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The gut barrier as a gatekeeper in colorectal cancer treatment
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ABSTRACT
Colorectal cancer (CRC) is highly prevalent and is a major cause of cancer-

related deaths worldwide. The incidence rate of CRC remains alarmingly high 
despite screening measures. The main curative treatment for CRC is a surgical 
resection of the diseased bowel segment. Postoperative complications usually 
involve a weakened gut barrier and a dissemination of bacterial proinflammatory 
lipopolysaccharides. Herein we discuss how gut microbiota and microbial 
metabolites regulate basal inflammation levels in the gut and the healing process 
of the bowel after surgery. We further elaborate on the restoration of the gut barrier 
function in patients with CRC and how this potentially impacts the dissemination 
and implantation of CRC cells in extracolonic tissues, contributing therefore to 
worse survival after surgery.

INTRODUCTION

Colorectal cancer (CRC) is among the most 
prevalent and deadliest cancers worldwide [1, 2]. 
Screening methods like fecal immunochemical tests 
(FIT) and colonoscopies allow for the early detection 
and excision of premalignant tumors – polyps – but the 
incidence of this cancer remains alarmingly high despite 
such measures [1–4].

The cornerstone of CRC treatment is surgery, 
in which the diseased segment of the bowel is resected 
and the remaining bowel ends are reconnected with 
an anastomosis. What used to be initially an invasive 
abdominal procedure has evolved into a minimally 
invasive operation in most patients using techniques 
like laparoscopy and robotic surgery [5]. Coupled with 
“enhanced recovery after surgery” (ERAS) protocols, 
these novel surgical techniques have decreased 
postoperative complications and allowed patients to 

recover more quickly after surgery [6, 7]. Nevertheless, 
improved surgical technique and perioperative care have 
eradicated neither postoperative complications nor cancer 
recurrence.

A surgical break of the bowel wall disrupts the gut 
barrier which undergoes repair in the days and weeks 
following surgery. This repair process is paramount to the 
prevention of postoperative infectious complications like 
anastomotic leak (AL) [8]. We and others have shown 
in the last few years that gut microbiota influences the 
healing process of the bowel and the restoration of the 
gut barrier after surgery [8–10]. Based on our recent 
work, we believe that weakened gut barrier function, 
namely due to poor healing after surgery, leads to 
persistent systemic low-grade inflammation and a higher 
risk of local and systemic cancer recurrence [8, 9, 11]. 
Improvement of the gut barrier function in patients 
with CRC is under the control of both macroscopic and 
microscopic factors.

https://creativecommons.org/licenses/by/4.0/
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MACROSCOPIC FACTORS

The most severe form of a disrupted gut barrier is 
an overt leak of fecal material from the bowel, which 
usually occurs at the surgery site and specifically 
the anastomosis site. Colorectal AL is a major and 
unpredictable complication. It is expected to occur 
in approximately 3 to 19% of patients undergoing 
colorectal resection [12, 13]. This wide range depends 
on many factors, including the type of surgery being 
performed, technical factors and patient comorbidities 
[13–15]. These risk factors may be influenced by the gut 
microbiota to various degrees [10]. 

Macroscopically, there is consensus among surgeons 
that a gastrointestinal anastomosis should be free of 
tension and torsion [16, 17]. This premise could not be 
validated by epidemiological human studies due to ethical 
reasons, as an anastomosis cannot be mechanically left 
under tension or torsion after surgery. Nonetheless, it is 
logical to assume that mechanical stress could lead to 
anastomotic disruption simply by inducing rupture of the 
sutures or staple lines. It is common practice however to 
verify these mechanical aspects in the operating room, 
making their impact on the pathogenesis of AL probably 
low.

MICROSCOPIC FACTORS

Epithelial proliferation

The inner layer of the colonic wall is in contact with 
the microbial communities in the lumen. It is estimated 
that 70% of the bacteria in the body reside in the colon 
and rectum [18]. It is therefore safe to assume that the 
healing process after an invasive surgical procedure 
would be influenced by the abundant gut microbiota in the 
bowel lumen and would be dependent on the pathogenic 
potential and biological functions of the bacteria involved 
[8, 9].

