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ABSTRACT
This article provides a comprehensive analysis of the signaling pathways 

implicated in breast cancer (BC), the most prevalent malignancy among women 
and a leading cause of cancer-related mortality globally. Special emphasis is placed 
on the structural dynamics of protein complexes that are integral to the regulation 
of these signaling cascades. Dysregulation of cellular signaling is a fundamental 
aspect of BC pathophysiology, with both upstream and downstream signaling 
cascade activation contributing to cellular process aberrations that not only drive 
tumor growth, but also contribute to resistance against current treatments. The 
review explores alterations within these pathways across different BC subtypes and 
highlights potential therapeutic strategies targeting these pathways. Additionally, 
the influence of specific mutations on therapeutic decision-making is examined, 
underscoring their relevance to particular BC subtypes. The article also discusses 
both approved therapeutic modalities and ongoing clinical trials targeting disrupted 
signaling pathways. However, further investigation is necessary to fully elucidate the 
underlying mechanisms and optimize personalized treatment approaches.

INTRODUCTION

Breast cancer (BC) is one of the most common 
cancers in women and a leading cause of cancer-related 
deaths both in the US and globally [1, 2]. In 2022, over 2 
million new BC cases were reported, along with 650,000 
deaths, making BC the most prevalent malignant tumor 
worldwide [3].

BC is a heterogeneous disease comprising several 
major molecular subtypes [4]. It is well established that 
BC can be classified based on the expression of estrogen 
receptor (ER), progesterone receptor (PR), and human 

epidermal growth factor receptor 2 (HER2) into clinical 
subtypes including hormone receptor positive, HER2-
negative (luminal A or luminal B on molecular testing), 
HER2-overexpressing (HER2+), or BC negative for ER, 
PR, and HER2 (ER-/PR-/HER2-), often referred to as triple-
negative breast cancer (TNBC), most consistent with the 
basal subtype on molecular testing. Identifying molecular 
subtypes is a major step toward the selection of the 
treatment strategy and prediction of the treatment outcome.

The treatment landscape for BC includes surgery, 
chemotherapy, radiotherapy, endocrine therapy (ET), 
targeted therapy (TT), and immunotherapy, requiring 
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collaboration among various subspecialties [5, 6]. 
Advances in therapeutic approaches have expanded the 
treatment options for patients with both metastatic and 
early-stage BC. As of December 2023, the U.S. Food and 
Drug Administration (FDA) has approved 86 drugs for 
BC treatment, including chemotherapy agents, TT, and 
immune checkpoint inhibitors (NCI. Drugs Approved for 
Breast Cancer. Available from: https://www.cancer.gov/
about-cancer/treatment/drugs/breast).

The complexity and heterogeneity of tumors 
underscore the importance of precision medicine in 
cancer therapy. Expanding the range of targeted molecular 
alterations can enhance treatment efficacy [7, 8].

Key challenges in treating BC include issues 
related to both de novo and acquired resistance to 
systemic treatments. This resistance often arises from the 
dysregulation of signaling pathways within cancer cells, 
complicating treatment efforts [9, 10]. BC progression 
involves disruptions in various intra- and intercellular 
signaling pathways within normal mammary tissues 
and their surrounding microenvironment. Oncogenic 
mutations or abnormal expression of signaling 
components disturb these regulatory networks, leading 
to uncontrolled tumor cell proliferation, evasion of 
apoptosis, and tissue invasion [11].

A comprehensive understanding of these 
dysregulated and dynamic signaling pathways can greatly 
enhance our knowledge of tumor pathophysiology and 
guide the development of improved targeted cancer 
therapies. This review explores the critical roles of various 
signaling pathways in breast tumor development.

PI3K/AKT/MTOR PATHWAY

The PI3K/Akt/mTOR signaling pathway (Figure 1) is 
pivotal in regulating cell growth, proliferation, metabolism, 
and survival [12–14]. Up to 25–40% of BC cases exhibit 
variations that hyperactivate the PI3K/Akt/mTOR pathway, 
underscoring its critical role in oncogenesis [15–17].

PIK3CA gene mutation

PI3K produces the phospholipid phosphatidyl-
3,4,5-triphosphate (PIP3) in the inner leaflet of the plasma 
membrane by phosphorylating Phosphatidylinositol 
4,5-bisphosphate (PIP2) and is the first step in the 
most frequently altered pathway in BC. Mutations and 
amplifications commonly occur in the genes encoding 
the PI3K catalytic subunits p110α (PIK3CA) and p110β 
(PIK3CB) [12, 16, 18, 19]. These genetic alterations lead 
to constitutive activation of the PI3K pathway, which 
drives oncogenic processes such as cell growth, survival, 
and proliferation. This pathway plays a central role in ER-
positive BCs.

PIK3CA mutations were found in 32% of 
early BC patients and were associated with favorable 

clinicopathologic characteristics, such as older age, ER 
positivity, lower grade, and smaller tumor size [20]. The 
prevalence of PIK3CA mutations is 18% in TNBC, 22% in 
HER2-positive, and 37% in luminal subtypes [21].

It is important to note that these findings are 
different from reports linking PI3K pathway activation 
to resistance to ET [22, 23]. Although PIK3CA mutations 
can occur throughout the gene, up to 80% of PIK3CA 
mutations occur in hotspots within the helical (E542K 
and E545K) and kinase (H1047R) domains of p110α. 
These mutations significantly increase PI3K activity, 
leading to the induction of cellular transformation 
in vitro and tumorigenicity in vivo when overexpressed 
in human mammary epithelial cells. Moreover, transgenic 
mice expressing these mutant forms of p110α develop 
mammary tumors, highlighting their oncogenic potential. 
The mutations more frequent in tumors that relapse during 
ongoing ET (48%). The hyperactivation of the PI3K 
pathway, often driven by these mutations, is associated 
with resistance to ET in BC [22, 23].

Loss of PTEN

PTEN (Phosphatase and Tensin Homolog) is a 
tumor suppressor that negatively regulates the PI3K/Akt/
mTOR pathway by dephosphorylating PIP3 back to PIP2, 
thus inhibiting Akt activation [24, 25].

Loss of PTEN function, whether due to mutations, 
deletions, or epigenetic silencing, removes this regulatory 
brake, resulting in sustained pathway activation and cancer 
progression [24].

Transcription of the PTEN gene is regulated at 
multiple levels [24–28]. Epigenetic and transcriptional 
positive regulation involves factors such as early growth 
response protein-1 (EGFR-1), peroxisome proliferator-
activated receptor-γ (PPAR-γ), tumor protein 53 (p53), 
human sprout homolog 2 (SPRY2) and activating 
transcription factor 2 (ATF2). Transcriptional regulation 
is also controlled by negative regulators, including c-Jun, 
nuclear factor kappa B (NF-κB), transforming growth 
factor beta (TGF-β), and the polycomb group protein 
BMI1 [24, 29, 30]. Additionally, SNAIL and SLUG 
repress PTEN expression at the transcriptional level. 
Epigenetic mechanisms, including promoter methylation 
and histone modifications, can also lead to the silencing 
of PTEN expression [24].

At the post-transcriptional level, various 
miRNAs have been identified that downregulate 
PTEN expression [24, 26, 28, 31]. Additionally, post-
translational modifications of PTEN by SUMOylation 
[32], phosphorylation of the C-terminal tail [33, 34], 
acetylation [35, 36], ubiquitination [37, 38] and other 
novel modifications were described in review [39].

The PTEN promoter has been described as a 
potential target in BC [40–45]. Research indicates that loss 
of PTEN may predict more aggressive disease and poorer 
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outcomes in patients with BC and is more commonly 
observed in TNBC [46–48]. The loss of PTEN contributes 
to disease progression and resistance to TT by driving 
activation of the PI3K pathway, as well as functional 
“cross-activation” of the MAPK pathway [49].

Akt amplification and mutation

The serine/threonine protein kinase Akt also referred 
to as protein kinase B (PKB) protein kinase B (PKB), 

is activated by the PI3K pathway by binding to PI3K-
produced PIP3 through its N-terminal Pleckstrin homology 
(PH) domain at the plasma membrane [14, 50]. Akt (which 
we use to refer to Akt1) is subsequently phosphorylated 
by mTORC2 on its hydrophobic motif Ser473, relieving 
autoinhibition and permitting subsequent phosphorylation 
at Thr308 in the activation loop by PDK1 and resultant full 
activation [51–54]. The Akt kinase family consists of three 
homologous and highly similar isoforms: Akt1 (PKBα), 
Akt2 (PKBβ) and Akt3 (PKBγ). Akt1 plays a critical role 

Figure 1: Key signaling pathways and targeted factors in dysregulated BC. This figure illustrates the major signaling pathways 
and their intricate crosstalk in BC, focusing on the GPCR, RTKs, RAS/RAF/MEK1/2/ERK1/2, MAPK, HER2, PI3K/Akt/mTOR, Wnt/β-
catenin, NF-κB, Notch, and DDR pathways. These pathways are critical in regulating essential cellular processes such as proliferation, 
survival, differentiation, and metastasis. The MAPK pathway, initiated by RTKs like EGFR and HER2, activates downstream 
effectors such as RAS, RAF, MEK, and ERK1/2, driving cell growth and survival. HER2 amplification further drives 
oncogenesis by activating the MAPK and PI3K/Akt pathways, with HER3 and HER4 modulating these signals. The PI3K/
Akt/mTOR pathway controls cell growth and metabolism through Akt activation and downstream targets like mTORC1/2, 
p70S6K1, and 4E-BP1. Mutations in PIK3CA and loss of PTEN contribute to its hyperactivation. The Wnt/β-catenin pathway 
promotes EMT and metastasis, driven by Wnt signaling through LRP5/6 and β-catenin, which interact with APC, CKIα, and 
TCF/LEF. The NF-κB pathway is a central signaling network regulating inflammation, immune responses, and cell survival. 
This pathway is activated through Tumor Necrosis Factor Receptors (TNFR), Toll-like Receptors (TLRs), and the IκB kinase 
(IKK) complex. The Notch pathway, triggered by receptor-ligand interactions between Notch receptors and ligands like DLL, 
governs cell fate determination and contributes to cancer progression by promoting proliferation and maintaining cancer stem 
cells. The DDR pathway is essential for maintaining genomic stability by detecting and repairing DNA damage. It responds 
to various types of damage, including DSBs, SSBs, and cross-links, by activating repair mechanisms such as HR for DSBs 
and NER to other kinds of damage. In BC, dysregulation of the DDR pathway, often due to mutations in genes like BRCA1 
and BRCA2, impairs DNA repair, leading to genomic instability and an increased risk of cancer.
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in multiple cellular processes, including growth, survival, 
and metabolism, while Akt2 is central to maintaining 
glucose homeostasis. Akt3 is primarily involved in 
neuronal development [55].

