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ABSTRACT
Recent advances in deep learning models have transformed medical imaging 

analysis, particularly in radiology. This editorial outlines how uncertainty quantification 
through embedding-based approaches enhances diagnostic accuracy and reliability 
in hepatobiliary imaging, with a specific focus on oncological conditions and early 
detection of precancerous lesions. We explore modern architectures like the Anisotropic 
Hybrid Network (AHUNet), which leverages both 2D imaging and 3D volumetric data 
through innovative convolutional approaches. We consider the implications for quality 
assurance in radiological practice and discuss recent clinical applications.

INTRODUCTION

Artificial intelligence applying deep learning models 
has revolutionized medical imaging analysis by enabling 
automated lesion detection, enhancing organ segmentation 
accuracy, and reducing inter-observer variability. This 
may be of particular significance in hepatobiliary 
radiology, where precise interpretation and quality 
assurance are paramount. This is due to the complex 
anatomical relationships between structures within the 
liver and biliary system, often in a background of fibrotic 
scarring or liver cirrhosis that can directly impact surgical 
planning and treatment approaches. Additionally, there 
is a frequent need to differentiate between benign and 
malignant lesions [1]. The integration of deep learning-
based uncertainty quantification in medical imaging 
analysis addresses several key challenges, including 
variable image quality, anatomical variations, and 
the presence of artifacts (including motion artifacts 
from patient movement, beam hardening in computed 
tomography (CT), metal implant artifacts creating streaks, 
partial volume effects, noise from low radiation doses, 
reconstruction algorithm limitations, scanner calibration 
issues, phase wrap and chemical shift artifacts in 
magnetic resonance imaging (MRI)) that have historically 
complicated radiological assessments, and inter-
radiologist variability due to differing levels of experience 
[2]. These models effectively and automatically analyse 
complex imaging patterns while providing quantifiable 
confidence measures as precision for their predictions 
[3]. These advancements are valuable given the intricate 
nature of liver pathologies and the critical importance of 
early detection in conditions like hepatocellular carcinoma 
(HCC) and intrahepatic cholangiocarcinoma (iCCA). 
It is crucial to correctly identify various liver cancers 

as treatment strategies and prognosis vary. HCCs are 
usually treated with locoregional methods (embolization, 
thermal ablation, radiation etc) targeted kinase inhibitors 
or immunotherapy, whereas iCCA is usually treated 
with systemic chemotherapy sometimes combined with 
radiotherapy or immunotherapy.

