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Editorial

Mitigating bias in radiology: The promise of topological data 
analysis and simplicial complexes

Yashbir Singh, Colleen Farrelly, Quincy A. Hathaway and Gunnar Carlsson

ABSTRACT
Topological Data Analysis (TDA) and simplicial complexes offer a novel approach 

to address biases in AI-assisted radiology. By capturing complex structures, n-way 
interactions, and geometric relationships in medical images, TDA enhances feature 
extraction, improves representation robustness, and increases interpretability. This 
mathematical framework has the potential to significantly improve the accuracy and 
fairness of radiological assessments, paving the way for more equitable patient care.

INTRODUCTION

In recent years, the radiology has witnessed a rapid 
integration of artificial intelligence (AI) and machine 
learning techniques to assist in image interpretation and 
diagnosis [1]. While these advancements have shown 
great promise, they have also brought to light concerns 
about potential biases in AI algorithms and their impact 
on patient care [2]. As we strive to improve the accuracy 
and fairness of radiological assessments, a novel approach 
is emerging that holds significant potential: Topological 
Data Analysis (TDA) and the use of simplicial complexes.

Introducing TDA in radiology

TDA is a mathematical framework that allows us 
to study the shape and structure of data [3]. In the context 
of radiology, TDA offers a unique perspective on medical 
imaging data by focusing on the topological features 
and relationships within the images at varying distance 
scales. This approach can reveal insights that traditional 
machine learning methods might overlook as it excels at 
identifying changes in structures (e.g., vessels, airways, 
organ parenchyma, etc.) [4].

Foundationally, what underlies TDA are simplicial 
complexes – mathematical objects that can represent 
complex, high-dimensional data structures [5]. In medical 
imaging, simplicial complexes can be used to model the 
intricate relationships between pixels or voxels, capturing 
the subtle patterns and structures that are crucial for 
accurate diagnosis [6].

Advantages of TDA and simplicial complexes

1. Capturing branching and loop structures: One of the 
key strengths of TDA is its ability to identify and 
represent branching and loop structures in image 
data [7]. These features are particularly important in 

radiology, where they can indicate the presence of 
blood vessels, tumors, or other anatomical structures. 
Traditional Convolutional Neural Networks (CNNs) 
may struggle to capture these features due to 
limitations in patch size and convolution operations 
[8]. TDA, however, can preserve and analyze these 
critical structures, potentially leading to more accurate 
and comprehensive image interpretation.

2. N-way interactions: While many current AI models 
focus on pairwise interactions between pixels, TDA 
and simplicial complexes allow for the analysis of 
n-way interactions [9]. This means we can capture 
more complex relationships within the image data, 
going beyond the limitations of 2-way interactions. By 
considering these higher-order relationships, we can 
develop a more nuanced understanding of the image, 
potentially uncovering subtle indicators of disease or 
anatomical variations that might otherwise be missed 
[10].

3. Geometric meaning: TDA provides a way to assign 
geometric meaning to the relationships within 
medical images [11]. This geometric interpretation 
can improve our ability to capture and understand 
spatial information, which is crucial in radiology. By 
leveraging the geometric insights provided by TDA, 
we can develop more sophisticated algorithms that 
are better equipped to interpret the three-dimensional 
nature of many radiological images [12].

Mitigating bias through TDA

The application of TDA and simplicial complexes in 
radiology has the potential to address and mitigate biases 
in several ways:

1. Improved feature extraction: By capturing more complex 
and subtle features of medical images, TDA can help 
reduce the risk of overlooking important diagnostic 
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indicators [13]. This can be particularly valuable in cases 
where traditional AI models might be biased towards 
more common or easily detectable features.

2. Robust representation: The topological approach to 
data analysis is inherently more robust to certain types 
of noise and data variation [14]. This robustness can 
help reduce the impact of biases that might arise from 
differences in imaging equipment, patient positioning, 
or other external factors.

3. Interpretability: TDA offers a more interpretable 
framework for understanding how AI models arrive at 
their conclusions [15]. This increased transparency can 
help radiologists identify potential biases in the AI-
assisted diagnostic process and make more informed 
decisions.

4. Diverse data representation: The ability of TDA to 
capture complex structures and relationships in data 
can help in developing more comprehensive and 
diverse training datasets for AI models [16]. This, in 
turn, can lead to algorithms that are less biased towards 
specific populations or anatomical variations [17].

CONCLUSIONS

As we continue to advance the field of radiology 
through AI and machine learning, it is crucial that we 
also develop tools to identify and mitigate potential 
biases. TDA and the use of simplicial complexes offer 
a promising approach to this challenge. By providing a 
more comprehensive, robust, and interpretable framework 
for analyzing medical imaging data, TDA has the potential 
to enhance the accuracy and fairness of radiological 
assessments. While the application of TDA in radiology is 
still in its early stages, the potential benefits are significant. 
As researchers and clinicians, we must continue to explore 
and develop these innovative approaches to ensure that the 
future of AI-assisted radiology is both highly accurate and 
equitable for all patients.
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