ER+Metastatic 

BC

Tamoxifen+placebo Progression-
Free Survival 

(PFS)

PFS: 8.8%

Tamoxifen+Gefitinib PFS: 10.9%

Gefitinib EGFR TKI NCT00239343 
[52] II Stage II–IIIA BC

Epirubicin+Paclitaxel+ 
Gefitinib

NA NA
Epirubicin+Paclitaxel+ 

Placebo

Gefitinib EGFR TKI NCT00057941 
[53] II

Stage I to IIIB 
hormone receptor-

positive BC

Anastrozole+placebo Overall 
Response Rate

ORR: 61%

Anastrozole+Gefitinib ORR: 48%

Erlotinib EGFR TKI NCT00739063 
[54] II Metastatic

BC Monotherapy Overall 
Response Rate ORR: 3%

Afatinib EGFR TKI NA  
[55] II

HER2-, ER-, and/
or PgR-negative 

BC
Monotherapy Overall 

Response Rate ORR: 0%

Afatinib EGFR TKI NCT01125566  
[56] III

HER2-
overexpressing 
metastatic BC

Afatinib+vinorelbine
Median PFS 

months

Median PFS 
months: 5.5

Trastuzumab+ 
vinorelbine

Median PFS 
months: 5.6
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EGFR as a prognostic or predictive marker for response 
to targeted therapies.

In the late 1980s, Sainsbury and colleagues 
evaluated 135 primary breast cancer samples, 76 of which 
had available nodal and EGFR status [5]. They found 
that EGFR-positive tumors were associated with worse 
relapse-free survival (RFS) and overall survival (OS) 
compared to EGFR-negative tumors. EGFR expression 
was inversely correlated with hormone receptor (estrogen 
receptor and progestogen receptor) status, suggesting that 
incorporating EGFR status as a prognostic factor could 
provide more precise prediction of therapy response and 
RFS/OS in both hormone-receptor-positive and hormone-
receptor-negative breast cancer patients.

Toi and colleagues subsequently linked EGFR 
expression to cell proliferation of breast tumors and found 
enhanced EGFR expression at metastatic tumor sites 
compared to primary sites, suggesting its role in promoting 
tumor metastasis [57, 58]. They also demonstrated that 
EGFR status, in combination with HER2 status, can 
act as an effective predictor of a high risk of relapse. 
However, not all breast cancer patients with EGFR-
expressing tumors respond to EGFR-targeted therapy, 
indicating that simply inhibiting EGFR may not be 
sufficient to achieve therapeutic benefit in breast cancers 
[59]. Despite the variability in response among breast 
cancer patients with EGFR-expressing tumors to EGFR-
targeted therapy, a study by Lee’s group revealed that pre-
treatment with EGFR-targeted therapy in specific subsets 
of TNBC can sensitize tumor cells to cytotoxic therapy 
by transcriptionally rewiring cells to a pro-apoptotic 
state [60]. TNBC is defined by the absence or minimal 
expression of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) [61]. TNBC is a very aggressive BC 
subtype, often leading to higher rates of recurrence and 
poorer overall survival compared to other breast cancer 
subtypes This finding suggests the importance of targeting 
the proper patient population to achieve the therapeutic 
benefit of EGFR-targeted therapy in breast cancer patients 
[62, 63].

EGFR has been identified as an additional cancer-
specific target to reduce systemic toxicity and increase 
tumor specificity for chemotherapy drugs [64–66]. 
Clinical data has proven the feasibility of EGFR 
inhibition in combination with taxane or cisplatin in 
TNBC. This combination therapy provides patients with 
a longer progression-free survival compared to cisplatin 
alone [46, 67]. Researchers developed strategies to 
improve the efficacy of doxorubicin (DOX) in breast 
cancer treatment. These include conjugating DOX to 
EGFR-binding peptide (EBP) and creating anti-EGFR 
immunoliposome-doxorubicin. The latter covalently links 
Fab′ fragments of anti-EGFR antibody (cetuximab) to 
liposomes containing probes and doxorubicin [68–70]. In 
the breast cancer xenograft models used in these studies, 

treatment with either DOX−EBP conjugate or anti-EGFR 
immunoliposome-doxorubicin resulted in tumor regression 
and was significantly superior to treatment with non-
targeted groups. A phase II trial conducted last year, testing 
anti-EGFR-immunoliposomes loaded with doxorubicin in 
patients with advanced TNBC, did not reach its primary 
endpoint due to low efficacy [71]. Nevertheless, exploring 
different formulations and drug delivery methods remains 
promising for other EGFR-expressing cancers, such as 
head and neck cancer, where EGFR targeting has already 
demonstrated anticancer effects.