Deep learning architectures

Uncertainty quantification for hepatobiliary disease

Modern deep learning architectures leverage 
sophisticated embedding techniques to capture subtle 
variations in imaging characteristics [4, 5]. These 
embeddings serve as high-dimensional representations 
of radiological features, enabling more nuanced 
analysis than traditional methods [6]. The uncertainty 
quantification framework operates on multiple levels, 
assessing both aleatoric uncertainty (inherent noise in 
the data) and epistemic uncertainty (model uncertainty) 
[7–9]. Lambert et al. [10] utilized an Anisotropic Hybrid 
Network (AHUNet) to handle the inherent anisotropy of 
medical images (i.e., anisotropy referring to the variation 
in cell types and density of an organ that ultimately 
produces a spectrum of imaging features) [10]. This 
architecture performed well in the segmentation of the 
total liver volume (Dice 0.94) but was more imprecise in 
detecting specific focal lesions (Dice: 0.57). Further, the 
authors showed that the algorithm was more “uncertain” 
when dealing with smaller lesions and in a multi-lesion 
setting. AHUNet frameworks can introduce lesion-level 
confidence scoring, calculated from aggregated voxel-
wise tumor probabilities, proving particularly effective in 
discriminating between true and false positive lesions [10] 
(Figure 1).
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Figure 1: Uncertainty quantification in deep learning-based hepatobiliary imaging analysis. (A) 2D vs. 3D Prediction 
comparison: Visualization of uncertainty quantification approaches in hepatobiliary imaging. The 2D analysis (left) shows a liver slice with 
uncertainty overlay, where red regions indicate areas of high uncertainty in lesion detection and boundary determination. The intensity of 
the color corresponds to the model’s confidence level, as demonstrated in the AHUNet framework (Lambert et al., 2023). The 3D volumetric 
reconstruction (right) illustrates how uncertainty propagates across multiple slices, particularly important for analyzing complex anatomical 
relationships and detecting small lesions (Dice score 0.57 for focal lesions vs. 0.94 for total liver volume). (B) Key imaging features and 
uncertainty sources: Demonstration of critical features that contribute to uncertainty in predictions. Lesion boundaries (red dashed lines) 
often present higher uncertainty due to partial volume effects and unclear margins, especially in the context of background liver cirrhosis. 
Fibrosis patterns (green) represent areas where tissue heterogeneity can affect model confidence, particularly relevant in T1ρ mapping 
applications (Huang et al., 2023). Anatomical structures (blue) show how structural relationships influence uncertainty quantification, 
especially in cases with variable image quality or motion artifacts. (C) Dataset characteristics and challenges: Representation of different 
imaging modalities (CT, MRI, ultrasound) and their specific challenges in uncertainty quantification. CT images provide high spatial 
resolution but face challenges with radiation dose optimization. MRI excels in soft tissue contrast but is susceptible to motion artifacts 
and longer acquisition times. Ultrasound offers real-time imaging but presents challenges in standardization and operator dependency, 
as demonstrated in recent fatty liver content assessment studies (Del Corso et al., 2024). Common challenges across modalities include 
scanner variability, limited training data for rare pathologies, and motion artifacts, which directly impact the reliability of uncertainty 
estimates. The color gradient legend indicates uncertainty levels, with red representing high uncertainty regions requiring additional 
radiologist attention, and green indicating areas of high confidence in model predictions. This quantification framework aligns with clinical 
implementation guidelines, where uncertainty scores can trigger additional review or modified follow-up protocols in both screening 
and diagnostic contexts. This visualization illustrates the comprehensive approach to uncertainty quantification described in the paper, 
emphasizing the integration of both aleatoric uncertainty (inherent in imaging data) and epistemic uncertainty (model-related), while 
highlighting the practical challenges in clinical implementation.
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Building upon these initial approaches to uncertainty 
quantification in medical imaging, subsequent research has 
explored alternative probabilistic architectures to further 
improve prediction reliability. A 2024 study by Del Corso 
et al. [11] evaluated three probabilistic convolutional 
architectures for assessing the fatty liver content (FLC) 
from ultrasound imaging: a classical Convolutional 
Neural Network (CNN), Monte Carlo Dropout CNN, 
and Bayesian CNN. Testing these prediction algorithms 
on 186 patients with contrast-enhanced ultrasound 
images, they found Monte Carlo Dropout achieved the 
best regression performance (RMSE 5.35%) while 
maintaining reasonable uncertainty estimates (CoV 0.32). 
The Bayesian CNN improved classification accuracy 
from 86.1% to 91.7% by incorporating uncertainty scores, 
though at the cost of predicting more cases as uncertain 
(22.6% vs. 12.9% for Monte Carlo Dropout). While 
computationally more intensive, their work demonstrated 
that adding uncertainty quantification, provides 
valuable reliability metrics for clinical decision support, 
particularly in cases with poor image quality or atypical 
presentations [11]. Notably, while these CNN algorithms 
excel in 2D image analysis, AHUNet’s hybrid approach 
offers superior performance in volumetric analysis 
through its ability to preserve spatial relationships 
across image slices. However, this performance comes 
at the cost of increased computational complexity and 
training data requirements, even beyond the typical 
large datasets needed for standard deep learning models. 
These computational requirements are due to the need 
to learn complex 3D spatial relationships across several 
image slices. The AHUNet’s improved handling of 
anisotropic features suggests a promising direction for 
future architectural developments, particularly in multi-
modal imaging integration. A fundamental consideration 
for advancing these approaches is the challenge of 
acquiring and curating high-quality training datasets that 
are sufficiently large and diverse (e.g., multi-institutional) 
to enable robust model development, while ensuring 
proper validation across different patient populations and 
imaging protocols (Table 1). To push the field forward, 
we propose several key directions for future research:

1. Development of adaptive architectures that can 
dynamically switch between 2D and 3D processing 
based on input characteristics

2. Integration of multi-scale uncertainty quantification to 
better handle varying lesion sizes

3. Exploration of self-supervised learning approaches 
to address the limited availability of labeled medical 
imaging data

4. Investigation of lightweight uncertainty quantification 
methods to reduce computational overhead while 
maintaining accuracy

These advancements, by providing more reliable and 
efficient diagnostic tools, may significantly impact clinical 
practice by addressing the ever-growing clinical demand 
and work pressure, while maintaining interpretability and 
clinical relevance.