Alterations in the AKT gene, such as amplification or 
mutation, can enhance Akt kinase activity, which is linked 
to worse survival outcomes, especially in ER-negative 
BC [56, 57]. Mutations in AKT1, AKT2, or AKT3 are 
found in roughly 3–5% of cancers, with the most common 
functionally activating AKT mutations being E17K, 
L52R, and Q79K [58–62]. AKT mutations are frequently 
observed in hormone-driven cancers, particularly in ER-
positive BC subtypes [63].

In BC the three Akt isoforms play distinct roles in 
regulating migration and other cellular functions [50, 
64–67]. Akt1 is primarily responsible for the proliferative 
potential of cells by upregulating Cyclin D1 and S6 and is 
more highly expressed in the primary BC tumor sample 
from the breast. AKT1 E17K is the most frequently 
identified oncogenic mutation in Akt1 [61]. In contrast, 
Akt2 expression is elevated in lung and liver metastatic 
samples, where it is associated with increased invasiveness, 
stem cell-like characteristics, and resistance to therapies 
[65, 66]. Akt3 is mainly amplified and highly expressed in 
TNBC tumors and cell lines, where it plays a crucial role 
in regulating tumor growth and progression [64, 68, 69].

mTOR activation

The mammalian target of rapamycin (mTOR) is 
a 289 kDa serine/threonine kinase that plays a key role 
in regulating cell growth and metabolism. Its activation 
can occur due to mutations in upstream components or 
alterations in nutrient and energy-sensing mechanisms [70, 
71]. The mTOR signaling cascade comprises two distinct 
multi-subunit complexes: mTORC1 and mTORC2, each 
formed by the mTOR kinase associating with different 
adapter proteins [72, 73].

The large megadalton mTORC1 and mTORC2 
complexes were identified as assemblies of multiple 
proteins, as shown in Table 1. They differ based on 
the binding of (Raptor) or (Rictor and mSin1) to 
(mTOR+mLST8), which leads to the formation of 
mTORC1 and mTORC2, respectively [72]. The two 
complexes have distinct and sometimes opposing 

functions and feedback loops; a simplified summary 
is that mTORC1 on the lysosome surface synthesizes 
signals from nutrients and stress to promote anabolism 
vs catabolism, and mTORC2 at the plasma membrane 
synthesizes signals from outside the cell including various 
growth factors such as insulin to control growth and 
metabolism [74].

Aberrant mTOR signaling is a hallmark of many 
cancers and is associated with increased tumor progression 
[75]. The activation of the mTOR pathway (Figure 1) 
depends on activating mutations in mTOR, mTORC1/2, 
or upstream mutations, as well as the loss of function of 
negative regulators in the mTOR signaling cascade [73, 76].

Mutations in core components of the mTOR 
complexes (mTORC1 and mTORC2) are rarer than the 
more common upstream mutations in pathways such as 
Akt and TSC1/2 (tuberous sclerosis complex proteins). 
These mutations often result in the overactivation of 
mTORC1, which is crucial for cancer progression and 
resistance to therapy [77].

mTORC1 plays a central role in maintaining 
the balance between anabolic and catabolic processes, 
especially in response to environmental stress. TSC1 
and TSC2 are crucial negative regulators of mTORC1. 
They inhibit mTORC1 activity by transforming the small 
GTPase Rheb (Ras homolog enriched in the brain) into 
its inactive GDP-bound state. This mechanism prevents 
uncontrolled cell growth and proliferation [70, 78]. 
mTORC1 is also controlled and regulated at the lysosome 
surface by the two small heterodimeric GTPases RagA/B 
and RagC/D, forming a bipartite switch modulated by 
numerous proteins including the tumor suppressor FLCN; 
together these three GTPases tightly control mTORC1 
activity [74, 79–83].

TSC1 and TSC2 are tumor suppressors, and their 
loss or mutation causes widespread but benign tumors. 
In TSC mutant cells, mTORC1 is constitutively active, 
therefore stimulating translation and promoting cell 
growth [84]. Low expression of TSC 1/2 is associated 
with more aggressive BC and worse outcomes [85]. TSC2 
normally inhibits mTORC1 by promoting the conversion 
of Rheb-GTP to its inactive form, Rheb-GDP. When 
TSC2 is lost or its function is impaired, this conversion 
is hindered, resulting in elevated Rheb-GTP levels and 
subsequent activation of mTORC1 [14, 71, 86].

Table 1: mTORC1 and mTORC2 complexes
mTORC1 mTORC2
mTOR protein mTOR protein
Raptor Rictor
GβL/mLST8 GβL/mLST8
DEPTOR DEPTOR
PRAS40 Protor/PRR5

mSIN1
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There are a variety of upstream pathways that 
control mTORC1 activation, including growth factor 
signaling, amino acid levels, cellular energy levels, and 
stress (in review [70, 71, 74]. Akt modulates mTORC1 
activity by phosphorylating PRAS40, a key inhibitor of 
mTORC1. This phosphorylation removes PRAS40’s 
inhibition, thereby enhancing mTORC1 activation 
[87]. The Ras-Erk MAPK pathway can also activate 
mTORC1 downstream. When Erk is activated, it directly 
phosphorylates and inactivates TSC2.

mTORC2 is less well understood than mTORC1 
but acts as a regulated effector of IGF and PI3K signaling 
[71, 74]. It also appears to modulate a portion of signaling 
downstream of oncogenic Ras [88, 89]. Rictor, a core 
component of mTORC2, is sometimes highly amplified 
in patients with lung cancer and BC. In addition to 
activation of Akt, mTORC2 activates numerous members 
of the AGC kinase family including PKC, PKN, and SGK 
controlling metabolism, cell division, and migration [72, 
90]. Intriguingly, SGK may substitute for Akt activity 
as a resistance mechanism in Akt inhibition [91, 92]. 
Development of selective mTORC2 inhibitors could 
prevent such a mechanism, but selective inhibitors of 
mTORC2 vs mTORC1 are not available and have been 
challenging to make because both complexes include 
mTOR as the key active component in essentially identical 
conformations.

Therapeutic approaches

Given the critical role of the PI3K/Akt/mTOR 
pathway in cancer, numerous therapeutic strategies have 
been devised to target various components of this pathway. 
Targeting the PI3K/Akt/mTOR signaling pathways has led 
to the development of drugs that address mechanisms of 
endocrine resistance [93].

PI3K inhibitors

Numerous PI3K inhibitors in clinical development 
inhibit all catalytic subunit isoforms, such as p110α, 
p110β, and p110δ. However, some inhibitors are designed 
to target only specific isoforms [94]. Despite challenges 
such as poor drug tolerance and resistance, several 
PI3K inhibitors have now received regulatory approval 
(Table 2) [95].

Alpelisib is a p110α-selective inhibitor, approved for 
the treatment of PIK3CA-mutated ER/PR-positive, HER2-
negative BC in 2019 [96].

Taselisib, a p110β-sparing inhibitor, demonstrated 
statistical improvement in PFS in the phase III study, but 
with serious side effects and was not approved by the FDA 
[16, 18].

Inavolisib, a p110α-selective degrader, was 
approved by the FDA on October 10, 2024, based on 
the results of the INAVO120 trial [97, 98]. It continues 

to be developed in early-stage BC treatment (Table 3, 
NCT05306041). 

The pan PI3K inhibitor, pictilisib did not meet 
its primary endpoint in the PEGGY trial (ER+/HER2 
negative BC, NCT01740336) [99].

Other PI3K inhibitors, such as TOS-358, MEN1611, 
OKI-219, STX-478, BBO-10203 and tenalisib are 
currently being investigated for BC in clinical trials 
(Table 3). Additionally, PI3K inhibitors, such as 
idelalisib, copanlisib, duvelisib, and umbrasilib are used 
in hematological malignancies.

Different PIK3CA mutations might have distinct 
prognostic implications. The importance of multiple 
PIK3CA mutations is evaluated in trials (NCT04632992; 
NCT04589845, NCT05564377).

PI3K/Akt signaling pathway is overactivated in 
many human cancers, leading to excessive DNA damage 
response activation [100]. PTEN loss contributes to 
this issue by causing resistance to PI3Kα inhibitors. 
Additionally, PTEN loss is a mechanism of acquired 
resistance to CDK4/6 inhibitors. Clinically, PTEN loss 
is relevant because it also reduces the effectiveness of 
PI3Kα inhibitors, which are currently used after CDK4/6 
inhibitors [101].

Akt inhibitors

Clinical trials are currently exploring the use of Akt 
inhibitors, either as single agents or combined with other 
treatments, to address the oncogenic effects caused by 
Akt1 activation (Table 3, NCT03959891, NCT04253561 
NCT05564377).

The findings suggest that different Akt mutants 
exhibit varying sensitivities to Akt inhibitors [61]. 
Drugs like capivasertib [102] and ipatasertib [103] block 
Akt kinase activity, targeting its pro-survival effects to 
improve outcomes in cancers driven by Akt mutation or 
hyperactivity.