MET has been identified as a key regulator of EGFR 
tyrosine kinase inhibitor resistance in various cancer types 
[72–74]. A physical and functional interaction between 
EGFR and MET was discovered in breast cancer cells [75]. 
This interaction, mediated by Src activity, regulates the 
phosphorylation of both EGFR and MET independently 
of EGFR kinase activity [76]. The association between 
EGFR, MET, and Src, which regulates growth in breast 
cancer cells, underscores the need to identify active 
receptor co-activation processes.

Lipid rafts have been proposed as a model and 
platform for the interaction of EGFR and Src, leading 
to the activation of EGFR-kinase-independent survival 
signaling in breast cancer cells [77–79]. EGFR localization 
to lipid rafts was first found correlated with EGFR TKI 
resistance in TNBC cell lines, promoting EGFR-dependent 
activation of the Akt pathway [78]. Further research 
demonstrated that the non-receptor tyrosine kinase Src 
co-localizes and co-associates with EGFR within the lipid 
rafts. The mechanisms by which lipid rafts regulate EGFR 
signaling to Akt was Src kinase-dependent in the Sum159 
cell line [79].

To further explore the therapeutic value of 
targeting EGFR in breast cancer and its potential role 
as a chemosensitizer, several steps are important. These 
include optimizing the selection of breast cancer patients, 
improving the specificity of drug conjugates, considering 
rational combinations of therapy (i.e. NCT04485013) and 
designing sequential treatment regimens in clinical trials. 
Additionally, identifying other molecular markers will be 
crucial. Studying the potential interaction of EGFR with 
other RTKs and non-RTKs, such as MET, IGF-1R and Src, 
which have been linked to resistance to EGFR targeted 
therapies, will be a viable approach in enhancing treatment 
outcomes. 

The effects of EGFR inhibition on tumor 
progression and survival outcomes in head and 
neck cancer 

In over 80–90% of head and neck squamous cell 
carcinomas (HNSCC), there is an overexpression of 
EGFR and its ligands [43, 80]. The increase in expression 
of EGFR ligands such as TGF-α and amphiregulin among 
others can be a result of human activities like tobacco 
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smoking [43]. EGFR is a transmembrane receptor 
which has the ability to translocate to the nucleus upon 
interaction with anti-EGFR antibodies like cetuximab, 
EGFR ligands, Src kinases and Epstein Barr Virus [43]. 
Once in the nucleus, EGFR can either bind to and activate 
multiple cell cycle regulating genes downstream, or cause 
phosphorylation of proteins like DNA-PK owing to its 
activity as a tyrosine kinase. These activities can ultimately 
result in repair of damaged DNA in the cancer cells and 
thereby increase cellular proliferation rate resulting 
in acquired resistance to treatment [43]. Thus, EGFR 
inhibition has been evaluated as a potential treatment 
option in head and neck cancers.

There are two main types of EGFR targeted 
inhibitors: (1) small molecule EGFR-targeted tyrosine 
kinase inhibitors and (2) EGFR targeted monoclonal 
antibodies. The tyrosine kinase inhibitors compete with 
ATP at the tyrosine kinase domain in the intracellular 
region of EGFR and inhibit downstream signaling 
pathways. Although they tend to have short half-lives, 
they offer the advantage of oral administration and fewer 
inflammatory hypersensitivity reactions. Lapatinib has 
been shown to be effective in inhibiting proliferation 
of Human Papillomavirus (HPV) positive head and 
neck cancer by decreasing the expression of E6 and E7 
oncogenes and inhibiting phosphorylation of Akt, leading 
to subsequent inactivation of HER2 and EGFR signaling 
pathways that play a role in cell proliferation [81]. 
However, the efficacy of lapatinib as a monotherapy has 
been dismal. The results of a phase II trial in recurrent/
metastatic (R/M) head and neck cancer showed that as 
a monotherapy, lapatinib was not beneficial to patients, 
even those with previous exposure to anti-EGFR therapies 
[82]. A randomized study conducted by Harrington et al. 
showed that a combination of lapatinib with cisplatin 
based chemoradiotherapy was better tolerated and 
increased complete response rate and progression free 
survival even in HPV-negative head and neck cancer 
[83]. Erlotinib, another EGFR inhibitor, has been shown 
to induce cell cycle arrest in HPV negative HNSCC 
cells in G2 phase and has shown inhibitory effects on 
double strand break repair proteins like PARP1, leading 
to increased radiosensitivity [84]. In in vitro and in vivo 
studies, the pan-EGFR TKI afatinib has shown better 
therapeutic effect on HNSCC when compared to erlotinib. 
Afatinib treatment also has been found to inhibit the DNA 
damage repair proteins and radio-sensitize HNSCCs by 
inhibiting Oct3⁄4 and CD44 markers on radiation induced 
cancer stem cells [85].