Uncertainty quantification for hepatobiliary image 
processing

Recent studies have demonstrated the practical 
implementation of uncertainty quantification across 
various hepatobiliary imaging applications. These 
investigations highlight the technical capacity of 
using deep learning algorithms to improve image 
reconstruction and calculation of uncertainty. Huang 
et al. [12] introduced a learning-based framework for 
liver T1ρ mapping (a specialized MRI technique that 
measures the spin-lattice relaxation time in the rotating 
frame, which is useful for detecting early biochemical 
changes in the liver parenchyma) with integrated 
uncertainty estimation. This approach employed a 
probabilistic neural network to refine coarse T1ρ maps 
from reduced T1ρ-weighted images while simultaneously 
generating uncertainty measures. In a study of 51 patients 
with varying stages of liver fibrosis, the system achieved 
less than 3% relative mapping error and effectively 
identified unreliable regions. Region of interest (ROI) 
refinement and quantification accuracy improved through 
uncertainty-weighted training and scan times decreased 
from ten to six seconds while maintaining accuracy, 
showing promise for clinical applications requiring rapid 
T1ρ quantification [12]. However, the performance of 
this model has yet to be validated on an independent 
external dataset, which would be crucial for establishing 
its generalizability across different clinical settings and 
patient populations.

Shih et al. [13] developed an uncertainty-aware 
physics-driven deep learning network (UP-Net) for 
proton-density fat fraction and R2* quantification self-
gated free-breathing stack-of-radial MRI. Their framework 
used a two-module approach: an artifact suppression 
module employing generative adversarial networks 
(GAN) to reduce radial streak artifacts and a parameter 
mapping module with a bifurcated UNet structure to 
generate quantitative maps and uncertainty estimates 
simultaneously. The uncertainty maps effectively 
identified unreliable regions and improved quantification 
accuracy through uncertainty-weighted training, 
decreasing slice reconstruction time from 3.2 min/slice 
(using standard approaches) to 79 ms/slice. Their approach 
demonstrates how integrating uncertainty estimation can 
enhance both the accuracy and reliability of quantitative 
MRI analysis [13]. These advancements represent 
significant progress in applying uncertainty quantification 
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Table 1: Evolution of uncertainty quantification methods in hepatobiliary imaging from traditional 
to AI-based approaches
Time 
Period

Method/
Architecture Key features Performance 

metrics
Clinical 
applications Limitations

Traditional Methods (Pre-2020)

Pre-2015 Expert 
Consensus

- Visual assessment
- Inter-reader agreement
- Standardized reporting 

systems

- Inter-observer 
variability

- Subjective 
confidence levels

- Lesion 
characterization

- Treatment 
planning

- High variability
- Time-consuming
- Limited 

reproducibility

2015–2019 Statistical 
Analysis

- ROI-based 
measurements

- Texture analysis
- Radiomics features

- Sensitivity/
Specificity

- Confidence 
intervals

- Tumor detection
- Fibrosis staging

- Limited automation
- Requires manual 

input

Modern AI-Based Methods (2020-Present)