Ipatasertib, an ATP-competitive selective Akt 
inhibitor, is currently being evaluated in clinical trials for 
its efficacy in BC (Table 3). While it did not demonstrate 
improved outcomes in PIK3CA/Akt1/PTEN-altered 
advanced TNBC [104], it has shown promising results 
in patients with HER2-positive mBC harboring PIK3CA 
mutations, according to preliminary findings from the 
phase 1b IPATHER trial (NCT04253561).

Capivasertib is a pan-Akt small-molecule inhibitor 
of all three Akt isoforms approved for the treatment 
of ER/PR-positive BC that is also has either PIK3CA-
mutated or Akt-altered or demonstrated PTEN-loss 
(Table 2) [102].

mTOR inhibitors

mTOR inhibitors, such as everolimus [105] and 
temsirolimus, are used in the treatment of various cancers, 
including renal cell carcinoma and BC. These drugs 
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Table 2: Approved drugs for BC treatment

Agents Trial FDA Indication and disease 
setting References

PI3K Inhibitors

Alpelisib
p110α-

selective 
inhibitor

Phase III, SOLAR-1 
(NCT02437318) Approved 2019

PIK3CA-mutated ER/PR-
positive, HER2-negative 

mBC

(André et al., 
2019) [96]

Inavolisib
p110α-

selective
degrader

Phase III, INAVO120 
(NCT04191499) Approved 2024

PIK3CA-mutated HR-
positive, HER2-negative, 
locally advanced or mBC

(Turner et al., 
2024) [98]

Akt Inhibitors 

Capivasertib Akt-inhibitor
Phase III, 

CAItello-291 
(NCT04305496)

Approved 2023

ER/PR-positive, HER2-
negative mBC with 

PIK3CA/Akt1/PTEN-
alterations

(Turner et al., 
2023) [102]

mTOR Inhibitors

Everolimus mTOR 
inhibitor

Phase III, BOLERO-2 
(NCT00863655) Approved 2012 ER/PR-positive, HER2- 

negative mBC
(Baselga et al., 

2012) [105]
Anti-HER2 therapeutic agents

Trastuzumab Anti-HER2 
mAb

Phase III Approved 1998 HER2+ mBC (Cobleigh et al., 
1999) [320]

Phase III, HERA 
(NCT00045032) Approved 2006 HER2+ eBC

(Piccart-
Gebhart et al., 
2005) [321]

Pertuzumab Anti-HER2 
mAb

Phase III, APHINITY 
(NCT01358877) Approved 2017

HER2+ eBC in combination 
with trastuzumab and 

chemotherapeutic agents

(von Minckwitz 
et al., 2017) 

[156]
Phase III, 

CLEOPATRA 
(NCT00567190)

Approved 2012
HER2+ mBC in 

combination with 
trastuzumab and docetaxel

(Swain et al., 
2013) [322]

Lapatinib HER1/HER2 
TKI inhibitor

Phase III, 
(NCT00078572) Approved 2007

HER2+ mBC in 
combination with 

capecitabine

(Geyer et al., 
2006) [323]

Neratinib
HER1/HER2/

HER4 TKI 
inhibitor

Phase III, NALA 
(NCT01808573) Approved 2020

HER2+ mBC after 
receiving 2 or more anti-
HER2 based treatment 

regimens

(Saura et al., 
2020) [158]

Phase III, ExteNET 
(NCT00878709) Approved 2017

HER2-overexpressed/
amplified eBC, to follow 

adjuvant trastuzumab-based 
therapy

(Martin et al., 
2017) [324]

Tucatinib HER2/HER3 
TKI inhibitor

Phase II, 
HER2CLIMB 

(NCT02614794)
Approved 2020

HER2+ mBC in 
combination with 
trastuzumab and 

capecitabine

(Murthy et al., 
2020) [157]

Ado-
trastuzumab 
emtansine  
(T-DM1)

Anti-HER2 
monoclonal 

anti-
microtubule 

agent 
conjugate

Phase III, EMILIA 
(NCT00829166) Approved 2013 HER2+ mBC after 

trastuzumab and a taxane
(Verma et al., 
2012) [152]

Phase III, 
KATHERINE 

(NCT01772472)
Approved 2019

HER2+ eBC with residual 
invasive disease after 

neoadjuvant taxane and 
trastuzumab

(von Minckwitz 
et al., 2019)  

[325]
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acutely inhibit mTORC1, leading to reduced protein 
synthesis and cell proliferation. However chronic therapy 
also inhibits mTORC2, and side effects include a diabetes-
like state due to loss of insulin signaling [74].

AZD2014, also known as vistusertib, is a 
potent small-molecule ATP-competitive inhibitor of 
mTOR that selectively targets both mTORC1 and 
mTORC2 complexes. This dual inhibition provides a 
broader scope of action by addressing not only tumor 
growth but also resistance mechanisms that may 
arise due to mTORC2 activity. Preclinical studies 
have demonstrated that AZD2014 induces significant 
tumor regression, particularly in ER+ mBC [106]. 
It is currently being evaluated in clinical trials to 
further assess its therapeutic potential and efficacy in 
combination with other targeted therapies, with the goal 
of improving outcomes for patients with advanced BC 
(Table 3).

Dual inhibitors that target both PI3K and mTOR 
provide a more comprehensive blockade of the pathway. 
For example, gedatolisib aims to overcome resistance 
mechanisms that can develop when targeting only one 
component of the pathway (Table 3, NCT05501886). 
Gedatolisib has shown higher efficacy in BC patient-
derived xenograft models [107].

In conclusion, the PI3K/Akt/mTOR pathway 
remains a cornerstone of cancer biology and a critical 
target for therapeutic intervention. Continued research and 

clinical trials are essential to fully harness the potential of 
targeting this pathway, addressing resistance mechanisms, 
and improving patient outcomes.

RAS/RAF/MEK/ERK PATHWAY

The RAS/RAF/MEK/ERK pathway, a key signaling 
axis often altered in cancer, is typically considered to be an 
infrequently mutated pathway in BC [108]. 

However, high-fidelity molecular techniques have 
uncovered the critical relevance of non-genetic RAS/RAF/
MEK/ERK pathway activation in BC, enabling the effective 
use of advanced TT. This pathway is activated by oncogenic 
mutations, as well as epigenetic and transcriptional 
regulation not captured by genetic sequencing alone. The 
variability in RAS/RAF/MEK/ERK pathway alterations 
presents a major challenge in treating BC.

The RAS/RAF/MEK/ERK pathway consists 
of a GTPase and three layers of protein kinases that 
sequentially phosphorylate each other, transmitting 
extracellular signals to the cell nucleus where they 
influence cell division, differentiation, and survival [109]. 
The pathway is initiated when a cell surface receptor, such 
as a receptor tyrosine kinase (RTK), G-protein coupled 
receptor (GPCR), hormone receptor, or interleukin 
receptor, binds to its corresponding growth factor. Most 
commonly, this pathway is activated by ligand binding 
to an RTK, which leads to receptor dimerization and 

Fam-
trastuzumab 
deruxtecan-nxki 
(T-DXd)

Anti-HER2 
monoclonal 

topoisomerase 
inhibitor 
conjugate

Phase III, 
DESTINY-Breast03 

(NCT03529110)
Approved 2022

HER2+ mBC after 
receiving an anti-HER2 
based treatment regimen 

(Cortés et al., 
2022) [163]

Phase III, 
DESTINY-Breast04 

(NCT03734029)
Approved 2022 Previously treated HER2-

Low mBC
(Modi et al., 
2022) [326]

Margetuximab-
cmkb

Fc-engineered 
anti-HER2 

mAb

Phase III, SOPHIA 
(NCT02492711) Approved 2020

HER2+ mBC after 
receiving two or more 

anti-HER2 based treatment 
regimens

(Rugo et al., 
2023) [327]

PARP Inhibitors

Olaparib
PARP1/
PARP2 

inhibitor

Phase III, OlympiA 
(NCT02032823) Approved 2022

BRCA1 or BRCA2 
germline mutations high-
risk HER2-negative eBC

(Tutt et al., 
2021) [297]

Phase III, OlympiAD 
(NCT02000622) Approved 2018

BRCA1 or BRCA2 
germline mutations 

HER2-negative mBC after 
receiving no more than two 

previous chemotherapy 
regimens for metastatic 

disease

(Robson et al., 
2017) [298]

Talazoparib
PARP1/
PARP2 

inhibitor

Phase III, 
EMBRACA 

(NCT01945775)
Approved 2018

germline mutations in 
BRCA1 and BRCA2 
HER2-negative mBC

(Litton et al., 
2018) [328]

Abbreviations: eBC: early-stage breast cancer; mBC: metastatic breast cancer.
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Table 3: Current clinical trials targeting BC: progress and emerging therapies