The second approach to inhibiting EGFR is with 
monoclonal antibodies which bind to and block the 
receptor-ligand interaction, leading to inhibition of EGFR 
dimerization. The receptor antibody complex eventually 
gets internalized and degraded, causing the downregulation 
of EGFR. Cetuximab is a therapeutic monoclonal antibody 
which binds to EGFR with an affinity of five to ten times 

that of canonical EGFR ligands [86]. Cetuximab has 
shown inhibitory effect of HNSCC cell proliferation in 
vitro and has evidence of promoting antibody dependent 
cell-mediated cytotoxicity via cytotoxic immune cells. 
In a randomized phase III clinical trial, Vermorken 
et al., demonstrated that a combination of cetuximab and 
platinum-based chemotherapy improved overall survival 
in recurrent/metastatic HNSCC compared to standard 
of care combination of platinum-based therapy with 
fluorouracil [87]. In the curative setting, Bonner et al. 
showed that cetuximab given in combination with radiation 
reduced the risk of cancer related death by 26%, improved 
the median overall survival (49 months) compared to 
radiation alone (29.3 months) and the combination also 
prolonged progression-free survival [88]. Several other 
EGFR targeting monoclonal antibodies like zalutumumab 
and panitumumab have been evaluated in HNSCC. 
However, panitumumab was not as effective as cetuximab, 
possibly due to its inability to mimic cetuximab’s effect 
of promoting the antibody dependent cellular cytotoxicity 
(ADCC) and activation of NK cells [89]. Thus, for 
head and neck cancer, cetuximab is the only therapeutic 
monoclonal EGFR targeting antibody approved by the 
FDA [43]. Clinical trials combining cetuximab with other 
chemotherapies, ionizing radiation and certain targeted 
therapies have led to better survival outcomes for patients 
with recurrent/metastatic (R/M) HNSCC (Table 2) [90–95].

Compared to healthy epithelial tissue, head and 
neck squamous epithelium tends to increase complement 
activation (which canonically is a component of innate 
immunity that is activated upon microbial infection or 
in autoimmune diseases). Cell lines sensitive to EGFR 
inhibition show a high level of complement activation 
following EGFR inhibitory treatment. Upon testing for 
complement activation in cetuximab-resistant cell lines 
with human serum, there was an increase in complement 
component C3 and Terminal Complement Complex [96]. 
This complement activation as a consequence of anti-
EGFR therapy, can exacerbate cutaneous toxicity and 
can potentially be a cause of increased inflammation in 
the tumor microenvironment, contributing to treatment 
resistance.

The activation of the EGFR and PI3K pathways 
differs based on the HPV status of the head and neck 
cancer. HPV-positive HNSCC tumor samples show 
significantly reduced EGFR and PI3K pathway activation. 
On the contrary, it was found that 56% of HPV-negative 
HNSCC tumor samples showed activation of EGFR or 
PI3K pathways [97]. The high expression of EGFR is also 
associated with keratinization status and is indicative of 
poorer prognosis irrespective of the tumor’s HPV status. 
Head and neck tumors which express high EGFR, also 
show concomitant expression of pAKT which overall has 
a detrimental influence on patient survival [98]. Thus, it is 
easy to appreciate the multi-faceted role played by EGFR in 
head and neck cancer progression and treatment resistance.
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MECHANISMS OF ANTI-EGFR 
RESISTANCE MEDIATED BY RTKS IN 
BREAST CANCER

Resistance to EGFR–tyrosine kinase inhibitor 
(EGFR-TKIs) therapies in breast cancer presents a 
significant clinical challenge, with the mechanisms of this 
resistance remaining largely unknown. 

Clinical trials with the EGFR TKI gefitinib in breast 
cancer have shown limited clinical responses and a low 
disease control rate, particularly in triple-negative breast 
cancer, despite the higher degree of EGFR overexpression 
in this subtype [64, 99, 100]. One explanation for the 
limited success of EGFR TKIs in breast cancer is that 
following EGFR inhibition, other receptors and/or cell 
surface proteins activate and/or heterodimerize, which 
provides alternative growth and survival signaling 
cascades downstream of EGFR, such as the MEK/MAPK 
pathway [101] (Figure 1). Therefore, understanding the 
molecular mechanisms beyond EGFR is crucial, especially 
in cases where EGFR signaling is absent. Crosstalk 
between EGFR with other receptor tyrosine kinase can 

lead to the activation of survival signaling pathways 
and contribute to the resistance phenotype. Studying the 
interactions and cross-talks may provide insights into the 
development of anti-EGFR therapies. 