The healing of the epithelial layer is a frequently 
assessed parameter in animal models of bowel injury 
[19, 20]. Epithelial healing is usually studied in conditions 
where the epithelial lining is the most affected, as is the 
case for inflammatory bowel disease (IBD) and other 
inflammatory conditions. In a surgical context, even if 
the epithelial layer is not what provides tensile strength 
to the anastomosis, it constitutes an important barrier 
against gut pathogens, and its sealing may be expected to 
protect the deeper submucosal matrix against deleterious 
inflammatory stimuli [21].

In germ-free mice, the inoculation with a complex 
microbiota induces maturation of the epithelium along 
with increased proliferation [22]. In our previous 
work, we have shown for the first time that healing 
after colonic surgery is severely impaired in germ-free 
mice [8]. Epithelial regeneration requires nutritional 

substrates, and more specifically microbiota-derived 
substrates. Short-chain fatty acids (SCFAs) are among 
the major nutritional substrates for the gut epithelial 
lining [23]. They are known to promote epithelial 
integrity and gut barrier function [24, 25]. SCFAs are 
bacterial metabolites that are produced by colonic 
bacteria upon the fermentation of dietary fibers [26]. 
These fibers escape digestion in the small bowel and are 
therefore metabolized mostly by bacteria in the cecum 
and the proximal colon, a process that culminates in 
the production of SCFAs [27]. Butyrate, propionate and 
acetate are the main SCFAs produced in the large bowel 
[26]. 

Among these metabolites, butyrate is a major 
energy source for epithelial cells [28]. It promotes 
the proliferation of colonocytes and is expected to 
contribute therefore to the regeneration of the injured 
mucosa [23, 29]. In addition to promoting epithelial 
proliferation, butyrate was shown to enhance the 
gut barrier function by promoting the development 
of interepithelial tight junctions [30, 31]. The 
reinforcement of the gut barrier function by butyrate 
was also mediated by an enhancement of the mucus 
layer, specifically by an upregulation of MUC-2, the 
major mucin produced by epithelial cells [32]. These 
beneficial properties protect against systemic invasion 
by luminal pathogens.

This key bacterial metabolite is therefore expected 
to be of potential interest in colorectal surgery. The 
effects of butyrate have been assessed in the context of 
colonic anastomotic healing in murine models [33–35]. 
These experiments suggested that this SCFA improves 
anastomotic healing and the tensile strength of the 
anastomosis, but the findings were inconsistent [33–35].  
From a practical perspective, oral administration of 
butyrate after surgery would expose the gut to this 
metabolite for only a short period of time, without 
considering the significant distance that separates the 
mouth from the colon and rectum. Another option would 
be intrarectal administration, but this approach might not 
be well received by the surgical community, as enemas 
may pose an undesirable mechanical stress on a fresh and 
fragile colorectal anastomosis. The alternative in this case 
would be to promote the production of this metabolite 
by the gut microbiota to consistently increase its luminal 
levels in the gut, in addition to ensuring a continuous 
mucosal exposure.

We previously conducted animal experiments in 
which we exploited the benefits of butyrate and other 
SCFAs in the healing of colonic anastomoses in mice 
[21]. Due to the limitations of direct administration 
of butyrate, our strategy was to modulate the colonic 
microbiota toward a butyrogenic profile that produces 
higher levels of SCFAs. The approach we tested 
was a supplementation with fermentable fibers, 
specifically oligosaccharides. Mice therefore received 
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dietary supplementation with inulin or galacto-
oligosaccharides (GOS) for 2 weeks before undergoing 
a colonic anastomosis under general anesthesia. The 
supplementation continued after surgery until sacrifice 
on postoperative day (POD) 6. Mice supplemented 
with inulin and GOS displayed increased levels of 
SCFAs in the gut and improved macroscopic healing 
of the anastomosis [21]. With respect to what was 
mentioned above, our experiment showed that the 
increased levels of butyrate, propionate and acetate 
coincided with an improved microscopic healing 
of the anastomosis. When assessed by a pathologist 
blinded to the intervention group, the wound site in 
mice supplemented with oligosaccharides was found 
to exhibit higher reepithelization and continuity of the 
mucosal layer. Since butyrate is known to promote 
epithelial proliferation, we assessed this parameter by 
quantifying the Ki-67 proliferation marker at the wound 
site by immunohistochemistry. Interestingly, this marker 
was found to be increased in mice supplemented with 
the inulin prebiotic. These findings support the role of 
these SCFAs, and of the microbiota, in the healing of 
the colonic anastomosis and restoration of the epithelial 
layer and therefore of the gut barrier after a surgical 
injury.

