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ABSTRACT
UBA1, an X-linked gene, encodes one of the only two ubiquitin E1 enzymes, 

playing a pivotal role in initiating one of the most essential post-translational 
modifications. In late 2020, partial loss-of-function mutations in UBA1 within 
hematopoietic stem and progenitor cells were found to be responsible for VEXAS 
Syndrome, a previously unidentified hematoinflammatory disorder predominantly 
affecting older males. The condition is characterized by severe inflammation, 
cytopenias, and an association to hematologic malignancies. In this research 
perspective, we comprehensively review the molecular significance of UBA1 loss 
of function as well as advancements in VEXAS research over the past four years for 
each of the VEXAS manifestations – inflammation, cytopenias, clonality, and possible 
oncogenicity. Special attention is given to contrasting the M41 and non-M41 mutations, 
aiming to elucidate their differential effects and to identify targetable mechanisms 
responsible for each of the symptoms. Finally, we explore the therapeutic landscape 
for VEXAS Syndrome, discussing the efficacy and potential of clone-targeting drugs 
based on the pathobiology of VEXAS. This includes azacitidine, currently approved 
for myelodysplastic neoplasms (MDS), novel UBA1 inhibitors being developed for 
a broad spectrum of cancers, Protein Kinase R-like Endoplasmic Reticulum Kinase 
(PERK) inhibitors, and auranofin, a long-established drug for rheumatoid arthritis. 
This perspective bridges basic research to clinical symptoms and therapeutics.

INTRODUCTION

The UBA1 (Ubiquitin-like modifier activating 
enzyme 1) gene, located on the X chromosome, has 
recently gathered significant interest within the medical 
community following the 2020 discovery of VEXAS 
(Vacuoles, E1 enzyme, X-linked, Autoinflammation, 
Somatic) Syndrome [1]. This novel, difficult-to-treat 
hemato-inflammatory disorder is caused by three somatic 
mutations in UBA1, a gene encoding for a key E1 enzyme 
within the ubiquitin proteasome system (UPS). These 
mutations, found in hematopoietic stem and progenitor 
cells predominantly in older males, lead to severe and 
refractory inflammatory symptoms and loss of mature 
blood cells (cytopenias). Additionally, a portion of these 
patients develop hematologic malignancies, including 
myelodysplastic neoplasms (MDS) and multiple myeloma. 

Notably, despite the increased risk of acute myeloid 
leukemia (AML) in MDS patients [2], progression to AML 
is extremely rare in patients with VEXAS-MDS [3].

VEXAS Syndrome captured the attention of a wide-
ranging audience beyond its initial classification as a rare 
genetic disease, with only 28 described male patients, 
partly because the genetic mutation was of somatic origin 
with a cancer association. The perturbation of the UPS 
is a long-standing cause of inflammation, evidenced by 
multiple pediatric monogenic autoinflammatory diseases 
[4]. However, adult-onset genetic inflammatory diseases 
were not known. It is indeed surprising that loss of function 
of UBA1 would lead to clonal advantage, as UPS has been 
the target of multiple anti-cancer drugs [5–9], and UBA1 
itself was identified as cancer dependency in multiple 
studies [10–12]. The paradoxical clonal expansion and 
the high incidence of MDS yet reduced AML progression 
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in the presence of inflammation presents a unique model 
for exploring the intersections between inflammation, 
oncogenesis, and cancer resistance mechanisms.

In the four years since VEXAS was identified, 
screening efforts have encompassed nearly half a million 
individuals [13–17], revealing an estimated incidence 
of 1 in 4,000 among older (predominantly white) males 
[13]. These screenings have uncovered greater genetic and 
phenotypic heterogeneity within the syndrome, including 
variations in inflammation levels and cancer associations. 
This research perspective aims to delve into the phenotypic 
diversity of UBA1 mutations, focusing on the impact 
of loss of ubiquitylation capacity on inflammogenicity, 
hematologic manifestations, clonality, and oncogenic 
potential. Based on this knowledge, research can be 
directed to devise therapeutic strategies tailored to the 
unique challenges presented by VEXAS Syndrome.