Activation of insulin growth factor receptor and 
MET/RON signaling

In human breast and prostate cancer cells, elevated 
levels of activated IGF-1R, Akt, and protein kinase C 
(PKC) delta have been associated with acquired resistance 
to EGFR TKIs [102]. The activation of IGF-1R and 
downstream signaling molecules is believed to promote 
survival pathways, leading to resistance. Additionally, in 
EGFR TKI-resistant breast cancer cell lines, the receptor 
tyrosine kinase MET plays a role in promoting resistance. 
The activation of Src and MET/Src signaling mediates 
EGFR tyrosine phosphorylation and promotes cell growth 
even in the presence of EGFR TKIs [75]. Such aberrant 
EGFR phosphorylation, caused by direct crosstalk 
between EGFR and other receptor tyrosine kinases or 
indirectly with the help of Src creating docking sites for 

Table 2: Clinical studies combining cetuximab with other chemotherapies and ionizing radiation 
in head and neck cancer

Treatment Trial number Trial 
phase Patient selection Therapy type Primary 

endpoint Outcome

Cetuximab+ 
Erlotinib+ 
chemotherapy 
(carboplatin, 
paclitaxel)

NCT01316757 
[91] II Recurrent/metastatic 

(R/M) HNSCC

Cetuximab+carboplatin+ 
paclitaxel Objective 

Response 
Rate (ORR)

ORR of 33.3%

Erlotinib+Cetuximab+ 
carboplatin+paclitaaxel ORR of 62.5%

Cetuximab+ 
chemotherapy 
(Carboplatin/
Cisplatin and 
5-Fluorouracil)

NCT00122460 
[87] III

Recurrent/metastatic 
(R/M) HNSCC 
(EXTREME)

Cetuximab+ 
Chemotherapy

Overall 
survival

Median Overall 
survival: 10.1 

months

Chemotherapy alone
Median Overall 

survival: 7.4 
months

Paclitaxel+ 
Carboplatin+ 
Cetuximab

UMIN000010507 
[90] II

Recurrent/metastatic 
(R/M) HNSCC 
(EXTREME)

Paclitaxel+Carboplatin+ 
Cetuximab

Overall 
response rate ORR of 40%

Cetuximab+ 
Cisplatin+ 
Radiation

NCT00096174 
[92] II

Locally Advanced 
Head and Neck 
Squamous Cell 

Carcinoma

Cetuximab+Cisplatin+ 
Radiation

2-year 
progression-
free survival 

(PFS)

Median PFS: 
19.4 months, 

2-year PFS: 47%

IMC-A12 
(Cixutumab)+ 
Cetuximab

NCT00617734 
[93] II Recurrent/metastatic 

(R/M) HNSCC

IMC-A12 Progression-
Free survival

1.9 months

IMC-A12+Cetuximab 2.0 months

Cetuximab+ 
Bevacizumab

NCT00409565 
[94] II Recurrent/metastatic 

(R/M) HNSCC Cetuximab+Bevacizumab Objective 
response rate ORR of 16%

Cetuximab+ 
Sorafenib

NCT00815295 
[95] I B/II Recurrent/metastatic 

(R/M) HNSCC Cetuximab+Sorafenib Tumor 
control rate 43.8%
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EGFR interaction, is considered a mechanism leading to 
intrinsic resistance of breast cancer to EGFR TKIs. The 
aberrant signal transduction in cancers mediated through 
RTK crosstalk contributes to tumorigenesis and therapy-
resistance, which poses challenges for the development of 
effective therapies.

Given the multiple signaling pathways likely 
contributing to therapeutic resistance, identifying the 
molecular mechanisms by which cells survive despite 
EGFR inhibition and then employing a multiple-pronged 
strategy to target these pathways will be required for 
improved therapy outcomes. For example, preclinical 
studies using a TNBC PDX model have shown that 
combined inhibition of MET and EGFR is more effective 
than monotherapy [103]. This finding indicates that 
targeting both MET and EGFR signaling might offer 
a potential strategy to overcome resistance, in tumors 
that have ‘secondary’ cell-survival-sustaining RTKs. 
MST1R/RON emerged as a potential therapeutic target in 
various cancers because its activation has been implicated 
in contributing to resistance to treatment failure and 
resistance to cell death after chemotherapy or targeted 
therapies [8]. RON can be activated via extracellular 

ligands, homodimerization, and heterodimerization with 
EGFR, further leading to cell survival and resistance to 
apoptosis (Figure 3).

