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Genomics has more to reveal

Lauréne Fenwarth and Nicolas Duployez

Molecular and cytogenetic analyses are now used
to identify mutations and structural variants defining
distinct subtypes of acute myeloid leukemias (AML)
and myelodysplastic syndromes (MDS). These genetic
considerations have become essential for risk stratification
and the selection of appropriate treatments, including the
use of allogeneic hematopoietic stem cell transplantation.
Despite over 15 years of genomic research since the first
publication of the AML genome [1] and large studies like
The Cancer Genome Atlas (TCGA) [2], around 15% of
AML cases remained genetically unclassifiable with
current knowledge [3—5] Notably, several studies in both
adults and children identified a subset of AML without
known initiating events but particularly enriched in FLT3-
ITD and WTI mutations, and normal karyotypes with an
overall unfavorable prognosis [6, 7].

In 20212022, notably thanks to advancements in
bioinformatic approaches and tools, recurrent somatic
tandem duplications (TD) of a portion of the UBTF gene
were identified in high-risk pediatric AML cases [8, 9].
With increased screenings of retrospective cohorts, the
characteristics associated with this molecular alteration
have since been confirmed. UBTF-TD are considered
initiating events in leukemogenesis and define a distinct
entity of myeloid malignancies.

It is estimated that UBTF-TD affect 4% of pediatric
AML cases (9% of relapsed pediatric AML cases) [9],
3% of young adult AML cases (ages 18—60 y), and less
than 0.5% of cases after age 60 y [10, 11]. These studies
have also demonstrated a close continuum with MDS.
In a recent series of adult AML, 20% of cases with
UBTF-TD were secondary to an MDS [11]. The study
of pediatric MDS cases without genetic predisposition
found a frequency of about 30% for UBTF-TD mutations
[12]. UBTF-TD is associated with a specific pattern of
additional genetic lesions, including W71 mutations
(~50%), FLT3-1TD (~50%), and trisomy 8 (~30%, while
~60% of cases have a normal karyotype), and is mutually
exclusive with other class-defining lesions (i.e., NPM1 or
CEBPA-bZIP mutations and recurrent fusions).

The prognosis for MDS/AML with UBTF-TD is
overall poor for a generally young patient population
[9-11]. Most of the available data, coming from AML
cases treated with intensive chemotherapy + allogeneic
hematopoietic stem cell transplantation showed higher rates
of induction failures and relapses and, when evaluated,
higher rates of minimal residual disease (MRD) following
treatment compared to UBTF-wild-type patients [9].
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The recognition of these cases, previously genetically
unclassifiable, paves the way for their detection in routine
practice and the development of new therapeutic strategies.
In particular, transcriptional studies demonstrated a high
expression of HOXA/HOXB cluster genes and MEISI,
a signature also found in NPMI-mutated AML and
suggesting sensitivity to menin inhibitors. A recent study
has confirmed this sensitivity in primary AML cells with
UBTF-TD [13] Considering the strong association of
this alteration with FLT3-ITD, combinations with FLT3
inhibitors also require further evaluation.

If there was any doubt, this discovery demonstrates
that genomics, extensively deployed over the past two
decades, still has much to reveal to us.
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