UBA1 loss of function and VEXAS

VEXAS Syndrome results from loss-of-function 
mutations in UBA1, which encodes for a critical enzyme 
within the ubiquitylation pathway. UBA1, one of only 
two E1 enzymes, plays a foundational role in initiating 
ubiquitylation by activating ubiquitin [18]. This activation 
is a precursor event for the subsequent transfer of ubiquitin 
to target substrates by numerous E2 and E3 enzymes, 
which impart specificity to the process. Positioned at the 
apex of the ubiquitylation cascade, UBA1’s functionality 
is indispensable for the ubiquitylation of many protein 
substrates, implicating virtually all cellular processes in 
the event of its dysfunction. In fact, the consequences 
of UBA1 loss-of-function mutations are profound, 
include embryonic lethality [19], premature death [1] 
and developmental defects [20] in model organisms as 
well as growth impairments in cell lines [21–25]. These 
outcomes underscore the essential role of UBA1 in cellular 
regulation and development.

UBA1 loss-of-function mutations in VEXAS result 
in distinct phenotypes not observed in model organisms, 
including inflammation, cytopenias, thrombotic 
tendencies, clonality, and blood cancer associations [1]. 
These differences arise on the one hand from VEXAS 
being caused by adult-acquired somatic mutations in 
immune and blood cell progenitors, leading to a tissue-
specific, post-developmental partial loss of function. 
On the other hand, VEXAS mutations are not complete 
loss-of-function, and the effect of partial loss of function 
mutations can be various (Figure 1). It has been assumed 
that partial loss of function mutations only affect E2 and 
E3 enzymes with greater reliance on UBA1 activity [24, 
26, 27], which likely shifts the balance of regulatory 
proteins, as they ubiquitylate each other in a context-
dependent way. For instance, studies in Drosophila 
showed that complete UBA1 loss led to apoptosis, 
while partial loss resulted in proliferation, due to the 

differential effect on the degradation of pro-apoptotic and 
anti-apoptotic factors [28, 29]. In HEK293T cells partial 
reduction of UBA1 function paradoxically increased 
ubiquitin-dependent import of peroxisomal proteins via a 
partial loss of function of a specific E2 enzyme UBE2D 
[30]. Research to identify the E2 and E3 enzymes most 
impacted by VEXAS is ongoing [31].

In addition, VEXAS mutations uniquely cause a 
cytoplasm-specific loss of UBA1 function by altering 
the M41 start codon of its cytoplasmic isoform [1] 
(Figure 2). Two protein isoforms, UBA1a and UBA1b, 
are produced from a single mRNA through alternative 
translation initiated at different start codons [32, 33]. 
UBA1a, starting from the M1 codon, contains a nuclear 
localization signal (NLS) and predominantly resides in 
the nucleus [34]. UBA1b, initiated from the second start 
codon M41, remains cytoplasmic. The ratio of UBA1a to 
UBA1b is physiologically regulated during cell cycle and 
differentiation [35, 36]. VEXAS mutations at M41 reduce 
UBA1b translation efficiency, favoring translation from 
an alternative start codon, M67, producing a catalytically 
inactive isoform, UBA1c [1]. Despite this, translation 
from M41 can still occur, with efficiency varying among 
mutations; M41L and M41T maintain 10-15% of wild-
type protein levels, whereas M41V has only 5% [37]. It 
has been shown that M41V mutation significantly reduces 
overall poly-ubiquitylation capacity, though the nuclear 
isoform remains unaffected [1].

Shortly after the discovery of VEXAS, UBA1 
mutations not affecting M41 were reported in patients 
manifesting VEXAS-like inflammation and cytopenias 
[38]. One type was the splicing variants, which lead to 
an in-frame deletion of short exonic segments containing 
M41 [38–40]. The other type was, interestingly, mutations 
affecting functional sites in the region shared by UBA1a 
and UBA1b isoforms and led to a partial loss of function 
of both the nuclear and cytoplasmic isoforms without the 
appearance of the UBA1c isoform [31, 38, 41] (Figure 2). 
For example, a recurrent locus mutated in VEXAS 
patients, Y55 [14, 31, 42], has recently been shown to be 
the site of phosphorylation by SRC (SRC Proto-Oncogene, 
Non-Receptor Tyrosine Kinase), which affects ubiquitin 
activation efficiency [43]. The existence of non-M41 
mutations suggests that VEXAS is caused by the decrease 
of ubiquitin activation in the cytoplasm, and the generation 
of UBA1c observed in M41 cases or impairment of 
UBA1a in the non-M41 cases are not required. However, 
slight phenotypic differences in inflammation, cytopenias, 
and associations with cancers have been observed between 
the M41 and non-M41 mutations [14, 44]. Furthermore, 
phenotypic differences among the M41 variants were also 
described [37, 45, 46], which suggests that the amount of 
residual UBA1b may affect the phenotype. The phenotypic 
differences of UBA1 mutations based on UBA1b amount 
or defect in UBA1a may identify specific E2 or E3 
enzymes responsible for each of the VEXAS symptoms.
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VEXAS manifestations and their mechanisms

In the previous section, we provided an overview 
of UBA1 mutations, the molecular implications of loss 
of function, and the VEXAS mutations. This section 
delves into VEXAS manifestations—specifically, 
inflammogenicity, cytopenias, clonal expansion of the 
myeloids, and oncogenicity—detailing their clinical 
and cellular characteristics and their links to reduced 
ubiquitylation (Figure 3), offering insights into targets of 
therapeutic intervention.