AXL-mediated downstream signaling

In HER2+ breast cancer, AXL forms a complex with 
HER2 (Figure 1), promoting its stability and recruitment 
at the cell surface, thereby promoting the metastatic 
cascade in cancer progression [104]. Compared to 
EGFR, cancer cells rely more on AXL for downstream 
pro-survival signaling in TNBC [105, 106]. AXL has 
also been identified as a predictive marker of resistance 
to EGFR-targeted drugs in triple-negative breast cancer 
(TNBC) cell lines [105]. In TNBC, AXL is found in close 
proximity to EGFR, other ErbB receptors and MET, and 
it can mediate downstream activation of proteins that are 
crucial for cell migration through a ligand-independent 
mode of transactivation by EGFR. This crosstalk between 
EGFR and AXL leads to the activation of pathways that 
promote cell migration and contribute to drug resistance. 
Interestingly, the transactivation-mediated RTK signaling 
might eventually lead to the resistance to receptor-

Figure 3: Mechanisms of RON activation which aid in cell survival and resistance to apoptosis. The RON receptor tyrosine 
kinase can get activated by extracellular ligands, homodimerization and heterodimerization with EGFR, leading to increased angiogenesis, 
resistance to apoptosis and cell survival. Created with https://www.biorender.com/.

https://www.biorender.com/
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specific-ligand treatment. The heavy reliance of TNBC on 
AXL or MET, instead of EGFR, for downstream signaling 
and physical interaction between these RTKs provides 
clinical rationale for developing therapies targeting AXL 
or MET signaling. 

Distinct signaling through surface receptors and 
RTK signaling crosstalk after EGFR TKI treatment plays 
an important role in leading RTK-mediated secondary 
resistance and provides distinct signaling through new 
receptors. Future research needs to focus on understanding 
the mechanisms of receptor family transactivation and 
how different RTKs collaborate in promoting resistance 
to come up with alternative strategies to overcome 
therapeutic resistance.

MECHANISMS OF ANTI-EGFR 
RESISTANCE MEDIATED BY RTKS IN 
HEAD AND NECK CANCER

Transactivation of EGFR mediated by RON/
HGFL (hepatocyte growth factor-like protein)

In head and neck cancer, a major concern regarding 
targeted therapy is resistance to anti-EGFR based 
therapies despite high levels of EGFR expression. 
Cetuximab is FDA approved for treatment of HNSCC, 
but its efficacy as a monotherapy is limited, and head and 
neck cancer cells tend to develop resistance over time 
[43]. A common mechanism of resistance entails cells 
resorting to RTKs for survival. Overexpression of HGF/
MET is commonly observed in resistant head and neck 
cancer cells and this signaling helps the cells survive 
despite the detrimental effects of cetuximab. Although 
MET activation by HGF is primarily driven by paracrine 
signaling from cancer-associated fibroblasts, it has been 
found that in tumors resistant to gefitinib and erlotinib, 
MET can also be activated independent of ligand binding 
[35, 43].

There is increasing evidence that the RON/HGFL 
interaction plays an important role in tumorigenesis of 
various cancers including breast cancer, prostate cancer, 
and head and neck cancers. RON can be activated by 
dimerization and phosphorylation and RON RTK signaling 
can also be independent of the presence of HGFL [107]. 
Studies have shown that squamous papillomas with 
defective RON signaling show reduced tumor growth. 
In HNSCCs, RON expression is associated with active 
phosphorylation of EGFR. Patients with HNSCC showing 
expression of RON along with phosphorylated EGFR 
(pEGFR) had worse event-free survival compared to 
those without pEGFR and RON [30]. Studies with certain 
squamous cell carcinoma cell lines also suggest that 
RON plays an important role in conferring a migratory 
phenotype in these cells and the downregulation of 
RON reduces cell migration even when the cells contain 
functional EGFR. In fact, RON was found to play a 

synergistic role with EGFR to confer invasive phenotypes 
in HNSCC. There is also an interesting crosstalk 
observed between EGFR and RON wherein EGFR gets 
trans-phosphorylated upon RON activation and there is 
interaction between activated RON and EGFR (Figure 4) 
[30, 107]. 

AXL mediated signal transduction

Cetuximab resistant HNSCC cells also demonstrate 
an upregulation and hyperactivation of another type of 
RTK named AXL. EGFR undergoes nuclear translocation 
upon activation of AXL and AXL knockdown facilitates 
inhibition of tumor proliferation by modulating EGFR 
activity. AXL also promotes expression of Src kinases and 
NRG1 (Figure 4), which further activates EGFR and its 
interaction with HER3. Cell lines sensitive to cetuximab 
became cetuximab resistant upon AXL overexpression. 
AXL has also been shown to induce epithelial to 
mesenchymal transition [106].