Considering the above, it is important to assess 
the effect of microbiota-mediated epithelial proliferation 
in the specific context of cancer. Patients with CRC 
constitute a large proportion of patients undergoing 
colorectal resections with anastomosis. It is therefore 
important to ensure that higher bacterial-derived butyrate 
levels will not increase the proliferation of cancer cells 
and promote cancer progression. This consideration is 
valid, but the short period of supplementation with such 
oligosaccharides will most probably not affect cancer 
progression and the overall oncological prognosis. Most 
importantly, while butyrate is known to promote the 
proliferation of normal colonocytes, it is known to inhibit 
that of cancer cells, a process that is best known as the 
“butyrate paradox” [36]. We have previously published a 
review article on this specific and yet complex question 
[23]. Briefly, in physiological circumstances, colonocytes 
metabolize butyrate via mitochondrial oxidation 
[23, 37]. In neoplastic cells, specifically colorectal 
adenocarcinoma cells, the cellular metabolism shifts 
toward aerobic glycolysis, which induces an accumulation 
of unused butyrate [23, 36, 38]. Butyrate exerts a histone 
deacetylase (HDAC) inhibitor function, which prevents 
the modulation of chromatin toward a pro-carcinogenic 
profile by inhibiting proto-oncogenes and activating 
tumor suppressor genes [23, 39–41]. In short, in patients 
with CRC, targeting the microbiota to improve epithelial 
proliferation through SCFAs may be beneficial not only 
against anastomotic complications but also against cancer 
progression.

Submucosal recovery

The submucosa is believed to confer tensile 
strength and solidity to the anastomosis, as it harbors a 
high concentration of connective tissue and collagen 
[14, 21]. It may be considered therefore as the cornerstone 
of anastomotic healing. This layer is not frequently 
assessed in injury models as these usually concentrate on 
mucosal injuries and do not routinely involve a radical 
transection of the colonic wall. The overwhelming body 
of evidence on the relation between the gut microbiota and 
anastomotic leak focuses on the preservation of collagen 
content at the anastomotic site.

Many bacterial species have been shown to 
activate colonic collagenases. Among these, the most 
famous one is Enterococcus faecalis [42]. E. faecalis is 
a Gram-positive commensal that is often incriminated in 
cases of nosocomial infections, including urinary tract 
infections, wound infections, endocarditis and bacteremia 
[43]. The team of Dr. John Alverdy at the University 
of Chicago has shown that some strains of E. faecalis 
have the capacity to activate matrix metalloproteinase 
9 (MMP-9), a collagenolytic enzyme, which induces 
a degradation of anastomotic collagen and AL [42, 44]. 
Other bacterial species have been shown by the same team 
to activate intestinal collagenases as well, contributing to 
the pathophysiology of AL. Among these, Pseudomonas 
aeruginosa, Serratia marcescens and Bacillus subtilis 
were shown to induce a degradation of the extracellular 
matrix at the anastomotic site, thus preventing proper 
wound healing [45, 46]. Collagenase-producing 
bacteria are not present in all patients with anastomotic 
complications [47], suggesting that the healing process 
and the implication of the microbiota are more complex 
and involve other factors.