Inflammogenicity

Inflammatory symptoms in VEXAS include non-
infectious fever, chondritis, skin rash, and lung infiltrates 
[1, 46, 47]. Patients show high levels of inflammatory 

cytokines (IL-1β, IL-18), as well as C-reactive protein, the 
indicator of inflammation most widely used in the clinics 
[1, 48, 49]. High-dose corticosteroids are the mainstay 
for controlling the inflammation long-term, though 
their adverse effects contribute to mortality in VEXAS. 
Alternative anti-inflammatory treatments often fail [39], 
but about 30% of patients respond to JAK inhibitors 
like ruxolitinib and IL-6 inhibitors [50]. T-cell targeting 
therapies seem not as effective [39], and the inflammation 
seems to stem from the aberrant activation of myeloid 
cells, which is the predominant population carrying the 
mutation in the bone marrow.

Neutrophils of VEXAS patients spontaneously 
release neutrophil extracellular trap (NET) [1], which 
is inflammogenic, and monocytes of VEXAS patients 
aberrantly express chemokine receptors that may facilitate 
migration of immune cells and inflammogenicity in the 

Figure 1: Conceptual representation of the differential effect of UBA1 mutations based on the degree of loss of function 
of ubiquitin E1 enzyme UBA1. (left panel) UBA1, an E1 enzyme, activates ubiquitin and subsequently transfers the activated ubiquitin 
to up to approximately 30 E2 enzymes with various efficiency. The displayed heatmap illustrates the variability in ubiquitin transfer 
efficiency (dark green: low efficiency, brown: high efficiency) of UBA1 wild type (first column), UBA1 partial loss of function (second 
column) and UBA1 total loss of function (third column). Wild type UBA1 and partial loss of function mutations affect the ubiquitin 
transfer efficiency of a subset of E2 enzymes, whereas a total loss of function of UBA1 leads to a complete loss of loading of ubiquitin to 
E2 enzymes solely dependent on UBA1. (right panel) At the E2/E3-substrate transfer step, the effect of UBA1 loss of function is mediated 
by the decrease of available ubiquitin-loaded E2 enzymes. In the case of partial loss of function mutations, ubiquitylation of substrates can 
be variable due to the differential impairment of ubiquitin transfer to the E2 enzymes, which may result in imbalance of regulator proteins 
and altered cell fate.
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skin [48]. Although the precise mechanism linking 
ubiquitylation impairment to the reported aberrant 
myeloid activation is not known, a consistent observation 
in VEXAS cells or cells treated with UBA1 inhibitors is 
the upregulation of the unfolded protein response (UPR), 
likely due to the decrease in the efficiency of endoplasmic 
reticulum-associated degradation and the consequent 
accumulation of misfolded proteins [4]. UPR can trigger 
inflammation by myriads of mechanisms, including the 
activation of NF-κB pathway and the inflammasome, 
and its dysregulation is associated with multitudes of 
phenotypically diverse autoimmune and autoinflammatory 
diseases [51, 52].

Interestingly, patients with VEXAS syndrome 
who have mutations other than M41 often experience 
less severe inflammatory symptoms [16, 44]. In fact, 
the effects of the UPR are not limited to inflammation 
but also include cell death, stress responses like reduced 
protein production and increased autophagy, and 

changes in cell differentiation [53, 54]. The phenotypic 
diversity observed might be linked to the different levels 
of proteotoxic stress caused by M41 and non-M41 
mutations. Nonetheless, if the inflammation in both 
groups is due to the UPR in myeloid cells, focusing on 
the affected myeloid cells or adjusting the UPR might be 
more effective than targeting the wide array of cytokines 
and chemokines individually.