MECHANISMS OF ANTI-EGFR 
THERAPY RESISTANCE MEDIATED BY 
OTHER FACTORS IN BREAST CANCER 

EGF-related ligand-dependent activation

Unlike specific EGFR mutations found in lung 
cancer that determine tumor sensitivity/resistance to the 
EGFR tyrosine kinase inhibitor gefitinib, such mutations 
are uncommon in breast cancer cells [108, 109]. In 
breast cancer, ligand-dependent activation of EGFR 
can contribute to resistance. A study investigated EGF-
related ligands of the EGFR family using both gefitinib-
sensitive and resistant breast cancer cell lines with varying 
EGFR expression levels [110]. In gefitinib-resistant 
cells, the expression and location of EGF-related ligands 
change, with the ligands translocating into the nucleus 
and interacting with genes involved in transcriptional 
regulation upon EGFR inhibition. This nucleo-cytoplasmic 
trafficking of EGFR ligands may counterbalance the loss 
of EGFR function and play a crucial role in determining 
sensitivity to EGFR TKI treatment. Additionally, 
fibroblast secretion of HGF was found to activate MET 
and lead to EGFR/MET crosstalk, resulting in resistance to 
EGFR TKIs in triple-negative breast cancer [111]. Tumor-
stromal interactions appear to contribute to the intrinsic 
sensitivity of breast cancer cells to EGFR TKIs, providing 
an alternative approach to confer EGFR therapy resistance 
in breast cancer.

Nuclear EGFR

In wild-type EGFR-expressing cancer cells, 
mechanisms of the resistance to gefitinib remain largely 
unknown. Studies have shown the nuclear localization of 
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EGFR, where it functions as a transcription factor required 
for DNA repair and resistance to cisplatin treatment 
[112, 113]. As shown in Figure 5, upon EGFR-TKI 
treatment, the level of nuclear EGFR in wild-type EGFR-
expressing breast cancer cells increases [112]. This nuclear 
translocation is mediated by Akt phosphorylation of EGFR 
(Figure 5). Nuclear EGFR enhances the transcription 
of the breast cancer-resistant protein (BCRP) gene by 
recruiting to its promoter region, potentially contributing 
to EGFR TKI therapy resistance. Nuclear EGFR has also 
been found to phosphorylate and stabilize proliferation cell 
nuclear antigen (PCNA). Increased PCNA expression has 
been linked to a poor prognosis in breast cancer patients, 
and EGFR TKI-resistant breast cancer cells show elevated 
PCNA expression [113]. Treatment with cell-penetrating 
PCNA peptide induced apoptosis in the cells and prevented 
nuclear EGFR binding to PCNA in vivo [114, 115]. There 
is an urgent need to study the functional impact of nuclear 
EGFR in breast cancer growth, migration, and therapeutic 
response to EGFR-targeted therapies. 

MECHANISMS OF ANTI-EGFR THERAPY 
RESISTANCE MEDIATED BY OTHER 
FACTORS IN HEAD AND NECK CANCER 

Activation of TLR4

Resistance to anti-EGFR therapies in head and 
neck cancer not only involves overexpression and 
activation of RTKs but also other factors, such as 
loss of tumor-suppressor genes, signaling by pattern 
recognition receptors, and activation of inflammatory 
pathways. Inflammatory cytokines such as IL8 and IL1B 
have been reported to promote resistance to anti-EGFR 
therapies in other cancers such as colorectal cancer. In 
HNSCC tissue biopsies expressing EGFR, there are 
elevated levels of the innate immune receptor, Toll-Like 
Receptor 4 (TLR4), which is involved in recognizing 
self-proteins and inflammatory microbes [116]. TLR4 is 
also upregulated in ovarian, breast, and other hormone 
responsive tumors.

Figure 4: Mechanisms of anti-EGFR therapy resistance mediated by RON/HGFL and AXL RTKs in head and neck 
cancer. Cetuximab resistant cells tend to overexpress RON RTK which either by homodimerization or binding to extracellular ligands 
can phosphorylate neighboring EGFR (not bound by cetuximab) and can lead to sustained signal transduction by activating PI3K/Akt/
mTOR pathway or JAK/STAT pathway leading to transcription of genes like c-MYC, BCL-XL and Cyclin D1 which prevent apoptosis and 
increase cell proliferation. Cetuximab resistant cells also show activation of AXL, which promotes EGFR internalization. AXL activation 
also leads to expression of Src kinases and NRG1 which activates HER3 in an autocrine manner and causes EGFR-HER3 interaction. 
Created with https://www.biorender.com/.

https://www.biorender.com/
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When TLR4 is activated and dimerized it leads 
to the activation of NF-kB resulting in the upregulation 
of cell survival proteins. Interestingly, the blockage 
of EGFR with cetuximab has been shown to activate 
TLR4 in a MyD88 dependent manner (Figure 6). 
Overexpressing TLR4 in HNSCC cells makes them 
more resistant to cetuximab both in vitro and in vivo 
[117]. In HNSCC cells overexpressing MyD88, there 
is an upregulation of pro-tumor inflammatory proteins 
including iNOS, TNF-α, and COX2. Cetuximab 
binding to EGFR prevents Src activation, which in turn 
decreases MyD88 degradation. Consequently, MyD88 
activates TLR4 signaling, leading to the expression 
of anti-apoptotic proteins, and increased pro-tumor 
inflammation [117]. This provides a route for cancer cells 
to resist EGFR inhibition and promotes cell survival. 
Understanding these non-RTK-mediated mechanisms of 
resistance is crucial for developing effective strategies 
to overcome resistance to EGFR-inhibiting treatments in 
head and neck cancer. 