In our previous work, we have shown that fecal 
microbiota transplantation (FMT) using preoperative fecal 
samples from patients with AL induced poor anastomotic 
healing in mice when compared to FMT from patients 
with optimal healing [8, 9]. In the mice transplanted with 
feces from leaky patients, the anastomosis was shown 
to harbor lower collagen concentrations, as assessed by 
the concentration of hydroxyproline. Higher collagenase 
activity was identified as well in these mice, but the 
incriminated collagenolytic enzyme was MMP-2 with 
little to no involvement of MMP-9 [8, 21]. This sheds 
light on the complexity of the microbiota effect on colonic 
healing after surgery, and the necessity to determine 
reliable biomarkers to properly assess the risk of leak 
before surgery. We specifically showed that strains of 
Parabacteroides goldsteinii and Alistipes onderdonkii 
resist the preoperative bowel preparation and directly 
modulate the inflammatory reaction in the bowel mucosa 
after surgery, leading sometimes to destructive rather than 
reparative inflammation [8].
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Bacterial metabolites like SCFAs may preserve 
the collagen layer and strengthen the submucosa after a 
surgical injury. In our experiment with oligosaccharides 
[21], mice fed the inulin and GOS-supplemented diets 
were shown to harbor higher collagen content at the 
anastomotic site. This was thought to be due to the 
ability of butyrate to inhibit collagenase expression. 
Previous work has suggested that butyrate can inhibit 
matrix metalloproteinases in joint cartilage [48], but this 
effect was not clearly demonstrated in the gut. Our data 
showed that butyrate, but also propionate and acetate, 
were associated with higher levels of hydroxyproline at 
the anastomosis, and with lower levels of collagenolytic 
activity at the wound site as well [21].

Ischemia and epithelial oxygenation

The perfusion of colorectal anastomoses is 
considered a vital factor in the healing process after 
surgery, as blood supply provides the necessary 
oxygenation, nutrients and molecules required to 
maintain tissue viability and to promote repair 
mechanisms [49, 50]. This led to the implementation in 
surgical practice of strategies to assess colonic perfusion 
when this parameter is suspected to be compromised 
[51, 52]. Suboptimal perfusion of the anastomosis has 
been further shown to impair the healing process after 
surgery in mice [53], reinforcing the importance of this 
factor in the pathogenesis of anastomotic leak in surgical 
practice.

Perfusion is believed to be directly related to the 
integrity of the vessels that irrigate the anastomosed bowel 
segment. This integrity could be due to technical operative 
factors such as the level of ligation, or to the health of the 
patient’s vessels, namely in the case of chronic vascular 
disease [54]. There is no evidence of a potential role of the 
gut microbiota in these rather mechanical factors. Besides, 
there is no indication of a potential mechanism by which 
gut bacteria may influence vascular supply. However, 
gut bacteria may modulate epithelial oxygenation 
microscopically [55, 56].

Higher epithelial oxygenation was linked to 
colonic inflammation, carcinogenesis, and the expansion 
of deleterious species like Escherichia coli [57]. The 
maintenance of a hypoxic environment was reported to 
promote crosstalk between the microbiota and the host, 
nutrient absorption, and the maintenance of the barrier 
function [55, 58]. These beneficial effects may be 
mediated by the hypoxia-induced factor (HIF) [59]. In 
the context of colonic anastomoses, healing seems to be 
improved by hyperoxia according to a systematic review, 
and this improvement was inversely correlated with the 
abundance of gut anaerobes, which were reported to be 
increased by hypoxia and associated with poor healing 
[60]. The findings of these different reports are not in 
agreement, especially given that anaerobes are reported in 

other manuscripts as being beneficial for gut homeostasis 
[61, 62]. This warrants further work on how hypoxia 
and hyperoxia interact with the microbiota and influence 
the gut barrier function, and how this balance regulates 
healing in the specific context of invasive colorectal 
surgery.