Cytopenias

In VEXAS syndrome, there is a noticeable reduction 
in various blood cells [37, 47, 55], including red blood cells 
(98% of cases), platelets (33–54%), neutrophils (23–29%), 
monocytes (73%), and lymphocytes, especially B cells 
(91%). Anemia that requires regular blood transfusions 
is linked to a shorter lifespan [37], and a decrease in 
lymphocytes can lead to more infections among VEXAS 
patients, which is a leading cause of death [1]. Therefore, 

Figure 2: Mechanism of cytoplasmic-specific loss of function mutations and comparison with the non-M41 mutations. 
(A) UBA1 mRNA transcript contains three alternative start codons at position M1 (UBA1a), M41 (UBA1b), and M67 (UBA1c). The 
transcript starting from M1 contains the nuclear localization signal (NLS) and the translated protein is transferred to the nucleus. In 
physiological conditions UBA1 mRNA is also translated from position M41, lacking the NLS, and the cytoplasmic isoform UBA1b 
is produced (top panel). Mutations at position M41 greatly reduces the translation efficiency starting at M41 and more transcripts are 
translated from M67. This results in the translation product, which is the catalytically deficient cytoplasmic isoform UBA1c (bottom panel). 
The isoform lacks residues from M41 to A65, compared to UBA1b. (B) The effect of M41 mutations result in intact UBA1a in the nucleus 
and isoform swap in the cytoplasm of the catalytically active UBA1b to the more inactive UBA1c. This results in stable ubiquitylation in 
the nucleus and substrate accumulation in the cytoplasm (top panel). The effect of non-M41 mutations is equally present in UBA1a and 
UBA1b, respectively, and substrate accumulation should similarly be seen both in the nucleus and cytoplasm (bottom panel).
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managing hematologic symptoms is a key component of 
effectively treating VEXAS patients.

Bone marrow examinations of VEXAS patients 
typically show a hyperplastic bone marrow with increase 
in myeloid progenitors and decrease in erythroid 
progenitors. These progenitor cells, both myeloid 
and erythroid, typically show characteristic vacuoles, 
which are likely autophagic vacuoles indicating stress 
[56]. Megakaryocytes (platelet progenitors) also show 
characteristic dysplasia [55]. About 80% of progenitor 
cells of all lineages carried mutations, and among mature 
cells, neutrophils and monocytes showed these mutations, 
with none found in B and T cells [1]. Single-cell studies 
confirmed that these mutations are present in progenitors 
of both lymphoid and erythro-megakaryocytic lineages 
[45, 57, 58]. However, there is a noticeable reduction 
of lymphoid cells as they develop, while the trend in 

erythro-megakaryocytic lineage is less evident, possibly 
because mature cells in this lineage don’t have a nucleus 
and weren’t examined, but they showed a similar pattern. 
In summary, the cytopenias of the lymphoid and erythro-
megakaryocytic lineages seem to be due to the preferential 
differentiation of the hematopoietic stem cells to the 
myeloid lineage and/or negative selection during lymphoid 
and erythro-megakaryocytic differentiation (Figure 3). In 
contrast, neutropenia and monocytopenia are likely due to 
the spontaneous inflammogenic death or migration into 
the tissues in the periphery, as mentioned earlier.

The bone marrow differentiation bias and blood cell 
composition in VEXAS have been quite comprehensively 
described, but the UBA1 mutation-specific molecular 
mechanisms that might provide insights into treatment 
of cytopenias are not fully investigated, partly due 
to the confounding hematologic side-effect of some  

Figure 3: Cellular, tissue-level, immune-environmental, and systemic effect of UBA1 mutations. UBA1 mutations lead 
to substrate accumulation, which result in activation of the unfolded protein response (UPR, top left panel). This affects the cell fate 
of different cell types carrying the mutations in a context dependent way. In addition, UPR results in inflammatory response, including 
cytokine production. A list of aberrations due to mutations which may lead to altered immune microenvironment is given in the top 
right panel. The aberrations impair the immuno-competence of the patient. The panel at the bottom left illustrates the alterations in cell 
type composition within the bone marrow resulting from the cell-type-specific effects of UBA1 mutations in hematopoietic stem cells 
(HSCs) and progenitor cells. Mutations in UBA1 lead to distinct outcomes depending on the lineage of the mutated cells. Specifically, 
mutated cells of the lymphoid and likely also erythroid lineages progressively decrease as the cells differentiate, whereas the myeloid cells 
carrying the mutations undergo clonal expansion. The pie charts on the right side of the panel provide an approximate quantification of the 
mutant to wild type ratio per lineage observed. In peripheral blood of VEXAS patients cytopenias are observed either as a consequence of 
differentiation aberrations in the bone marrow, inflammatory environment, or due to cytotoxic anti-inflammatory treatment (bottom right). 
In addition, aberrant activation of immune cells is observed, which aggravates both systemic and tissue inflammation.
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anti-inflammatory treatment [59] and due to the 
general rule that controlling inflammation improves the 
hematologic symptoms in inflammatory diseases [60]. In 
fact, inflammation is known to increase granulopoiesis 
and decrease erythropoiesis in a multifactorial way  
[61, 62], and in some cases controlling inflammation 
improved cytopenias even without changes in UBA1-
mutated clone size [63]. However, some patients 
experience worsening of their low blood cell counts 
during periods when inflammation is not active [64], 
and those with VEXAS who have mutations other than 
M41 may have more severe anemia but only mild signs 
of inflammation [44]. Interestingly, patients carrying the 
non-M41 mutations often have increased erythropoiesis in 
the bone marrow [14, 38, 42], which is unusual for anemia 
caused by inflammation. Thus, the intrinsic mechanism of 
cytopenias is plausible and worthy of investigation.