Drug name Disease indications tested 
in trials Interventions Development 

phase

Primary 
outcome 
measures

Clinicaltrials.
gov identifier

PI3K inhibitors

PI3Kα-selective inhibitor 
alpelisib ER+/HER2- mBC

Alpelisib  
Palazestrant  
Ribociclib  
Everolimus

Phase Ib DLTs  
MTD NCT05508906

PI3Kα selective inhibitor 
inavolisib

ER+/HER2+ PIK3CA mutant 
eBC

Inavolisib  
PHESGO  

Endocrine therapy
Phase II pCR rate  

(ypT0/is ypN0) NCT05306041

PI3Kα H1047R mutation 
selective inhibitor OKI-219

Advanced solid tumors with 
PI3Kα H1047R mutation, 

including mBC 

OKI-219  
Fulvestrant  

Trastuzumab
Phase Ia/Ib MTD NCT06239467

Covalent inhibitor of 
PI3Kα mutation  
TOS-358

Advanced solid tumors, 
including BC TOS-358 Phase I DLTs  

RP2D NCT05683418

Allosteric PI3Kα inhibitor  
STX-478

Advanced solid tumors with 
PI3Kα mutations

STX-478  
Fulvestrant  
Ribociclib  
Palbociclib

Phase I/II DLT  
ORR NCT05768139

PI3K δ-sparing inhibitor  
MEN1611

ER+/HER2- mBC with 
PIK3CA/PTEN-alterations

MEN1611  
Eribulin Phase II CBR  

ORR NCT05810870

Dual PI3K δ/γ inhibitor 
tenalisib mTNBC Tenalisib (RP6530) Phase II

CBR  
ORR  
PFS

NCT06189209

Pan-PI3K/mTOR inhibitor  
Gedatolisib ER+/HER2- mBC

Gedatolisib  
Palbociclib  

Fulvestrant Alpelisib
Phase III PFS NCT05501886

Pan-PI3K and mTOR 
inhibitor GDC-0084 

HER2+ mBC with brain 
metastases

GDC-0084  
Trastuzumab Phase II CNS-ORR NCT03765983

PI3Kα:RAS breaker BBO-
10203

Advanced solid tumors 
(BREAKER-101)

BBO-10203  
Trastuzumab Phase I

MTD  
AEs  

RP2D
NCT06625775

Akt inhibitors

Ipatasertib HER2+ mBC with PI3KCA-
mutations

Ipatasertib Trastuzumab 
Pertuzumab Phase Ib RP2D NCT04253561

Ipatasertib
eBC (TNBC) with and without 

PI3CA/AKT1/PTEN   
genetic alterations 

Ipatasertib Atezolizumab 
Chemotherapy Phase I pCR NCT05498896

Ipatasertib

mBC (activating Akt 
mutations)  

The ComboMATCH treatment 
trials (cohort EAY191-S3)

Ipatasertib  
Paclitaxel Phase II

Accrual and 
assignment of 

patients  
Enrollment rates 

to trial

NCT05564377

mTOR inhibitors

Dual mTORC1/2 inhibitor 
vistusertib (AZD2014) mTNBC Vistusertib Olaparib Phase Ib/II MTD NCT02208375

Vistusertib (AZD2014) ER+ mBC Vistusertib  
Fulvestrant Phase I AEs  

Pharmacokinetics NCT01597388 

MEK inhibitors

Cobimetinib Inflammatory mBC Atezolizumab + Cobimetinib + 
Eribulin. Phase II ORR NCT03202316

Selumetinib mTNBC (arm II) Olaparib Selumetinib Phase II ORR NCT03801369

Binimetinib 
EAY191-N2  

(NF1 mutations)  
(ComboMATCH Trial)

Binimetinib  
Fulvestrant Phase II

Accrual and 
assignment of 

patients  
Enrollment rates 

to trial

NCT05564377
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Anti-HER2 TKIs

Early-stage HER2+ BC

Pyrotinib HER2+ microinvasive eBC 
(stage I)

Pyrotinib plus capecitabine 
(adjuvant therapy) Phase II iDFS NCT05861271

Pyrotinib HER2+ eBC Pyrotinib (extended adjuvant 
therapy) Phase II iDFS NCT05880927

Pyrotinib HER2+ high risk eBC 
Pyrotinib after adjuvant 

trastuzumab combined with 
pertuzumab or T-DM1

Phase II iDFS NCT05834764

Pyrotinib Residual invasive HER2+ 
eBC 

Pyrotinib after neoadjuvant 
chemotherapy plus anti-HER2 

therapy
Phase II iDFS NCT04254263

Pyrotinib HER2+ eBC  
(neoadjuvant therapy)

Pyrotinib combined with 
trastuzumab and chemotherapy Phase II pCR NCT04481932

Metastatic setting

Pyrotinib HER2+ mBC
Pyrotinib combined with 

trastuzumab and chemotherapy 
in the first-line setting

Phase II PFS NCT05429294

Pyrotinib HER2+ mBC with active brain 
metastases after ADCs Pyrotinib plus capecitabine Phase II CNS-ORR NCT06475443

Pan-HER receptor TKI 
Neratinib

HER2- mBC with brain 
metastasis and abnormally 

active HER2 signaling
Neratinib and Capecitabine Phase II OS  

CNS-PFS NCT04965064

Neratinib
Stage I-III HER2+ eBC with 
detected molecular residual 

disease

Neratinib and T-DM1  
(adjuvant therapy) Phase II

Clearance of 
ctDNA with 
the addition 

of neratinib to 
T-DM1

NCT05388149

Neratinib HER2+ mBC with brain 
metastases (Cohort 1, 4)

Neratinib  
T-DM1 Phase II ORR  

CNS-ORR NCT01494662

Neratinib HER2+ mBC Neratinib   
Capecitabine Phase Ib/II MTD NCT03377387

Ibrutinib
HER2-amplified mBC in the 
setting of T-DM1-pretreated 

disease
Trastuzumab plus Ibrutinib Phase I/II MTD  

CBR NCT03379428

HER2-Targeting ADC

BB-1701 HER2+ or HER2-low mBC BB-1701 (ADC) Phase II AEs  
ORR NCT06188559

SHR-A1811 HER2+ eBC  
Neoadjuvant Treatment 

SHR-A1811  
Pyrotinib Phase II pCR NCT05635487

ARX788

HER2+ eBC after treatment 
with trastuzumab and 

pertuzumab.

Pyrotinib  
ARX788 Phase II RCB NCT04983121

HER2+ mBC after treatment 
T-DXd ARX788 Phase II ORR NCT04829604

HER2+ mBC after T-DXd 
therapy ARX788 Phase II ORR NCT06578286

IKS014 HER2+ advanced solid 
tumors, including BC IKS014 Phase I RP2D  

ORR NCT05872295

FS-1502

HER2+ mBC, HER2 
expressed advanced solid 

tumors
FS-1502 Phase 1

DLT  
MTD  
RP2D  
ORR

NCT03944499

HER2+ mBC FS-1502 versus T-DM1 Phase III PFS NCT05755048

GQ1001

HER2+ mBC GQ1001 Phase I
DLT  
MTD  
RP2D

NCT04450732

HER2+ mBC after previous 
anti-HER2 treatment GQ1001+ pyrotinib Phase Ib/II

DLT  
MTD  
AEs  
ORR

NCT05575804
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autophosphorylation of its intracellular domain. This 
activation recruits guanine nucleotide exchange factors 
(GEFs) that activate Ras, a member of the GTPase family. 
Ras proteins, encoded by the HRAS, NRAS, and KRAS 
genes, act as molecular switches; they are tethered to the 

plasma membrane and activated when GEFs exchange 
GDP for GTP, moving Ras into an active state. However, 
because Ras has low enzymatic activity, GTPase-
activating proteins (GAPs) accelerate this process. Once 
activated by GTP, Ras binds to the cytoplasmic RAF 

Degrader-antibody 
conjugate   
ORM-5029

HER2+ mBC and advanced 
solid tumors ORM-5029 Phase I

MTD  
AEs  
ORR  
DOR

NCT05511844

KRAS inhibitor

KRAS G12C Inhibitor 
Adagrasib (MRTX849)

 KRAS G12C Mutated 
Advanced Solid Tumors, 

including BC

Adagrasib  
Olaparib Phase Ib AEs NCT06130254

Bispecific antibody (BsAb) 

Anti-HER2/SIRPα BsAb 
IMM2902 HER2+ mBC IMM2902 Phase I

DLT  
MTD  
AEs  

Toxicity

NCT05076591

Anti-SIRPα BsAb DS-
1103a HER2+ advanced solid tumors DS-1103a Phase I

DLT  
AEs  
ORR

NCT05765851

HER2-targeting BsAb 
Zanidatamab HER2+ mBC Zanidatamab Phase III PFS NCT06435429

Vaccines 

Multi-epitope HER2 
peptide vaccine TPIV100

Stage II-III HER2+ eBC 
with residual disease post-
neoadjuvant chemotherapy

TPIV100 Phase II iDFS NCT04197687

HER2/neu peptide vaccine 
GLSI-100

HLA-A*02 positive and 
HER2+ high risk eBC GLSI-100 Phase III

Invasive Breast 
Cancer-free 

Survival
NCT05232916

WOKVAC vaccine HER2+ eBC
pUMVC3-IGFBP2-HER2-

IGF1R plasmid DNA Vaccine + 
anti-HER2-mAbs

Phase II TILs NCT04329065

HER-2 Directed dendritic 
Cell (DC1) HER2+eBC

HER-2 pulsed DC1  
Trastuzumab  
Pertuzumab

Phase II pCR rate  
Immunogenicity NCT05325632

Dendritic cell vaccine HER2- mBC CircFam53B-219aa DC vaccine Phase I DLT  
AEs NCT06530082

Dendritic cell vaccines 
against HER2/HER3

HER2+ BC or TNBC with 
brain metastasis

Anti-HER2/HER3 dendritic cell 
vaccine  

Pembrolizumab
Phase II CNS - ORR NCT04348747

Target DDR pathway 

Selective PARP1 inhibitor 
saruparib (AZD5305) Advanced solid cancers AZD5305 Phase I/IIa AEs  

DLT NCT04644068

Selective PARP1 inhibitor 
saruparib (AZD5305)

ER+/HER2- mBC with 
BRCA1, BRCA2, or PALB2 

mutations (arm 1)

Saruparib  
Camizestrant Phase III PFS NCT06380751

Selective PARP1 inhibitor 
HRS-1167

gBRCA1/2 HER2- eBC 
(neoadjuvant therapy) HRS-1167 Phase II

DLT  
AEs  

pCR rate
NCT06516289

DNA polymerase (pol) 
theta inhibitor ART6043

HER2-ve mBC,  
g/sBRCA mutations ART6043 Phase I/IIa DLT  

PFS NCT05898399

ATR Inhibitor M1774 ER+/HER2- mBC after 
CDK4/6 inhibitors

M1774  
Fulvestrant Phase I/II DLT NCT05986071

HDAC Tucidinostat ER+/HER2- mBC Tucidinostat Phase 2 ORR NCT05633914

Abbreviations: ADC: antibody-drug conjugate; AEs: adverse events; CBR: clinical benefit rate; CNS: central nervous system; DLTs: dose limiting toxicities; 
DLTs: dose limiting toxicities; DOR: duration of response; MTD: maximum tolerated dose; MTD: maximum tolerated dose; ORR: overall response rate; 
OS: overall survival; pCR: pathologic complete response; PFS: progression free survival; RCB: residual tumor burden classification in grades; RP2D: 
recommended phase II dose; TILs: tumor-infiltrating lymphocytes.
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kinase, most commonly BRAF, which then dimerizes and 
activates MEK through phosphorylation. Phosphorylated 
MEK, in turn, phosphorylates ERK (Figure 1). Activated 
ERK then triggers various transcription factors, including 
ETS1/2, ELK1, and JUN, which regulate cell development, 
migration, and growth [110–112]. This pathway is notable 
for its significant signal amplification, where one upstream 
protein can activate multiple downstream effectors. Non-
canonical Ras signaling has recently been identified and 
a portion of oncogenic Ras signaling is conveyed by 
mTORC2; intriguingly genetic ablation of mTORC2 in a 
mouse model system of Ras activated melanoma resulted 
in markedly reduced tumor growth [88].