2020–2022 Classical CNN
- 2D image analysis
- Basic uncertainty 

estimates

- Classification 
accuracy: 86.1%

- Uncertainty rate: 
12.9%

- Fatty liver 
assessment

- Basic lesion 
detection

- Limited to 2D 
analysis

- No spatial context 
preservation

2023 AHUNet

- Hybrid 2D/3D 
processing

- Anisotropic feature 
handling

- Lesion-level confidence 
scoring

- Liver volume 
Dice: 0.94

- Focal lesion 
Dice: 0.57

- Tumor 
segmentation

- Volume 
estimation

- Multi-lesion 
detection

- High computational 
cost

- Large training data 
requirements

2023–2024 Monte Carlo 
Dropout CNN

- Probabilistic predictions
- Dropout-based 

uncertainty

- RMSE: 5.35%
- CoV: 0.32
- Better regression 

performance

- Fatty liver content 
assessment

- Image quality 
assessment

- Computationally 
intensive

- Limited to specific 
applications

2024 Bayesian CNN
- Probabilistic framework
- Comprehensive 

uncertainty modeling

- Classification 
accuracy: 91.7%

- Uncertainty rate: 
22.6%

- Complex lesion 
characterization

- Quality assurance

- Higher uncertainty 
predictions

- Complex 
implementation

2024 UP-Net

- Physics-driven 
approach

- Dual-module 
architecture

- GAN-based artifact 
suppression

- Processing time: 
79 ms/slice

- Improved 
quantification 
accuracy

- Fat fraction 
quantification

- R2* mapping
- Real-time 

processing

- Requires physics 
modeling

- Complex 
architecture

The table presents a chronological progression of uncertainty quantification methods in hepatobiliary imaging, spanning from 
traditional expert-based approaches to modern artificial intelligence techniques (2015–2024). Methods are categorized by time 
period and architectural approach, with detailed descriptions of key features, quantitative performance metrics, clinical applications, 
and inherent limitations. Traditional methods (Pre-2020) demonstrate the transition from subjective expert consensus to statistical 
analysis approaches. Modern AI-based methods (2020-Present) show the development from classical convolutional neural networks 
to sophisticated architectures like AHUNet, Monte Carlo Dropout CNN, Bayesian CNN, and physics-driven networks (UP-Net). 
Performance metrics highlight improvements in accuracy (from basic inter-observer agreement to 91.7% classification accuracy) and 
processing efficiency (achieving 79 ms/slice processing times). The progression illustrates the field’s evolution toward quantitative, 
automated, and clinically integrated uncertainty assessment methods, while acknowledging computational and implementation 
challenges. Data compiled from referenced studies including Del Corso et al. (2024), Lambert et al. (2023), and others cited in the 
manuscript.
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to hepatobiliary imaging, with three key developments 
emerging: First, the dramatic reduction in processing 
times while still maintaining or improving accuracy 
suggests these methods are becoming clinically viable 
and reliable. Second, the integration of physics-driven 
approaches with deep learning demonstrates a mature 
understanding of both computational and domain-specific 
challenges (such as MRI physics, anatomical variability 
in the hepatobiliary system, and clinical workflow 
requirements). Finally, the consistent improvement 
in accuracy across different imaging modalities and 
applications indicates the robustness of uncertainty 
quantification as a methodological framework (Figure 2). 
Together, these developments suggest we are approaching 
a paradigm shift in quantitative medical imaging, where 
uncertainty awareness becomes an integral part of clinical 
image analysis.

Quality assurance and future implications

Quality assurance in hepatobiliary imaging has 
become increasingly crucial as imaging protocols 
and modalities evolve [9]. Deep learning models can 
automatically verify protocol adherence, image quality, 
and technical parameters across large datasets. The 
power of embedding-based approaches lies in their 
ability to learn from diverse datasets while maintaining 

robustness to variations in imaging parameters and patient 
characteristics. One significant advantage is the ability 
to identify out-of-distribution cases - situations where 
imaging characteristics deviate significantly from the 
training distribution. These deviations can stem from 
multiple sources of variability: inter-operator differences 
in image acquisition techniques, variations between 
imaging equipment and protocols across different 
institutions, patient-specific anatomical variations, and 
differences in technical parameters. By detecting these 
variations, the models can identify cases that fall outside 
their reliable operating range. This capability is crucial 
for flagging unusual presentations or potential artifacts 
requiring special attention.

Clinical implementation and practical 
considerations

Integration with clinical workflows

The adoption of uncertainty quantification methods 
in hepatobiliary imaging demands careful alignment 
with existing radiological workflows [6, 9]. Radiology 
departments should develop standardized reporting 
templates that incorporate uncertainty metrics alongside 
traditional imaging findings. These templates should 
clearly communicate both the degree of confidence in 