Erythropoiesis, megakaryopoiesis, and 
lymphopoiesis are all regulated by ubiquitylation. For 
instance, the receptor for erythropoietin is broken down 
by the E3 ligase β-TRCP [65] and RNF41 [66], both the 
receptor for thrombopoietin (MPL) [67] and lymphoid 
development factor receptor IL7R [68] by E3 enzyme 
CBL, and plasma cell differentiation requires UPR [69]. 
Most importantly, p53 is degraded by E3 enzyme MDM2, 
and in mice, uninhibited p53 activity by loss of Mdm2 
is known to lead to bone marrow aplasia [70]. Such is 
relevant in VEXAS, because UBA1 inhibition has been 
shown to increase P53 protein level, both by chemical 
inhibition [9] and mutagenesis [71]. Investigation of the 
stability of protein regulators of hematopoiesis in VEXAS 
patients is an underexplored area of research, which may 
open new therapeutic strategies to control cytopenias in 
VEXAS.

Clonal expansion of the myeloid precursors 

Most treatments for VEXAS syndrome currently 
focus on targeting the inflammatory pathways. However, 
due to the short duration of success of these treatments 
[39], there’s an increasing interest in therapies that target 
the disease-causing cells themselves. By understanding 
what gives these abnormal cells a growth advantage in 
VEXAS, it might be possible to identify new druggable 
targets.

The variant allele fraction (VAF) of a somatic 
mutation can be used as a surrogate to assess clonal 
expansion and the VAF of UBA1 can exceed 90% in both 
bone marrow and peripheral blood. As mentioned, the 
lymphoid lineage does not contribute to the population 
of mutated clones nor does the erythro-megakaryocytic 
lineage since they are known to progressively decrease 
[55]. Additionally, the proportion of myeloblasts in 
VEXAS is usually less than 5% [47]. Efforts to create 
VEXAS-like cells from induced pluripotent stem (iPS) 
cells have been unsuccessful unless the mutation is 

introduced at a later stage of myeloid cell development 
[58]. This suggests that primarily later-stage myeloid 
progenitors and mature cells contribute to the clonality. 
However, in lab cultures, UBA1-mutated knock-in cell 
lines of the myeloid lineage do not grow well and die 
spontaneously [49, 58, 72], suggesting that VEXAS 
clonality may depend on the environment.

Recently, VEXAS patients were reported not only 
to be inflammatory but also immunodeficient, even after 
controlling for immunosuppressive treatment, either due 
to loss of lymphocytes or exhausted monocytes [73]. 
Many years before, a transposon-mediated mutagenesis 
experiment found transposon insertion in the intron 
1 of UBA1 to be one of the few insertion hotspots that 
were found in mice developing leukemia in immune-
deficient but not immunocompetent mice [74]. Thus, the 
immunological environment created by UBA1 mutations 
in the myeloid cells may favor the expansion of the 
mutant clones. The extrinsic aspect of clonal expansion is 
further supported by cases of clonal mosaicism or multiple 
independently arising clones. There is a case report of 
a patient who showed three independent UBA1 M41-
mutated clones [75], and almost every large screening 
attempt of symptomatic persons found at least one patient 
with multiple independent UBA1-mutated clones [16, 45], 
suggesting that UBA1-mutated clones gain advantage 
from the extrinsic inflammatory or immunodeficient 
environment. The most recent single-cell study [58] 
suggests that the outcome of UPR in mutated myeloid 
cells is the activation of an anti-apoptosis pathway, which 
may be one mechanism that allow the preferential survival 
of the mutated cells in the inflammatory milieu.