RAS/RAF/MEK/ERK pathway aberrations and 
prognostic impact

This signal amplification significantly worsens 
the oncogenic effect of this pathway when dysregulated 
in cancer. In BC, the core RAS/RAF/MEK/ERK genes 
are rarely mutated, with KRAS, HRAS, NRAF, and BRAF 
gene mutation rates of less than 1% across all subtypes 
[113–116]. Additionally, NF1, which hydrolyzes GTP 
on Ras, thereby deactivating it, shows mutation rates 
between 3.0% and 3.8% [113, 117]. TNBC stands out 
as KRAS and BRAF mutations are observed at rates of 
30% and 32%, respectively. In TNBC, these mutations 
are perhaps incentivized due to the lack of pro-growth 
signaling from hormone receptors and RTK HER2 [117]. 
An analysis of 2859 patient samples demonstrated that 
gene alterations, which include mutations, copy number 
alterations, and structural variants, were limited to 
below approximately 2% of patients for the genes NF1, 
KRAS, HRAS, BRAF, MAPK1, JUN, and RAF1 across 
BC subtypes. Notable exceptions were NF1, KRAS, 
and BRAF alterations in basal-type cancer, as well as 
increased NF1 and KRAS in HER2-positive disease 
[118]. In the same study, genetic alterations in the RAS/
RAF/MEK/ERK genes were linked to significantly 
reduced overall patient survival when all BC subtypes 
were combined.

The RAS/RAF/MEK/ERK is also non-mutationally 
activated in BC due to overexpression of RTKs, especially 
in the HER2-positive phenotype [119]. RASAL2, 
a Ras GTPase-activating protein, shows promoter 
hypermethylation in 50% of luminal B tumors, reducing 
overall survival [120].

HER2+ pathway

HER2 phenotype of BC, also known as ERBB2 or 
HER2-neu, represented overexpression in tumor cells. 
This phenotype makes up 20–25% of all BC cases [121, 
122], and before HER2 targeting therapies was one of 
the subtypes with the worst clinical outcomes [123, 124]. 
Fortunately, modern therapeutics have improved outcomes 

for HER2+ BC, but there is still more to do especially in 
the case of advanced metastatic disease [125, 126].

HER2 is a transmembrane protein with tyrosine 
kinase activity that falls into the epidermal growth factor 
(EGF) family of receptors; known for their function for 
stimulating cell growth and differentiation [121, 127–
129]. However, unlike other EGF receptors, HER2 cannot 
function autonomously as it does not bind any growth 
factors itself, so it must act solely as a coreceptor through 
heterodimerization with the other 3 receptors found in 
the ERBB family or through homodimerization with 
another HER2 molecule [123, 130, 131]. In HER2+ BC 
dimerization most commonly occurs between the HER2 
and HER3 receptors (Figure 1); HER3 can functionally 
bind ligands but is a catalytically dysfunctional tyrosine 
kinase so it acts primarily as an allosteric activator of the 
other family members [132–134]. Both HER2 and HER3 
play a synergistic role in HER2+ BC progression and are 
both being used as targets for therapy [135, 136].

HER2+ pathway dysregulation in BC

HER2 amplification alone is enough to result 
in spontaneous receptor dimerization and subsequent 
phosphorylation without ligand binding [137]. This leads 
to the constitutive activation of EGFR signaling pathways 
and their subsequent promotion of tumor progression 
[138, 139]. The most studied HER2 downstream signaling 
pathways are the RAS/Raf/Mitogen-activated protein 
kinase (MAPK) and the PI3K/Akt cascades (Figure 1).

The HER2+ subtype is highly dependent on the 
activation of the PI3K/Akt pathway for growth and tumor 
progression [140]. In 31% of all HER2+ tumors PIK3CA 
is mutated with 69% of those mutations being one of 
the following: H1047R (35%), E545K (17%), E542K 
(10%), and H1047L (5%) N345K (2%) and result in the 
aberrant activation of the PI3K pathway [141]. Mutations 
in PIK3CA not only drive oncogenesis but also often 
confer resistance to first-line trastuzumab treatment in 
BC [142, 143]. In HER2+ BC, PTEN mutations are less 
common than PIK3CA mutations, occurring in fewer 
than 10% of treatment-naïve primary tumors [117]. 
However, trastuzumab itself activates PTEN through the 
inhibition of Src kinase activity by blocking its association 
with ERBB2. Due to this pressure, 40% of HER2 
overexpressing BC eventually develop PTEN deficiency 
resulting in primary or acquired resistance to trastuzumab 
[144, 145]. PI3K inhibitors have been shown to resensitize 
PI3K and PTEN-altered HER2+ trastuzumab-resistant 
cells in vitro and in vivo [146, 147].

As previously described, the RAS/RAF/MEK/ERK 
pathway remains largely intact in BC [113–116]. This is 
noticeably true in HER2+ BC due to its overreliance on 
the PI3K/Akt pathway [140]. Despite this strong reliance, 
RAS/RAF/MEK/ERK plays an important role in drug 
resistance to HER2 targeting therapies. This was shown to 
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occur, both in vitro and in vivo, through a switch to MEK/
ERK from PI3K/Akt as the primary driver pathway for 
tumor progression post-treatment [148]. This switch elicits 
sensitivity to MEK and ERK inhibitors due to the now 
strong dependence on the activation of this pathway [148]. 
Resistance to trastuzumab has also been shown in vitro to 
be acquired through the drug-mediated upregulation and 
autocrine production of CCL5 and eventual constitutive 
activation of ERK and NFkB. MEK inhibition and CCR5 
antagonism partially reverse this trastuzumab resistance 
and may offer good therapeutic targets for resensitizing 
tumors in the case of cancer progression after first-line 
treatments [149]. Despite playing a smaller role in overall 
tumor progression compared to the PI3K/Akt pathway, 
RAS/RAF/MEK/ERK acts as an important mediator of 
drug resistance in HER2+ BC and therapeutic targeting 
of this pathway may allow for overcoming resistance to 
HER2 targeting therapies.

HER2/RAS/RAF/MEK/ERK targeted therapies

Current FDA-approved RAS/RAF/MEK/ERK-
targeted therapies for BC (Table 2) include HER2 
antibodies such as trastuzumab, pertuzumab, and 
margetuximab, as well as small-molecule tyrosine kinase 
inhibitors (TKIs) like lapatinib, neratinib, and tucatinib 
[150]. Additionally, antibody-drug conjugates (ADCs) 
like trastuzumab emtansine (T-DM1) and trastuzumab 
deruxtecan (T-DXd) combine anti-HER2 antibodies with 
cytotoxic agents, providing more treatment options [151, 
152].

Before the development of HER2-targeted 
therapies, HER2+ BC had poor clinical outcomes due to 
hyperproliferative RAS/MAPK and PI3K/Akt activation 
[121, 124, 153]. The FDA approval of trastuzumab 
significantly improved survival, with early-stage HER2+ 
BC seeing a 50% increase in disease-free survival [154]. 
Trastuzumab not only inhibits ERBB receptor dimerization 
but also enhances cancer cell clearance through antibody-
dependent cytotoxicity [155]. Although trastuzumab is 
currently considered one of the most effective treatments 
in oncology, a significant number of patients with HER2-
overexpressing BC do not benefit from it, leading to the 
development of combination therapies. The addition of 
other monoclonal antibodies (mAbs), such as pertuzumab, 
to standard anti-HER2 therapy has led to an over 90% 
three-year invasive disease-free survival rate in HER2+ 
BC [156]. Trastuzumab and pertuzumab are widely 
used anti-HER2 therapies that specifically target the 
extracellular domain of the HER2 receptor, effectively 
disrupting HER2-driven signaling from the cell surface. 
In contrast TKIs represent another commonly used 
class of anti-HER2 agents, which are designed to target 
the intracellular kinase domain of HER2, inhibiting 
downstream signaling pathways that contribute to tumor 
growth and survival.

The development of TKIs has improved outcomes 
for patients with BC whose tumors develop resistance 
to anti-HER2 mAbs [157, 158]. These TKIs work by 
inhibiting the autophosphorylation of tyrosine kinases, 
even in the presence of ligand binding and receptor 
dimerization, thereby preventing further activation of the 
EGFR pathway [159]. In addition to the FDA-approved 
TKIs lapatinib, neratinib, and tucatinib (Table 2), several 
other TKIs are currently being investigated in clinical 
trials. These novel agents aim to further improve outcomes 
in treatment of BC, particularly in cases of resistance to 
existing therapies. One novel targeted therapy for HER2+ 
BC is an irreversible dual pan-HER TKI pyrotinib, whose 
efficacy and safety are evaluated in early-stage BC and 
metastatic setting (Table 3). Pyrotinib-containing regimens 
demonstrated considerable tumor response, disease 
control, and survival with manageable adverse effects 
[160].