Inflammatory stimuli

The major mechanism that our previous work 
unveiled is that microbiota-mediated low-grade 
inflammatory signals directly affect repair mechanisms 
and the restoration of the gut barrier after surgery [8, 
9]. In the wound healing process, there is an initial 
inflammatory phase characterized by the infiltration 
of polymorphonuclears (PMNs) at the injury site 
and the release of pro-inflammatory cytokines and 
chemokines including tumor necrosis factor alpha 
(TNF-α), interleukin-1 beta (IL-1β), IL-6 and monocyte 
chemoattractant protein 1 (MCP-1) [63]. During this repair 
process, there is a polarization of macrophages from the 
pro-inflammatory M1 to an M2 phenotype, which induces 
an anti-inflammatory response to promote regeneration 
and healing [63, 64]. During this transition, TNF-α 
decreases and the production of transforming growth 
factor beta (TGF-β) increases [65, 66]. This cytokine 
promotes fibroblastic activity and the accumulation of 
components of the extracellular matrix at the wound site, 
including collagen and fibronectin [67, 68]. In this phase, 
M1 macrophages transition toward an M2 phenotype, 
which promotes regeneration and remodeling of the wound 
site [69–71]. When the transition from the inflammatory 
phase to the proliferation phase is dysregulated, excessive 
inflammatory signals persist and prevent the wound 
from healing properly [69, 72]. Impaired healing leads 
to chronic wounds, which drive chronic inflammation, 
and which promotes the growth of bacteria at the wound 
site that become resistant to local bactericidal processes 
[69, 72, 73]. Bacterial growth at the wound site drives 
local inflammation, leading to a vicious circle where the 
continuous production of reactive oxygen species (ROS) 
and cytokines leads to the production of destructive 
enzymes and sustained inflammation, which prevents the 
healing process from evolving [74, 75]. TNF-α is believed 
to be an important driver of chronic inflammation in 
chronic non-healing wounds [76], and its suppression with 
anti-TNF agents was shown to help resume the normal 
healing process [77, 78].

This dysregulation and polarization toward a pro-
inflammatory profile is also a hallmark of chronic intestinal 
inflammation, namely Crohn’s disease and ulcerative 
colitis [79–81]. Inflammation is known to correlate with 
the activation of MMPs, and inflammatory cytokines 
are believed to be activators of these collagenases 
[82–84]. Environmental factors that contribute to a pro-
inflammatory state are therefore expected to prevent 
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wound healing and to generate a chronic injury in the 
bowel, therefore weakening the gut barrier.

Gut bacteria are potent regulators of intestinal 
inflammation. Several species are known to activate 
the inflammatory cascade while others may harbor anti-
inflammatory properties. Among pro-inflammatory 
microbes, members of the Enterobacteriaceae family have 
been shown to induce intestinal inflammation, including 
Escherichia coli, Salmonella, Citrobacter rodentium 
[85], and others like Helicobacter hepaticus [86, 87]. Gut 
bacteria may also have anti-inflammatory properties that 
can be mediated by beneficial metabolites such as the 
SCFAs presented earlier [88, 89]. Other species may induce 
an anti-inflammatory response either by inhibiting the 
production of pro-inflammatory cytokines or by promoting 
the production of anti-inflammatory molecules [90]. These 
bacteria include Bifidobacteria, Lactobacilli, Bacteroides 
spp. and Parabacteroides spp. [90–92]. By modulating 
the inflammatory response, gut bacteria may exacerbate 
or alleviate acute inflammation at the anastomotic site 
and consequently modulate the healing process of the 
gut barrier. In murine models of colonic anastomosis, 
the modulation of peritoneal inflammation was shown to 
influence the healing at the surgical site, and the isolation of 
the anastomosis in rats with peritonitis was further shown 
to prevent the deleterious effects of excessive peritoneal 
inflammation on anastomotic healing [93, 94]. 

In our work, we found that a subclinical pro-
inflammatory state in the colonic mucosa of patients 
with CRC leads to poor restoration of the gut barrier 
after surgery [8, 9]. This pro-inflammatory environment 
was shown to be mediated by the gut microbiota, as the 
transfer of patient microbiota to mice induces the same 
increase in many pro-inflammatory cytokines in the mice 
colonic tissue [8, 9]. We found that several bacterial strains 
modulate the levels of inflammatory cytokines both in 
the mucosa and in the intraluminal environment, leading 
sometimes to a heightened level of systemic inflammation 
before surgery as demonstrated by higher circulating 
levels of white blood cells (WBCs) [8, 9]. We also showed 
that mild suppression of WBCs systemically, specifically 
monocytes and neutrophils, improved anastomotic healing 
and prevented bacterial translocation, suggesting that a 
controlled rather than a chaotic inflammatory reaction after 
surgery is highly beneficial to restore the gut barrier [8].