Oncogenicity

Patients with VEXAS syndrome often receive a 
concurrent diagnosis of MDS and, to a lesser extent, 
multiple myeloma [1, 45, 55]. Understanding oncogenicity 
of UBA1 mutations is crucial, especially regarding 
treatment strategies, because modulating ubiquitylation 
and inflammation can shift the balance between cell death 
and survival in different ways [28, 29], offering insights 
into potentially severe side effects. Moreover, setting 
aside considerations of quality of life, the median survival 
for VEXAS patients can reach 10 years from the first 
appearance of symptoms [37]. Therefore, the diagnosis of 
cancer would significantly affect the patient’s prognosis 
and overall health trajectory.

Initially MDS was reported in approximately 
half of VEXAS patients [46], but strict morphological 
evaluation of VEXAS bone marrow slides found the co-
occurrence to be only 4% [55]. The confusion stems from 
the difficulty in distinguishing pre-malignant dysplasia 
from morphological changes secondary to inflammation 
or other non-malignant causes [76]. Other criteria for the 
diagnosis of neoplasms are the presence of oncogenic 
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mutations. However, two large studies [16, 45] showed 
that VEXAS patients rarely harbor co-mutations other 
than DNMT3A or TET2, which are often also detected 
in healthy elderly individuals [77]. Thus, the exact 
prevalence of MDS among VEXAS patients, in the 
strictest definition, remains uncertain. Additionally, the 
presence of an MDS diagnosis alongside VEXAS does 
not appear to influence patient survival rates [37]. This 
observation challenges the conventional understanding 
of malignancy, as one would expect a cancer diagnosis to 
affect survival outcomes. Consequently, the link between 
MDS and VEXAS does not advocate for the oncogenicity 
of UBA1 mutations.

The co-diagnosis of multiple myeloma is more 
difficult to interpret. Due to the absence of UBA1 
mutations in lymphocytes and the demographic 
overlap, some believe that multiple myeloma develops 
independently of UBA1 mutations [55]. However, the 
incidence of multiple myeloma in European males over 
50 years is approximately 0.03% [78]. The prevalence 
would be no more than 0.3%, whereas in VEXAS the 
co-diagnosis is 3–8%. Further research in plasma cells is 
necessary to understand this association.

Currently, the association between UBA1 mutations 
and cancer remains uncertain, yet there is a growing 
body of literature on the connection between non-M41 
UBA1 mutations and various cancers. UBA1 is a known 
orchestrator of DNA damage response [79, 80], and 
coinciding with the discovery of VEXAS syndrome, 
UBA1 mutations were implicated as potential key factors 
in the development of lung cancer among non-smokers, 
identified through advanced bioinformatics methods [81]. 
The patients were all females. None of them harbored the 
M41 mutations, and instead frameshift, nonsense, and 
non-M41 missense mutations. In addition, we reported 
that somatic non-M41 variants are detected in various 
hematologic neoplasms, including lymphoid malignancies 
[14]. The pathogenicity of the variants is not confirmed, 
but the possibility that different degrees of loss of function 
mutations of UBA1 may have oncogenic potential is worth 
exploring to design safe therapy.

Modifiers of the phenotype – age, sex, and cell 
type

In the previous section, we mentioned that 
frameshift and non-sense mutations in lung cancer were 
exclusively observed in female patients. UBA1 is a known 
X chromosome escape gene, and studies consistently find 
UBA1 to be expressed approximately 1.2-fold higher 
in the peripheral blood of females than males [82–85]. 
UBA1 pathogenic mutations show a clear sex bias in 
VEXAS [1, 14, 46] and X-linked spinal muscular atrophy 
(XL-SMA), a congenital neuromuscular disease caused by 
germline UBA1 mutations [86]. The functional impairment 
of UBA1 caused by mutations associated with XL-SMA 

is relatively minor when compared to VEXAS syndrome 
[31]. Female carriers of XL-SMA pathogenic UBA1 
mutations are asymptomatic, but a female child with 
UBA1 gene deletion is affected [87]. Thus, the baseline 
UBA1 expression and the extent to which mutations 
impair its function appear to influence the resulting 
phenotype. Moreover, UBA1 protein expression decreases 
with age in mouse brains [88], and researchers of 
neurodegenerative diseases propose a threshold hypothesis 
where disease onset occurs once ubiquitylation capacity 
falls below a critical functional threshold [89]. Age might 
also play a role in VEXAS syndrome, as evidenced by the 
identification of several younger, asymptomatic patients 
carrying the UBA1 M41 mutations, who exhibited lower 
VAFs [15]. It appears that both age and sex influence the 
overall capacity for ubiquitylation, which may potentially 
impact the manifestation and progression of the disease 
[14]. Furthermore, the neuron-specific phenotype linked to 
germline mutations suggests varying thresholds of UBA1 
functional deficiency across cell types. Protein aggregates, 
a known cause of neurodegenerative diseases, indicate 
neurons’ particular vulnerability to UBA1 dysfunction, 
potentially exacerbated by impaired direct interactions 
with proteins crucial for neural development (e.g., SMN1 
[90, 91], Gigaxonin [92]).