Another pan-HER kinase inhibitor, neratinib, is 
under investigation in clinical trials (Table 3), though 
it has not yet received FDA approval for BC treatment. 
Combining dual-targeting approaches, like T-DM1 and 
neratinib—using mAbs to target the extracellular domain 
and TKIs for the intracellular segment—enhances the 
therapeutic impact, providing a more comprehensive 
strategy in managing HER2-positive BC (NCT05388149).

The Bruton’s Tyrosine Kinase (BTK) inhibitor 
ibrutinib has shown significant efficacy in targeting 
HER family receptors in BC. In vitro studies reveal that 
ibrutinib effectively blocks the activation of EGFR, 
HER2, HER3, and HER4 [161]. HER2-overexpressing 
BC cell lines show particular sensitivity to ibrutinib, 
achieving IC50 values lower than those for lapatinib, 
indicating enhanced efficacy at lower concentrations. 
Additionally, ibrutinib has been observed to inhibit cell 
growth, induce cell-cycle arrest, and initiate caspase-
dependent apoptosis in these cell lines [162]. Currently, 
a phase I/II clinical trial (NCT03379428) is underway 
to explore the efficacy of ibrutinib in HER2-amplified 
metastatic BC, potentially broadening treatment options 
for this subtype (Table 3).

ADCs, like T-DM1 and T-DXd (Table 2), are 
effective for patients with progressive HER2+ BC 
following trastuzumab treatment [163]. Numerous ADCs 
are currently under investigation for BC, with several 
targeting HER2-positive tumors showing promising 
preclinical and early clinical outcomes (Table 3). 

ARX788 is the next-generation, site-specific anti-
HER2 ADC, that is currently studied in BC and other solid 
tumors. This ADC has shown considerable efficacy in 
preclinical studies, demonstrating activity in both in vitro 
and in vivo models of HER2-positive breast and gastric 
cancers, including those resistant to T-DM1 [164, 165]. 
Given the limited therapeutic options for T-DM1-resistant 
cancers, ARX788 is a promising candidate. The recent 
trial (NCT04829604) in China demonstrated that ARX788 
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significantly improves PFS compared to active control 
in patients with HER2-positive, locally advanced, or 
metastatic BC (Table 3). These results highlight ARX788’s 
potential to overcome drug resistance in HER2-positive 
cancers. Additionally, in 2021, the FDA granted ARX788 
fast-track designation as a monotherapy for advanced 
HER2-positive BC in patients previously treated with 
HER2-targeted therapies, expediting its development as a 
promising therapeutic option.

IKS014 exemplifies the pursuit of safer and 
more effective therapies in the class of HER2-targeting 
ADCs (Table 3). This innovative ADC utilizes novel 
bioconjugation techniques and a tumor-selective linker 
to minimize off-target effects, thereby enhancing both 
safety and efficacy. Preclinical studies have shown that 
IKS014 demonstrates significant efficacy against HER2-
positive tumor xenografts [166]. This approach reflects 
an ongoing effort to develop safer models with a broader 
therapeutic index while effectively targeting cancer cells. 
Another ADC, FS-1502 (Table 3), was well tolerated and 
demonstrated strong antitumor activity [167].

Alternative drug delivery systems, known as 
targeted protein degradation (TPD) technologies, have 
been developed in addition to traditional toxin delivery in 
ADCs [168]. By combining this conjugate approach with 
TPD, the field of degrader-antibody conjugate (DAC) has 
emerged, allowing for targeted protein degradation within 
cancer-associated cells. An example of this approach is 
DAC ORM-5029, represented in Table 3 [169].

RAS pathway activation varies among BC subtypes: 
it is high in basal-like TNBC and HER2-enriched subtypes, 
while luminal A and B tumors show low activation [170, 
171]. TNBC, lacking clear druggable targets, remains a 
focus for RAS inhibition. Although BRAF alterations 
occur in 30% of TNBC cases, direct mutations like V600E 
are rare (2–3%) [117, 172]. Nonetheless, selective cases 
of BRAF V600E mutant TNBC have shown success with 
BRAF inhibitors dabrafenib and vemurafenib [173, 174]. 
However, the clinical relevance of BRAF targeting in BC 
remains unclear due to the scarcity of these mutations and 
the lack of specific clinical trials.

MEK inhibitors like trametinib have demonstrated 
preclinical efficacy, especially in TNBC, although results 
in ER/PR-positive and HER2-positive lines have been 
more modest [175]. In a clinical trial (NCT01964924) in 
patients with TNBC found that eight out of 37 patients 
in the trametinib arm experienced clinical benefits, 
highlighting the potential for further studies in larger 
cohorts to clarify MEK inhibition’s role in BC.

In metastatic HER2-positive cancer resistant to anti-
HER2 therapies, somatic mutations often activate ERK/
MEK signaling through the loss of NF1, the GTPase-
activating protein that deactivates RAS [148]. This 
indicates that HER2 therapy-resistant BC may depend on 
the RAS/RAF/MEK/ERK pathway for survival, providing 
the rationale for combining anti-HER2 therapy with MEK 

inhibition. A variety of MEK inhibitors are currently being 
evaluated in clinical trials (Table 3).

Conversely, HER2 addiction can be induced through 
RTK antagonists [176]. Although these antagonists inhibit 
the RAS/RAF/MEK/ERK pathway, their effect on the 
PI3K pathway is greater, causing BC cells to increasingly 
rely on RAS/RAF/MEK/ERK signaling. This suggests 
that combining HER2 or MEK inhibitors with anti-PI3K 
therapy could offer a potent therapeutic approach.

For example, the imipridone ONC201, a 
dopamine receptor D2 inhibitor and allosteric agonist 
of the mitochondrial protease caseinolytic protease P, 
demonstrated potent synergy with trametinib in TNBC 
cell lines [177]. Similarly, bispecific antibodies (BsAb) 
like zanidatamab (NCT06435429), which target multiple 
residues of the HER2 receptor, have shown potential in 
the early phases of clinical trials by reducing mutation-
mediated resistance [178].

Therapeutic advancement and improved screening 
techniques have drastically improved the prognosis for 
HER2+ BC particularly in the early stages of disease. 
However, primary and acquired resistance to treatment 
is not uncommon, especially in metastatic disease, so 
continued research into overcoming these resistances is 
warranted [153, 156].

Limitations of current targeted therapies and 
strategies to overcome them in BC treatment

Targeted therapies aimed at the RAS/RAF/MEK/
ERK and PI3K/Akt pathways have been pivotal in BC 
treatment, particularly for aggressive subtypes like HER2-
positive and TNBC. However, these therapies face several 
significant limitations. Below are the key challenges and 
proposed strategies to overcome them [179].

Therapeutic Resistance: One major limitation is the 
development of resistance to inhibitors of the RAS/RAF/
MEK/ERK and PI3K/Akt pathways, limiting the long-
term efficacy of TT. Tumor cells often develop mutations 
in downstream signaling proteins or activate alternative 
pathways to bypass the effects of these inhibitors. For 
example, mutations in the KRAS gene or amplification 
of PIK3CA can result in resistance to MEK or PI3K 
inhibitors [180].

Combining TT, such as PI3K inhibitors with 
CDK4/6 inhibitors, has shown promise in overcoming 
resistance, especially in ER-positive BC [181] (see 
Table 3, NCT05508906, NCT05768139). Additionally, 
the combination of PI3K inhibitors with anti-HER2 
therapy has demonstrated potential in enhancing efficacy 
in HER2-positive BC (see Table 3, NCT03765983). 

Compensatory Pathway Activation: When one 
pathway is inhibited, tumors can activate compensatory 
survival pathways (Figure 1). For instance, blocking the 
PI3K/Akt pathway can lead to activation of the RAS/
RAF/MEK/ERK pathway and vice versa [176, 182, 
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183]. Combination therapies targeting both pathways 
simultaneously, such as dual inhibition of PI3K/mTOR 
and MEK/ERK (NCT01160718, NCT01390818), have 
been proposed to suppress feedback activation [184, 185].

Tumor Heterogeneity: Intratumor heterogeneity, 
where different subpopulations of cancer cells respond 
differently to therapies, is a significant challenge in BC. 
Subclones of tumor cells can harbor mutations that confer 
resistance to PI3K/Akt or MEK inhibitors [186]. Liquid 
biopsies, which allow real-time monitoring of tumor 
evolution, are being explored to track resistance mutations 
(NCT05625087, NCT03881384, NCT05601440). 
Additionally, adaptive therapy approaches are being 
used to modulate treatment dosing based on tumor 
heterogeneity [187].

Toxicity and Side Effects: TT can cause to significant 
side effects. For instance, PI3K inhibitors like alpelisib are 
associated with hyperglycemia, while MEK inhibitors can 
cause ocular toxicities [96, 188].

Preclinical studies in mouse models indicate that 
PI3Kα inhibition reduces glucose uptake in insulin-
responsive tissues such as adipose tissue and muscle, 
resulting in hyperglycemia and compensatory insulin 
release from the pancreas, which diminishes the effect of 
PI3K inhibition [189].

Selecting patients based on biomarkers, such as 
PIK3CA mutations, can help minimize unnecessary 
toxicity (ComboMATCH Screening Trial, NCT05564377). 
Additionally, exploring intermittent dosing schedules may 
manage these toxicities without reducing efficacy [181]. 
Optimizing dosing regimens, developing more selective 
inhibitors, and enhancing drug delivery systems are also 
essential for reducing adverse effects.

