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Editorial

Visualizing radiological data bias through persistence images
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ABSTRACT
Persistence images, derived from topological data analysis, emerge as a powerful 

tool for visualizing and mitigating biases in radiological data interpretation and AI 
model development. This technique transforms complex topological features into 
stable, interpretable representations, offering unique insights into medical imaging 
data structure. By providing intuitive visualizations, persistence images enable the 
identification of subtle structural differences and potential biases in data acquisition, 
interpretation, and AI model training. Persistence images can also facilitate stratified 
sampling, matching statistics, and noise filtration, enhancing the accuracy and equity 
of radiological analysis. Despite challenges in computational complexity and workflow 
integration, persistence images show promise in developing more accurate, equitable, 
and trustworthy AI systems in radiology, potentially improving patient outcomes and 
personalized healthcare delivery.

INTRODUCTION

In the ever-evolving landscape of medical imaging 
and artificial intelligence (AI), the challenge of identifying 
and mitigating biases in radiological data interpretation 
remains paramount. As we strive for more accurate and 
equitable healthcare outcomes, an innovative approach from 
topological data analysis (TDA) has emerged: persistence 
images. This technique offers a promising avenue for 
visualizing complex radiological data and uncovering hidden 
biases that may influence diagnosis and treatment decisions.

Understanding persistence images

Persistence images are a stable vector representation 
of topological features derived from persistence diagrams, 
which are core tools in TDA [1]. While persistence 
diagrams capture the birth and death of topological features 
across different scales, persistence images transform this 
information into a format more amenable to machine 
learning techniques [2]. The key advantage of persistence 
images lies in their stability: small perturbations in the 
input data result in only small changes in the persistence 
image [3]. This property makes them particularly valuable 
in medical imaging, where variations in image acquisition 
or patient positioning should not dramatically alter the 
underlying topological features being analyzed.

Interpretable visualizations of complex radiological 
data

One of the most significant benefits of persistence 
images is their ability to provide interpretable 

visualizations of complex radiological data. By encoding 
topological features as intensity values in a 2D image, 
persistence images offer a more intuitive representation 
of the data’s structure compared to raw persistence 
diagrams or traditional statistical summaries [4]. In 
the context of radiology, these visualizations can help 
highlight subtle structural differences in images that 
might be indicative of specific pathologies or biases 
in data interpretation. For instance, persistence images 
could reveal consistent differences in the topological 
features of lung CT scans between different demographic 
groups, potentially uncovering biases in how these 
images are acquired [5].

Identifying and addressing biases

The use of persistence images in radiological analysis 
opens up new possibilities for identifying and addressing 
biases in both data interpretation and AI model training:

Matching statistics and stratified sampling

Persistence images can be used to compute matching 
statistics between different subsets of radiological data. 
This approach allows for a more nuanced comparison 
of data distributions, helping to identify potential biases 
in sampling or data collection [6]. By visualizing these 
matching statistics through persistence images, researchers 
and clinicians can more easily identify underrepresented 
groups or oversampled categories in their datasets. This 
insight can then inform stratified sampling strategies to 
create more balanced and representative training sets for 
AI models, mitigating class bias and improving overall 
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model performance; further, this can better inform 
clinicians and researchers about the limitations of a 
model’s generalizability [7].

Mitigating implicit bias in interpretation

Persistence images offer a powerful tool for 
breaking down radiological data by various demographic 
factors. By generating and comparing persistence images 
for different groups (e.g., age, gender, ethnicity), we can 
visually identify systematic differences in image features 
that might be indicative of bias in human interpretation 
[8]. For example, in patients with perceived low risk 
of breast cancer (e.g., young, no hormone replacement 
therapy, negative family history, no germline mutation) 
[9] , persistence images can offer an unbiased view of 
breast morphology and the likelihood of an asymmetry 
being malignant. Supporting clinicians in cases where 
implicit biases (such perceived low risk patients) may 
occur will ultimately make interpretation more equitable 
[10].

Filtration of noise

One of the inherent strengths of persistence 
images is their ability to filter out noise while preserving 
meaningful topological features. This property is 
particularly valuable in radiological imaging, where image 
artifacts and noise can significantly impact interpretation 
[11]. By focusing on persistent topological features and 
representing them in a stable format, persistence images 
can help radiologists and AI models distinguish between 
genuine anatomical structures and noise or artifacts. This 
filtration effect can lead to more reliable and less biased 
interpretations of complex imaging data [12].

Applications in AI model training and evaluation

The vector representation provided by persistence 
images makes them particularly well-suited for integration 
into machine learning pipelines. This opens up several 
exciting possibilities for improving AI model training and 
evaluation in radiology:

1. Feature engineering: Persistence images can serve as 
topological feature vectors, complementing traditional 
image features in AI model training. This can lead to 
more robust models that are sensitive to both local 
and global structural characteristics of medical images 
[13].

2. Model interpretability: By visualizing the persistence 
images of the input data alongside model predictions, 
we can gain insights into which topological features 
are most influential in the model’s decision-making 
process. This enhanced interpretability can help 

identify potential biases in the model’s behavior 
[14].

3. Quality assurance: Persistence images can be used as 
a quality assurance tool for both input data and model 
outputs. By comparing the persistence images of 
model predictions with those of ground truth data, we 
can quickly identify systematic errors or biases in the 
model’s performance across different patient subgroups 
[15].

Challenges and future directions

While persistence images offer significant promise 
in visualizing and addressing biases in radiological data, 
several challenges remain:

1. Computational complexity: Generating persistence 
images for large-scale radiological datasets can 
be computationally intensive. Developing more 
efficient algorithms and leveraging high-performance 
computing resources will be crucial for widespread 
adoption [16].

2. Integration with existing workflows: Incorporating 
persistence image analysis into established 
radiological workflows will require careful planning 
and validation. User-friendly tools and interfaces will 
be essential to make this technology accessible to 
clinicians who may not have expertise in TDA [17].

3. Standardization: As with any new analytical technique, 
establishing standards for generating, interpreting, 
and comparing persistence images across different 
institutions and imaging modalities will be crucial for 
ensuring reproducibility and comparability of results 
[18].

CONCLUSIONS

Persistence images represent a powerful new tool 
in our ongoing efforts to visualize, understand, and 
mitigate biases in radiological data interpretation and AI 
model development. By providing stable, interpretable 
visualizations of complex topological features, they offer 
unique insights into the structure of medical imaging 
data that can complement existing analytical approaches. 
As we continue to refine and validate this technique, 
persistence images have the potential to play a crucial role 
in developing more accurate, equitable, and trustworthy 
AI systems in radiology. By helping us visualize and 
address hidden biases, they can contribute to improved 
patient outcomes and more personalized healthcare 
delivery. The journey towards truly unbiased radiological 
analysis is ongoing, but with innovative approaches like 
persistence images, we are illuminating the path forward, 
one topological feature at a time.
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