Figure 2: Architectural frameworks for uncertainty quantification in hepatobiliary image processing. (A) T1ρ mapping 
framework with integrated uncertainty estimation. The probabilistic neural network processes T1ρ-weighted images to simultaneously 
generate refined T1ρ maps and uncertainty estimates. This framework achieved <3% relative mapping error while reducing scan times from 
10 to 6 seconds (Huang et al., 2023). The uncertainty-weighted training enables effective ROI refinement and identification of unreliable 
regions. (B) UP-Net dual-module physics-driven architecture. The first module employs GAN-based artifact suppression to reduce radial 
streak artifacts in stack-of-radial MRI data. The second module uses a bifurcated UNet structure for parameter mapping, generating 
quantitative maps (fat fraction and R2*) along with uncertainty estimates. This framework dramatically improved processing efficiency 
(79 ms/slice vs. 3.2 min/slice) while maintaining accuracy through uncertainty-weighted training (Shih et al., 2023). Color coding indicates 
different processing stages: input data (blue), intermediate processing modules (orange/purple), and output maps (green for quantitative 
maps, red for uncertainty estimates). Arrows show the data flow through each framework, illustrating how uncertainty quantification 
is integrated into the processing pipeline. Both architectures demonstrate the evolution toward real-time processing capabilities while 
maintaining robust uncertainty estimation for clinical applications.
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specific findings and any areas requiring additional 
attention. For instance, in cases of HCC screening, 
uncertainty scores can be mapped to LI-RADS categories, 
providing an additional layer of confidence assessment 
[8]. The integration process should maintain efficiency 
while ensuring that uncertainty information enhances, 
rather than complicates, clinical decision-making [14].

Interpretation guidelines and training requirements

Radiologists require specific training to effectively 
interpret and utilize uncertainty quantification metrics 
[2]. Understanding the distinction between aleatoric 
uncertainty (inherent in the imaging data) and epistemic 
uncertainty (model-related) is crucial for proper clinical 
application [7]. Training programs should focus on 
practical case-based scenarios, demonstrating how 
uncertainty measures correlate with clinical outcomes, 
as shown in recent T1ρ mapping studies [12]. Common 
pitfalls include over-reliance on uncertainty scores 
without considering clinical context and misinterpretation 
of uncertainty thresholds in different clinical scenarios. 
Departments could establish regular quality assurance 
meetings to review cases where uncertainty quantification 
significantly influenced clinical decisions [9]. This quality 
assurance framework could be extended to create regional 
imaging hubs where larger centers provide support to 
smaller hospitals, enabling them to access advanced 
uncertainty quantification expertise and validation 
services, particularly beneficial for facilities with limited 
specialized staff.

Decision support framework

The application of uncertainty quantification 
varies across different clinical contexts, as demonstrated 
by recent developments in AHUNet frameworks [10]. 
In screening settings, higher uncertainty thresholds 
may trigger additional imaging or shortened follow-up 
intervals. For diagnostic imaging, uncertainty scores 
can help prioritize cases for subspecialist consultation 
[3]. These measures are particularly valuable in 
multidisciplinary tumor boards, where quantifiable 
confidence levels can inform treatment planning decisions 
[8]. The effectiveness of this approach has been recently 
shown [13], where uncertainty measures successfully 
identified unreliable regions requiring additional 
attention. Specifically, the study demonstrated that 
regions flagged with high uncertainty scores correlated 
strongly with areas that experienced radiologists had 
marked for additional review, and in 85% of cases, these 
regions contained clinically significant findings that could 
have been overlooked without the uncertainty warning 
system.

Quality control and monitoring

Maintaining the reliability of uncertainty 
quantification systems requires systematic quality control 
measures [9]. Departments should implement standardized 
monitoring protocols to track the correlation between 
uncertainty measures and clinical outcomes [12]. This 
includes periodic assessment of false positive and false 
negative rates stratified by uncertainty scores, and regular 
calibration of uncertainty thresholds based on accumulated 
clinical data [7]. Documentation of these quality metrics 
is crucial for both continuous improvement and regulatory 
compliance. This need for robust quality control and 
extensive clinical validation data further strengthens the 
case for establishing centralized imaging hubs, where 
larger volumes of standardized data and outcomes can 
be pooled across institutions to enable more reliable 
uncertainty threshold calibration and comprehensive 
quality metrics.

CONCLUSIONS

The continued evolution of deep learning-based 
uncertainty quantification promises increasingly 
sophisticated quality assurance capabilities. Integration 
with other artificial intelligence-driven systems will create 
more comprehensive solutions for radiological workflow 
optimization. These advancements influence broader 
healthcare delivery systems by providing standardized 
quality metrics and uncertainty measures, facilitating 
better communication between providers, and eventually 
will provide more consistent care delivery.
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