Limited Efficacy in Metastatic BC: In metastatic 
disease therapies targeting the PI3K/Akt and RAS/
RAF/MEK/ERK pathways often show limited efficacy. 
This is especially true in TNBC, where resistance 
mechanisms frequently emerge [184]. Combining TT with 
immunotherapies, such as immune checkpoint inhibitors, is 
a promising strategy. Research suggests that PI3K inhibitors 
can modulate the tumor immune microenvironment, 
enhancing the effectiveness of immunotherapy [190, 191].

Lack of Predictive Biomarkers: The absence of 
reliable biomarkers poses a challenge in predicting 
which patients will respond to therapies targeting the 
RAS/RAF/MEK/ERK and PI3K/Akt pathways [192]. 
Ongoing research in genomic profiling and personalized 
medicine aims to identify biomarkers - such as PIK3CA 
mutations, PTEN loss, and KRAS/NRAS mutations - to 
guide therapy selection (NCT05652569, CATCH-GUIDE 
trial; NCT05564377, ComboMATCH Screening Trial; 
NCT06625775) [186, 193].

Tumor Microenvironment (TME) Resistance: TME, 
including stromal and immune cells, can contribute to 
resistance by providing growth factors that bypass inhibited 
pathways [194–198]. Strategies targeting the TME, such 

as inhibitors of cancer-associated fibroblasts (CAFs) 
and immune-modulatory therapies, are currently under 
investigation [199–202]. Combination therapies targeting 
both the PI3K pathway and the immune microenvironment 
have shown potential in clinical trials [203, 204].

Conclusion: While targeted therapies for the RAS/
RAF/MEK/ERK and PI3K/Akt pathways have advanced 
BC treatment, addressing challenges such as resistance, 
toxicity, and tumor heterogeneity is critical. Promising 
approaches include combination therapies, biomarker-
driven patient selection, and targeting the TME.

WNT/β-CATENIN PATHWAY

Biological significance in cancer

The Wnt/β-catenin pathway, also known as the 
canonical Wnt pathway, plays a crucial role in BC 
development and metastasis [205, 206]. Wnt/β-catenin 
signaling is initiated by the binding of extracellular Wnt 
ligands to Frizzled (FZD) or LRP5/6 transmembrane 
receptors, which leads to the downstream phosphorylation 
and nuclear localization of β-catenin [207, 208]. β-catenin 
mediates the activation of TCF/LEF family transcription 
factors, causing the transcription of Wnt/β-catenin 
pathway target genes [209]. In the absence of Wnt 
ligand binding, β-catenin is hyperphosphorylated by the 
destruction complex, comprised of Axin, APC, GSK-3β, 
and CK1ɑ, leading to its degradation (Figure 1). While 
controlled regulation of Wnt signaling supports the 
development of healthy breast tissue, aberrant activation 
of the Wnt/β-catenin pathway has been described in BC, 
particularly TNBC, and confers a worse prognosis [210–
213]. There are also multiple documented “non-canonical” 
Wnt pathways relevant to BC, including the Wnt-planar 
cell polarity (PCP) and Wnt-Ca2+, which lead to distinct 
transcriptional alterations in the cell [208].

The specific mechanisms by which this signaling 
axis confers cancer aggressiveness are multifaceted. For 
one, β-catenin can increase the expression of the oncogenic 
transcription factor c-Myc and the cell-cycle protein Cyclin 
D1 [214–216]. Conversely, c-Myc has been demonstrated 
to increase Wnt pathway signaling, suggesting positive 
feedback [217]. Further, β-catenin plays a role in the 
epithelial-to-mesenchymal transition (EMT), which 
confers migratory and metastatic potential to tumor cells. 
Studies have demonstrated a direct connection between 
Wnt/β-catenin signaling and the EMT, in which Wnt 
activation can decrease E-cadherin levels by upregulating 
its transcriptional repressor, Slug [218]. One study in 
mice found a causal link to metastasis, with loss of p53 
causing increased neutrophilic inflammation systemically, 
expediting BC metastasis [219]. The Wnt/β-catenin 
pathway is additionally theorized to maintain cancer stem 
cell (CSC) populations, though its specific function in this 
aspect of BC is still being investigated [213, 220, 221].
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β-catenin also plays complex roles in apoptosis, 
demonstrating differential effects with extrinsic and 
intrinsic apoptotic signals. On one hand, β-catenin 
signaling correlates with upregulation of the anti-apoptotic 
protein Bcl-2; on the other hand, β-catenin signaling 
increases sensitivity to extrinsic apoptosis by TRAIL and 
Fas-mediated pathways [222]. Wnt signaling has also been 
shown to promote the expression of anti-apoptotic markers 
such as survivin, supporting the survival of Wnt-addicted 
cancer cells [223, 224].

Emerging therapeutic targets

Numerous strategies have been proposed to interfere 
with Wnt signaling and its components. One approach is 
targeting enzymes involved in producing or modifying 
Wnt ligands, including the acetyltransferase PORCN 
[225]. Other strategies include preventing extracellular 
Wnt binding by targeting FZD receptors or LRP/FZD 
complexes, or by sequestering Wnt ligands with decoy 
receptors [226, 227]. A third approach to inhibiting 
β-catenin signaling is enhancing the activity of the 
destruction complex. Molecules stabilizing a number of 
the destruction complex’s components, including Axin and 
CK1ɑ have shown the preclinical potential to attenuate 
Wnt/β-catenin signaling [228, 229].

Preclinical and clinical developments

To date, the success of Wnt inhibitors has widely 
been limited to preclinical experiments [230]. Clinical 
trials using Wnt-inhibiting compounds are limited 
in BC and, in other tumor types, often report severe 
toxicities and varied efficacies. A phase I clinical trial 
(NCT01351103) of the PORCN inhibitor LGK974 did 
not report any complete or partial responses [231]. A 
phase Ib trial of the FZD mAb vantictumab combined 
with paclitaxel in metastatic BC reported a 30.8% 
response rate for patients with TNBC but high incidence 
of bone fracture, limiting the future clinical relevance of 
the compound [232]. A phase I trial of the fusion protein 
ipafricept, which sequesters Wnt ligands, found tolerable 
doses but reported no complete or partial responses 
[233].

 Targeting the Wnt pathway in cancer represents 
an attractive therapeutic approach. Several clinical 
trials are currently evaluating both canonical and non-
canonical Wnt-targeting therapies in solid tumors [234]. 
For example, the small-molecule inhibitor PRI-724, 
which disrupts the interaction between β-catenin and its 
coactivator CREB [235], has shown good tolerance in 
patients with solid tumors [236]. Another potential target 
is tankyrase, which promotes the degradation of Axin 
[237]. Although tankyrase-specific inhibitors have shown 
promise in preclinical studies, they have not yet reached 

clinical trials [238–241]. The success of these trials in 
developing safe, effective treatments and identifying 
responsive patients will shape the future of Wnt-targeting 
therapies in BC care.

NOTCH SIGNALING

Biological significance in BC

The Notch signaling pathway, highly conserved 
across species, is upregulated in BC and linked to 
poor outcomes, especially in TNBC [242–244]. Notch 
signaling is triggered when a Notch receptor binds to a 
ligand (DLL or Jagged) on an adjacent cell [245]. This 
interaction leads to cleavage of the receptor by ADAM 
proteases, followed by further cleavage by γ-secretase 
(Figure 1), releasing the Notch intracellular domain 
(NICD). The NICD then translocates to the nucleus to 
regulate transcriptional targets like the HES and HEY 
protein families [245–247].

Overactive Notch signaling in BC influences 
cell proliferation and stemness. It regulates Cyclin D1 
expression and may help maintain tumor stem cells, as 
evidenced by its promotion of mammosphere formation 
in vitro [248–251]. While Notch enhances Myc 
transcription in some cancers, direct evidence for this 
relationship in BC is still unclear [252].

In BC, Notch pathway aberrations often result in 
NICD accumulation [253]. Loss of negative regulators 
like Numb and GIT1, especially in ER-negative subtypes, 
along with FBXW7, is linked to poor outcomes [254–
256]. Activating mutations and amplifications of NOTCH 
genes, more common in TNBC, further elevate Notch 
signaling [257].

Preclinical and clinical advances in therapeutic 
strategies for BC

Studies have demonstrated a complex crosstalk 
between Notch and estrogen signaling in ERα-positive 
BC [258, 259]. Various therapeutic approaches are 
being developed to disrupt Notch signaling in BC [260]. 
γ-Secretase inhibitors block signal transduction following 
Notch ligand-receptor binding, but the safety of long-term 
treatment in combination with ET has not been thoroughly 
investigated [261, 262]. Monoclonal antibodies-targeting 
specific ligands and receptors, like Notch1 or DLL4, aim 
for greater tumor specificity [263, 264]. Another strategy 
involves drugs that disrupt the NICD transcriptional 
complex [265]. While γ-secretase inhibitors and Notch-
targeting monoclonal antibodies have shown some 
success in reducing cancer stem cell populations in 
clinical trials, their widespread use is limited by toxicity 
[266, 267]. Developing better-tolerated therapies will be 
crucial to effectively targeting Notch in the clinic.
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DNA DAMAGE RESPONSE 
MECHANISMS IN BREAST CANCER 

The DNA damage response (DDR) system is 
essential for preventing genomic instability, with impaired 
DNA repair increasing cancer risk. DNA repair pathways, 
critical for maintaining genomic integrity, counteract 
continuous DNA damage from both endogenous factors 
(e.g., oxidative stress, replication errors) and exogenous 
sources (e.g., radiation, chemotherapy). In BC cells, 
activating these repair mechanisms is crucial for 
addressing damage and maintaining genomic stability 
[268–270]. Key mechanisms include nucleotide excision 
repair (NER), base excision repair (BER), and non-
homologous end joining (NHEJ) pathway, the homologous 
recombination (HR) pathway, double-strand break repair 
(Figure 1), which collectively mitigate mutations and 
prevent genomic instability [271, 272].