Novel treatment strategies for VEXAS

The standard approach to treating VEXAS syndrome 
starts with administering high-dose corticosteroids, 
followed by a range of anti-inflammatory medications to 
gradually reduce the corticosteroid dosage. Additionally, 
supportive care is provided to manage cytopenias, 
infection, and thrombotic tendency. However, our review 
of research on the molecular and cellular impacts of UBA1 
mutations highlights critical vulnerabilities in VEXAS 
pathogenesis (Figure 4). Therapies aimed directly at 
targeting the disease-causing clones could potentially 
offer more effective relief from all the VEXAS symptoms. 
Below, we detail several clone-targeting drugs and their 
mechanisms of action.

Azacitidine – immunomodulatory effects?

Azacitidine emerged as a first candidate for 
effective treatment, supported by prior evidence of some 
success in managing hematoinflammatory symptoms 
in patients with a co-diagnosis of MDS and systemic 
inflammatory diseases [93, 94]. Given its approval for 
MDS, more VEXAS patients with a co-diagnosis of 
MDS receive Azacitidine, with some studies indicating 
that patients who respond to the treatment often have 
concurrent mutations in DNMT3A [95]. Beyond its 
primary effects, hypomethylating agents are noted for 
their immunomodulatory properties, such as diversifying 
T cell repertoire [96, 97]. VEXAS T cells are clonally 
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restricted [57], and this ability to modify the cellular 
environment, potentially hindering the clonal expansion 
of UBA1 mutations, represents another avenue through 
which it may exert its therapeutic effects. Early results 
from a Phase II clinical trial involving VEXAS patients 
have been promising [98] and a case has been reported 
in which Azacitidine effect extends after cessation of 
therapy [99].

UBA1 inhibitors – synthetic lethality

UBA1 inhibitors were originally developed for 
cancer treatment, based on the premise that cancer cells 

require more ubiquitylation compared to normal cells [12]. 
In healthy physiological conditions, activated ubiquitin 
exists in abundance, suggesting that UBA1 inhibition 
might not significantly impact normal cellular functions 
[18]. However, in the context of VEXAS syndrome, the 
situation is different. There is an observed decrease of 
about 90% in UBA1b protein levels, potentially making 
these cells more vulnerable to UBA1 inhibition. Building 
on this theory, Chiaramida et al. [49] administered a 
UBA1 inhibitor TAK-243 to a cell line model knocked-in 
with M41L mutation and showed that VEXAS cells are 
killed at a lower concentration than the parent cell line, 
indicating a potential therapeutic window.