Loss of PTEN

Blocking of EGFR signaling by inhibitors like 
cetuximab activates the PI3K/Akt/mTOR pathway, 
which is regulated by PTEN (Phosphatase and tensin 
homolog), a tumor suppressor gene. Loss of PTEN 
expression or function occurs in about one-third of 
HNSCC patients, which allows the cells to resort 
to the PI3K/Akt/mTOR pathway to survive, thus 
diminishing cetuximab’s clinical benefits [118]. Thus, 
patient tumors with endogenous PTEN deficiency are 
found to be more resistant to cetuximab treatment than 
those harboring PTEN. This makes PTEN gene copy 
number loss a predictive biomarker for cetuximab 
treatment resistance [119]. Experimental evidence 
suggests that WWP1 which is an E3 ubiquitin ligase is 
involved in the negative regulation of PTEN expression. 
Genetic ablation of WWP1 has shown to reverse 
the downregulation of PTEN and led to subsequent 
inhibition of PI3K/Akt/mTOR pathway of cell survival. 

Figure 5: Mechanisms of anti-EGFR therapy resistance in breast cancer via EGF-related ligands and nuclear EGFR. 
Upon EGFR TKI treatment, EGFR can directly translocate into the nucleus and stabilizes PCNA in order to promote cell growth and 
proliferation. EGFR can also activate Akt and transcribe the breast cancer-resistant protein (BCRP), an ATP-binding cassette efflux 
transporter to eliminate EGFR TKIs from the cancer cells. Created with https://www.biorender.com/.

https://www.biorender.com/
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Therefore, therapeutic drugs targeting WWP1 may 
be able to reverse the cetuximab resistance caused by 
PTEN loss [120].

Activation of STAT3 and PI3K signaling 
pathway

In-vitro studies have shown that head and neck 
cancer cell lines that are resistant to cetuximab have 
different responses to stimulation by EGF. The UMSCC1 
cell line, when made resistant to cetuximab, tends to 
show enhanced downstream signal transduction upon 
EGF stimulation, while the UMSCC6 cell line resistant 
to cetuximab had the potential to activate downstream 
signaling even in absence of EGF [121]. The knockdown 
of STAT3 promotes pro-apoptotic pathways in cetuximab 
resistant UMSCC1 cell lines. In fact, even in the absence 
of cetuximab treatment, STAT3 knockdown has an anti-
proliferative effect in UMSCC1 head and neck cells 
[121]. Additionally, cetuximab resistant tumors have 
activating mutations and gene amplifications in the PI3K 
pathway. Studies on HNSCC patient-derived xenograft 

models demonstrated that the combinatorial treatment of 
cetuximab and the PI3Kα and δ inhibitor, Copanlisib, had 
markedly noticeable therapeutic effect in HNSCC tumors, 
especially those resistant to cetuximab [122].

FUTURE DIRECTIONS

Receptor tyrosine kinases play a critical role in 
regulating cancer cell growth and metastasis. Over the 
past few decades, there has been increasing interest in 
developing small molecules that target RTKs as potential 
therapies for various types of cancer, with a particular 
focus on EGFR in different cancer types. However, the 
effectiveness of targeted therapy is often hindered by 
intrinsic and extrinsic resistance and adverse effects, as 
well as by adverse effects. For instance, EGFR inhibitors 
have shown limited efficacy in breast cancer patients, 
and frequent incidences of therapy resistance have been 
observed in head and neck cancer with EGFR-targeted 
inhibitors. 

Therefore, a key area of research should be 
investigation of common resistance mechanisms of 

Figure 6: Mechanism of Anti-EGFR resistance in head and neck cancer by activation of TLR4-MyD88 signaling. 
EGFR inhibition by cetuximab prevents Src activation, thus preventing MyD88 degradation, leading to activation of TLR4 signaling 
via NFKB, leading to production of anti-apoptotic and pro-tumor inflammatory proteins that promote cancer cell survival. Created with 
https://www.biorender.com/.