NER pathway

The NER pathway repairs DNA damage from UV 
exposure and chemotherapy. NER consists of two major 
pathways: Global Genome NER, which scans the entire 
genome, and Transcription-Coupled NER, which targets 
damage during transcription. Both pathways involve key 
proteins like xeroderma pigmentosum group G (XPG) and 
excision repair cross-complementation group 1 (ERCC1). 
Dysregulation of these proteins can result in cancer, 
particularly BC. A study of BC patients identified three 
gene polymorphism linked to BC - ERCC1 rs11615, XPC 
rs2228000, and ERCC2/XPD rs50872 [273, 274].

BER pathway

The BER pathway addresses DNA damage caused 
by oxidative stress, UV radiation, and alkylating agents, 
which are common front-line components of cancer 
chemotherapy [269, 275, 276]. BER repairs small base 
lesions by removing damaged bases, cutting the DNA 
backbone, and replacing the nucleotides. Enzymes such 
as DNA glycosylases identify and excise damaged DNA, 
which is then repaired through either short or long patch 
mechanisms [277]. During this repair, X-Ray repair cross-
complementing protein 1 (XRCC1) and poly (ADP-ribose) 
polymerase 1 (PARP-1) play a role in recruiting additional 
repair factors to facilitate the restoration of DNA integrity. 
Single nucleotide polymorphisms (SNPs) in BER genes, 
such as XRCC1 and PARP-1, have been linked to higher 
likelihood of developing BC [278–281].

NHEJ pathway

NHEJ pathway repairs double-strand breaks in 
DNA. This repair mechanism involves several key 
components, including Ku70/80 heterodimer, X-Ray 

repair cross-complementing protein 4 (XRCC4), DNA-
dependent protein kinases (DNA-PKs), the XRCC4-
like factor (XLF) complex, and DNA ligase IV. SNPs in 
XRCC4 and Ku70 have been associated with an increased 
risk of BC [274, 282].

HR pathway

BRCA1 and BRCA2 genes are essential to the HR 
pathway, a critical mechanism for repairing DNA double-
strand breaks (DSBs). The proteins encoded by these 
genes form complexes with other proteins and enzymes 
to facilitate HR repair [283, 284]. BRCA2 is crucial for 
recruiting RAD51 to DNA DSBs, aiding repair. Mutations 
in BRCA1/2 disrupt this process, raising cancer risk 
[285]. 

TNBC, particularly the basal-like subtype, is 
associated with a higher incidence of BRCA1 mutations 
and defects in DNA repair pathways [283, 286]. While 
BRCA2 mutations are more commonly linked to ER-
positive, and HER2-negative BCs [287, 288].

The ATM-Chk2 and ATR-Chk1 pathways play a key 
role in responding to DNA damage. ATM is activated by 
DSBs, leading to Chk2 activation, while ATR responds 
to SSBs and activates Chk1. ATM also helps initiate 
ATR activity to repair DSBs through HR, the primary 
mechanism for fixing DSBs and restarting stalled 
replication forks. HR-proficient cells can withstand PARP 
inhibition by repairing damage through HR. Inhibiting 
PARP1 leads to the buildup of DNA damage normally 
repaired by BER. Notably, depletion of key DNA damage 
proteins, including ATM, Chk1, Chk2, and p53, can 
bypass oncogene-induced senescence, promoting cell 
proliferation and transformation in oncogene-expressing 
cells [289].

The ATM-Chk2-p53 pathway may contribute 
to BC development. A large study of nearly 113,000 
women, including over 60,000 patients with BC, 
identified gene alterations in ATM, BRCA1, BRCA2, 
PALB2, BARD1, RAD51C, RAD51D, Chk2, and TP53 as 
significant risk factors for BC. ATM and Chk2 alterations 
were particularly associated with ER/PR-positive BC 
[290–293]. Additionally, a study of 289 male BC patients 
found that elevated pATR expression, either alone or in 
combination with pChk2 and pATM, was linked to poorer 
survival outcomes [294].

Therapeutic strategies targeting DDR

Recent advances have introduced several drugs 
targeting DDR pathways for BC treatment (Table 2). 
Olaparib, the first FDA-approved inhibitor of poly(ADP-
ribose)-polymerase (PARP), was initially used for 
BRCA-deficient ovarian cancer and later approved for 
HER2-negative BC with BRCA1/2 mutations. PARP 
inhibitors, including talazoparib and olaparib, are effective 
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for cancers with homologous recombination repair 
deficiencies [292, 295–298].

New PARP1-selective inhibitors like NMS-
03305293 AZD5305 and AZD9574 aim to reduce side 
effects and show promise in preclinical studies. Other 
DDR inhibitors targeting ATM ATR and Chk1 have also 
shown effectiveness either alone or combined with PARP 
inhibitors [296, 299].

Developing resistance to PARP inhibitors is 
a significant obstacle in cancer treatment. Various 
mechanisms contribute to this resistance, including 
increased drug efflux, pathway dysregulation, restoration 
of the replication fork, and reverse mutations [269]. To 
overcome these challenges and improve the efficacy 
of PARP inhibitors, combination therapies with 
chemotherapies, immunotherapies, and other DNA 
damage response inhibitors have been investigated in 
clinical settings [300].

EMERGING THERAPIES AND FUTURE 
PERSPECTIVES FOR THE TREATMENT 
OF BC

The landscape of BC treatment continues to 
evolve with the development of emerging therapies 
and innovative approaches, which mainly focused on 
overcoming resistance, improving precision in targeting 
tumors, and enhancing the immune response to cancer.

Targeted therapies, immunotherapies, and novel drug 
delivery systems are transforming BC care, particularly for 
aggressive subtypes like HER2-positive and TNBC.

ADCs represent a new horizon in treating various 
tumors, including BC, by selectively delivering cytotoxic 
agents directly to cancer cells while minimizing off-target 
effects. This approach enhances the therapeutic index and 
allows for targeted destruction of cancer cells with greater 
precision. Extensive development of ADCs targeting 
HER2, HER3, and TROP2 has shown significant promise 
in preclinical and clinical studies (Tables 2, 3). 

An innovative therapeutic approach to overcoming 
cancer resistance combines protein degradation with the 
specificity of ADCs [301, 302]. By attaching protein 
degraders to antibodies, degrader-antibody conjugates 
(DACs) direct these degraders specifically to cancer 
cells, enabling the selective removal of proteins that 
drive cancer progression. This targeted strategy holds 
significant promise for enhancing treatment efficacy 
and reducing resistance across various cancers (Table 3, 
NCT05511844).

BsAbs are an emerging class of drugs in BC research 
[303, 304]. BsAbs are designed to recognize two specific 
antigens: one on the surface of tumor cells (such as HER2) 
and another on immune cells (such as CD47) [305]. By 
binding to two distinct targets, BsAbs can perform dual 
actions and may be more effective than traditional mAbs. 
Notably, the BsAb CD47/HER2 has shown promise in 

treating HER2+ mBC [305]. This BsAb enhances the 
anti-tumor immune response by targeting cancer cells 
and simultaneously engaging the immune system. Several 
BsAbs are currently being evaluated in clinical trials for 
mBC (see Table 3, section BsAb). BsAbs zanidatamab 
has demonstrated promising anti-tumor activity in HER2-
positive cancers, with the potential to overcome resistance 
mechanisms [306].

Recent research has explored the potential of 
experimental vaccines against BC, demonstrating their 
ability to generate a robust immune response targeting key 
tumor proteins [307]. The concept behind cancer vaccines 
is to harness the autologous immune system to recognize 
and combat cancer cells effectively.

BC vaccines deliver antigens (Table 3), such as 
HER2 or related peptides derived from tumor-associated 
proteins, through various strategies [308]. Additionally, 
combining cancer vaccines with established therapies may 
enhance their efficacy [309, 310]. The FDA has not yet 
approved any vaccines to treat BC.

Another emerging therapeutic target is the DDR 
pathways. Targeting DDR pathways is gaining traction, 
particularly for cancers with deficient repair mechanisms, 
such as those harboring BRCA mutations. PARP inhibitors 
such as olaparib and talazoparib are effective in BRCA1/2-
mutated BC and combining them with other therapies may 
improve outcomes [298]. 

PARP-1 is a crucial protein involved in maintaining 
genomic stability. As a nuclear protein, it serves as the 
key enzyme responsible for repairing damaged DNA 
[311]. Saruparib, which selectively targets PARP1 and 
is being evaluated in ongoing trials (NCT06380751, 
NCT04644068), has demonstrated superior tolerability 
and enhanced target engagement in preclinical and 
clinical studies compared to currently approved PARP 
inhibitors [312]. Another highly selective PARP1 inhibitor, 
HRS-1167 (M9466), in the ongoing trial NCT06516289 
(Table 3), has demonstrated promising anti-tumor activity 
in pretreated patients with HRR mutations [313]. ATR and 
ATM inhibitors (NCT05986071) are also being studied to 
increase tumor sensitivity to DNA-damaging agents [314].

Epigenetic therapies targeting aberrant DNA 
methylation and histone modifications are under 
exploration in the ongoing trail NCT05633914 (Table 3), 
aiming to reverse changes that drive tumor progression 
and resistance [315–317].

Lastly but not least, theranostics and molecular 
imaging are emerging as tools for delivering targeted 
therapy while simultaneously enabling real-time 
monitoring of treatment efficacy [318, 319].

These innovations collectively represent significant 
advances in BC treatment, offering the potential for more 
personalized, effective, and durable therapeutic strategies.

Continued research into the intricate interactions 
between these pathways is crucial for the development of 
more effective targeted combination therapies. Innovations in 



Oncotarget185www.oncotarget.com

therapeutic strategies, coupled with a deeper understanding 
of breast cancer biology, will be essential for advancing 
personalized medicine and improving clinical outcomes.
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