Figure 4: Genotype-phenotype associations of pathogenic UBA1 mutations and possibilities of therapeutic targeting. 
Four different clinical phenotypes of pathogenic UBA1 mutations are known: X-linked spinal muscular atrophy (XL-SMA) is caused by 
germline mutations which have hotspot in exon 15. VEXAS is caused by somatic mutations in the cells of the bone marrow. M41 is the most 
frequent genotype but recurrent non-M41 mutations are also reported. Blood cancers are associated with both M41 and non-M41 mutations. 
Lung cancer is also reported with UBA1 mutations in females, which include frameshift and nonsense mutations. Molecularly, the degree 
of the enzymatic dysfunction and alteration of localization are different by genotypes. Therapies targeting this level: Auranofin tries to 
ameliorate phenotype by improving enzymatic dysfunction, whereas UBA1 inhibitors targets to tip the balance of survival to apoptosis by 
preferentially in cells with severe dysfunction. The cellular phenotypes of the mutations not only depend on the nature of the mutations but 
also on the affected cell type. Neuronal cells are particularly sensitive to protein aggregates and the mutations may be toxic with only slight 
enzymatic dysfunction. Other phenotypic mechanisms may be binding defects to proteins important in neural development. Concerning 
VEXAS, myeloid cells seem to be more resistant to UPR-mediated apoptosis due to activation of the PERK arm of the UPR. Therapies 
targeting of this level: PERK inhibitors try to prevent the preferential escape from apoptosis of the myeloid cells. Azacitidine likely also 
restore the cell type composition, but the exact mechanism is not known. The diverse clinical phenotypes are likely associated with the 
variety of mutations and their nature of loss of function and affected cell types. Abbreviations: wt: wild type; mut: mutated; LOF: loss of 
function; UPR: unfolded protein response; i: inhibitors.
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The question of whether there are differences in 
response to UBA1 inhibitors between M41 variants 
and non-M41 variants remains unanswered. Variability 
in response to UBA1 inhibitors has been noted among 
cell lines even within the same cancer. In squamous 
cell carcinoma, cell lines with lower expression of 
UBA1 responded better to TAK-243 [100], whereas in 
glioblastoma cell lines with lower expression of the ER 
chaperone GRP78 and not UBA1 expression responded 
better to TAK-243 [101]. The factors predicting treatment 
response in VEXAS syndrome have yet to be identified, 
though sex, age, and specific genetic mutations are 
potential sources of variability. Particularly, the non-M41 
variants may respond differently due to their impact on the 
nuclear isoform of UBA1. The initial study in TAK-243 
[9] indicates that its cytotoxic effects are mediated through 
several mechanisms, including DNA damage response 
and the impaired degradation of key proteins such as p53. 
These proteins play a crucial role in triggering cell cycle 
arrest and apoptosis in the presence of irreversible DNA 
damage [9], which seems more relevant in the nucleus.

The nuclear isoform is particularly prominent in 
G1 and G2 phases in HeLa cells [36], so the cell types 
which are often cycling are likely to be more sensitive. 
Further research is necessary to understand the effect 
of UBA1 inhibitors in the bone marrow, comparing the 
different M41 variants as well as the non-M41 variants. 
Combination therapies have been attempted in other 
cancers, such as radiotherapy and PARP1 inhibitors 
[102], which can be another direction of investigation. 
An additional note is that one of the UBA1 inhibitors, 
PYR-41 activates sumoylation at the same time, because 
ubiquitylation and sumoylation target the same residues of 
overlapping target substrate [103].

PERK inhibitors – UPR modulation

UPR modulation is one of the mechanisms that may 
alter survival advantages of UBA1-mutated myeloid cells. 
Ganesan et al. showed that UBA1-mutated myeloid cells 
gain survival advantage over wild type cells by activating 
the PERK-ATF4 arm of UPR [58]. In a M41V knock-in 
iPSC model, they showed that the M41V cells were more 
sensitive to PERK inhibitor GSK2606414 than the wild 
type cells. More preclinical studies are awaited to develop 
this promising target.

Auranofin – improving defective UBA1 function

A novel strategy in VEXAS therapy came from an 
observation that UBA1c can be reactivated by Auranofin, 
a long-established drug for rheumatoid arthritis. Auranofin 
was found to enhance UBA1 binding to 20 out of 36 E2 
enzymes tested and improved polyubiquitylation of 
multiple substrates [104]. Importantly, the effective dose 
was 4.5 to 73 times lower than the approved maximum 

therapeutic concentration for rheumatoid arthritis. 
Auranofin shows cytotoxic effect to chronic lymphocytic 
leukemia [105] as well as chronic myeloid leukemia [106], 
and its effect in VEXAS cells needs to be investigated.

CONCLUSIONS

VEXAS is a disease caused by UBA1 mutations in 
hematopoietic stem and progenitor cells. VEXAS phenotypes 
include inflammation, cytopenias, thrombotic tendency, 
clonality and potential oncogenicity. These diverse clinical 
features arise from the effects of UBA1 mutations across 
distinct cell types within the bone marrow and peripheral 
blood. The relationship between specific UBA1 genotypes 
and the resultant phenotype appears to be modulated by 
factors including age, sex, and the cellular context. Future 
studies clarifying how the genotype and host factors, 
which determine the severity and localization of the loss of 
function of UBA1, change the immune environment and 
shape the clinical phenotypes will be crucial. This, in turn, is 
expected to inform the development of targeted therapeutic 
interventions. The advent of clone-targeting therapies offers 
a promising avenue, yet a more detailed understanding of the 
specific E2/E3 enzymes involved and the differential impact 
of the UPR across cell types may identify novel therapeutic 
targets. Ultimately, a thorough grasp of the pathogenesis of 
VEXAS, from genetic mutations to clinical manifestations, 
will be pivotal in devising safe and effective therapeutic 
strategies to fight this challenging disease.
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