Interestingly, we found that the modulation of 
local and systemic inflammation by specific bacterial 
strains, specifically P. goldsteinii, was modulated by 
the peroxisome proliferator-activated receptor-gamma 
(PPAR-γ), which is activated by butyrate [11]. This 
pathway is particularly of interest in CRC as it reinforces 
the gut barrier and may further inhibit cancer cell 
proliferation and tumor progression [23]. Its activation by 
gut microbiota or bacterial metabolites not only improves 
surgical healing but also promotes favorable oncological 
outcomes [11].

GUT BARRIER RECOVERY AND 
COLORECTAL CANCER

In our most recent work, we shed light on how the 
consolidation of the gut barrier using prebiotics prevents 
not only local but also systemic dissemination of cancer 
cells, influencing therefore disease-free and overall 
survival [11].

We found in this work using long-term clinical 
data that patients with poor postoperative healing and AL 
experience more local and distant cancer recurrence, and 
lower overall survival [11]. Based on these findings, we 
aimed at evaluating whether a weaker gut barrier at the 
bowel anastomosis site may allow residual cancer cells 
to escape the bowel lumen, and found that this was the 
case. We therefore tested whether PPAR-γ-stimulating 
compounds may prevent cancer cell proliferation, 
dissemination and implantation in extracolonic tissue. 
We assessed dietary supplementation with inulin, which 
promotes butyrate production, and 5-aminosalicylate 
(5-ASA), a direct PPAR-γ activator. We found that 
both supplements reinforced the gut barrier function, 
prevented the escape of cancer cells and diminished 
tumor burden [11].

Most importantly, we found that a stronger gut 
barrier prevented the escape of enteric bacteria out of the 
gut, postoperative sepsis, and the translocation of cancer-
promoting bacterial lipopolysaccharides (LPS) into the 
circulation [11]. This led to a less proinflammatory and 
potentially less procarcinogenic systemic environment and 
was associated with a lower fixation and proliferation of 
cancer cells in the liver [11].

FUTURE DIRECTIONS

These findings pave the way toward dietary 
supplements that may stimulate PPAR-γ in an effort 
to consolidate the gut barrier function and prevent the 
systemic spread of procarcinogenic factors through a 
weakened colorectal mucosal layer. Such supplements 
may include fermentable dietary fibers and 5-ASA. 
The latter is a commonly used medication in patients 
with inflammatory bowel disease, and may therefore 
act as an anti-inflammatory agent to alleviate low-
grade inflammation in patients at risk of experiencing 
poor anastomotic healing [95]. Other anti-inflammatory 
agents include biological ones, namely anti-TNF-α 
monoclonal antibodies [96, 97]. While this approach 
does not necessarily affect PPAR-γ, it was shown in our 
previous work to improve anastomotic healing in mice 
[8]. Nonetheless, such agents harbor non-negligible side 
effect profiles and costs [98–100]. Furthermore, even 
if excessive TNF-α may be deleterious in the tissue 
repair process, it seems to drive some vital functions 
in tissue remodeling. These include the activation of 
the inflammatory response at the wound site, and the 
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subsequent modulation of cytoskeleton elements and 
keratinocytes that promote regeneration and tissue repair 
[101] (Figure 1).

Finally, reinforcing the gut barrier may alleviate 
systemic inflammation in patients with CRC and prevent 
the emergence of an oncogenic environment both locally 
in the bowel and systemically. This may in turn prevent 
the escape of cancer cells and their implantation in the 
peritoneal cavity or in distant organs. Ultimately, we 
showed that gut barrier integrity not only protects against 
postoperative sepsis and surgical complications, but is 
a pivotal factor in the prevention of local and systemic 
cancer recurrence, and perhaps in the response to systemic 
therapy. Future clinical studies are now urgently required 
to assess whether barrier-reinforcing agents improve 
outcomes in patients with CRC.
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