https://www.biorender.com/
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EGFR inhibitors, where RTKs like IGF-1R, MET, and 
AXL compensate for EGFR inhibition and promote 
survival signaling cascades. Investigating combinatorial 
approaches that involve inhibiting both EGFR and other 
components of oncogenic pathways, such as MET, RON, 
and AXL, holds promise in overcoming resistance to 
anti-EGFR therapeutics. A recent phase 1 study has 
shown that patients with recurrent or metastatic head 
and neck cancer who received BCA101, a bifunctional 
dual targeting drug that targets EGFR and TGF-β in 
combination with pembrolizumab, were able to achieve 
an overall response rate of 65%. Thus, there seems to 
be an interesting crosstalk of EGFR-TGF-β and PD-1 
which could be further explored in head and neck 
cancers and other cancer types treated with anti-EGFR or 
pembrolizumab alone [123]. Additionally, less common 
mechanisms regulated by non-RTKs, such as loss of tumor 
suppressor genes, activation of inflammatory pathways, 
and alterations in downstream signaling pathways, 
need to be explored further to enhance our knowledge 
of therapy sensitivity in breast cancer, head and neck 
cancer and other cancers where EGFR plays a pivotal 
role in promoting tumorigenesis. Understanding the 
interplay between different signaling pathways and their 
impact on cancer progression and treatment is essential 
in designing more effective combination therapies. 
Moreover, the development of reliable biomarkers that 
can predict resistance to EGFR therapy is essential. These 
biomarkers will help clinicians identify patients who are 

likely to be resistant to EGFR therapy, enabling them 
to choose alternative treatment approaches or effective 
combinatorial treatments and improve patient outcomes. 
By targeting multiple pathways simultaneously, we can 
potentially overcome resistance and improve the overall 
efficacy of EGFR-targeted therapies in cancer treatment. 

COMBINING EGFR-TARGETED 
THERAPY WITH IMMUNE 
CHECKPOINT BLOCKADE: CURRENT 
CLINICAL TRIALS AND FUTURE 
THERAPEUTIC POTENTIAL 

Breast cancer 

Multiple clinical trials have explored immune 
checkpoint inhibitors (ICIs) in breast cancer, particularly 
in TNBC patients [124–134]. Currently, two FDA-
approved combination therapies: pembrolizumab (a PD-1 
antibody) and atezolizumab (a PD-L1 antibody), are 
used alongside chemotherapy for selected breast cancer 
patients. These combination strategies have demonstrated 
significant improvements in progression-free survival 
compared to placebo-chemotherapy, with acceptable safety 
profiles [135, 136]. In inflammatory breast cancer (IBC), 
an immunosuppressive tumor microenvironment mediated 
by EGFR signaling may contribute to ICI resistance 
[137]. Notably, the combination of panitumumab (an 

Table 3: Key clinical trials evaluating cetuximab and immune checkpoint inhibitors in HNSCC

Treatment
Immune 

checkpoint 
target

Trial Cancer subtype Trial 
phase

Primary 
endpoint Outcome

Durvalumab+ 
Cetuximab PD-L1 NCT03691714 

[139]

Recurrent/
metastatic (R/M) 

HNSCC
II

Objective 
Response Rate 

(ORR)
ORR = 39%

Pembrolizuma+ 
Cetuximab PD-1 NCT03082534 

[140]

Recurrent/
metastatic (R/M) 

HNSCC
II

Overall 
Response rate 

(ORR)
ORR = 45%

Nivolumab+ 
Cetuximab PD-1 NCT03370276 

[141]

Recurrent/
metastatic (R/M) 

HNSCC
II

Overall 
Response rate 

(ORR)

Median overall survival 
(patients with prior 

therapy for R/M HNSCC): 
11.4 months

Median overall survival 
(patients with no prior 
therapy): 20.2 months

Cetuximab+ 
Camrelizumab PD-1 NCT05673577 

[142]

Recurrent/
metastatic (R/M) 

HNSCC
II

Overall 
response rate 

(ORR)
ORR = 90.5%

Monalizumab+ 
Cetuximab NKG2A NCT02643550 

[143]

Recurrent/
metastatic (R/M) 

HNSCC
I

Overall 
response rate 

(ORR)
ORR = 20%
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EGFR monoclonal antibody) with an ICI has a more 
substantial inhibitory effect on tumor growth than ICI 
alone. Furthermore, the efficacy of EGFR-targeted therapy 
appears to be associated with T-cell-mediated immune 
responses, suggesting that combining EGFR inhibitors or 
antibodies with ICIs could offer a promising therapeutic 
approach for BC patients with high EGFR copy numbers.

Head and neck cancer

EGFR inhibition in HNSCC by cetuximab is known 
to promote antibody-dependent cellular cytotoxicity by 
recruiting natural killer (NK) cells and also elevates the 
numbers of certain T cell populations namely PD-1 and 
TIM-3 positive CD8+ T cells [138]. Thus, the addition of 
ICIs with EGFR inhibition leverages both direct tumor cell 
cytotoxicity and the activation of anti-tumor immunity, 
potentially aiding in overcoming resistance to EGFR 
inhibition alone. Multiple clinical trials have investigated 
combining cetuximab with ICIs, particularly in Recurrent/
metastatic (R/M) HNSCC patients (Table 3) [139–143].
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