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ABSTRACT
Prostate cancer (PCa) poses significant challenges in treatment, particularly 

when it progresses to a metastatic, castrate-resistant state. Conventional therapies, 
including chemotherapy, radiotherapy, and hormonal treatments, often fail due 
to toxicities, off-target effects, and acquired resistance. This research perspective 
defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities 
of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. 
Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce 
oxidative stress and DNA damage in cancer cells. This depletion elevates reactive 
oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA 
damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with 
agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS 
accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a 
compressive overview of the previous work on manipulating amino acid metabolism 
and redox balance modulate the efficacy of DNA repair-targeted and immune 
checkpoint blockade therapies in prostate cancer.

INTRODUCTION

Prostate cancer (PCa) is a main cancer types that 
affects men’s health and poorly responded to treatment 
once it becomes metastatic [1, 2]. If PCa cells depend 
on androgen for their growth, it provides successful 
treatment option for patients with androgen deprivation 
therapy [3]. In androgen positive PCa, the second-
generation anti-androgens drugs such as abiraterone or 
enzalutamide have provided modest survival benefits of 
~4–5 months, [4, 5]. However, the disease can eventually 
progress to an androgen-independent state known as 
castrate resistant prostate cancer (CRPC) and becomes 
unresponsive to chemotherapy, radiotherapy, or hormonal 
therapy [6–8]. One of the challenges in treating cancer 
with chemotherapies resulting in toxicities and off target 
effect toward normal cells at the doses required to kill 
tumor cells. Furthermore, limited number of PCa harbor 
actionable genomic aberrations that may respond to 
targeted therapy [9, 10]. This scenario is occurred due 
to several factors including the presence of co-occurring 

genomic alterations, intra-patient tumor heterogeneity, 
and the development of acquired resistance. Due to those 
challenges alternative therapeutic strategies are required to 
improve treatment response or overcome resistance.

Targeting cancer cell metabolism may improve 
treatment response in therapy resistant cancers and 
reduces treatment-related toxicities. One of the hallmarks 
of PCa is metabolic reprogramming and is represented 
by the dependency of tumors on metabolic pathways for 
promoting growth, survival [11]. The link between cancer 
and dysregulated metabolism discovered during the early 
period of cancer biology and explained on Warburg effect 
[12]. This article focuses on alterations in the metabolism 
of PCa, genetic signatures and molecular pathways 
associated with non- essential amino acids metabolic 
needs of the cancer cells. It is well known fact that 
amino acids perform critical metabolic functions. Amino 
acid-depletion therapies target amino acid uptake and 
catabolism using heterologous enzymes or recombinant or 
engineered human enzymes. Notably, such therapies have 
minimal effect on normal cells due to their lower demand 
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for amino acids compared with tumor cells. Normal cells 
exhibit lower demand for amino acids [13]. In contrast, 
cancer cell has high demand of amino acids due to meet 
increased demands for energy and cellular building blocks 
that leads to use extracellular pool of amino acids. One 
of the therapeutic strategies that satisfies the objective 
of developing cancer cell-selective therapeutics is the 
systemic depletion of that tumor-essential amino acid, 
which can result in tumor apoptosis with minimal side 
effects to normal cells. In recent years, Cramer et al. 2017 
developed the engineered cyst(e)inase enzyme that able 
to degrade intracellular and extracellular cysteine/cystine 
[14]. Furthermore, Cyst(ei)nase enzyme able to decrease 
the antioxidant glutathione synthesis. In this scenario, 
our follow up studies have shown that depletion of amino 
acids such as cystine and cysteine in different cancer cell 
types help to design combinatorial therapeutic approaches 
using DNA repair targeted therapy and immune checkpoint 
blockade for the attainment of more durable therapeutic 
responses. Those metabolic vulnerabilities and loss of 
normal fitness of the cancer cells to amino acid depletion 
likely provide additional novel therapeutic options in 
cancer. In this prospective, we will rise the driving 
questions and potential possibilities how amino acid 
depletion induced oxidative stress associated DNA damage 
exploited for DNA repair targeted and immune checkpoint 
blockade therapy in the next section of this manuscript.

Driving questions

Exploiting amino acid metabolism can be done 
via different mechanisms including inhibition of either 
amino acid transporters [15], amino acid biosynthesis, 
or by depletion of amino acids. Dysregulated cancer 
cells metabolism constitutes a nearly universal feature of 
many types of cancer cells including PCa. Many tumors 
exhibit deficiencies in one or more amino acid synthesis 
or salvage pathways forcing a reliance on the extracellular 
pool of these amino acids to satisfy their metabolic 
demands. Cysteine is sulfur containing non-essential 
amino acid and previous studies highlighted that depletion 
of this amino acids led to the elevated intracellular levels 
of ROS in cancer cells [14]. To counterbalance high levels 
of ROS, tumor cells enhance the production of ROS 
scavenging GSH [16]. Cysteine is one of the building 
blocks of GSH, elevated production of GSH may exhaust 
endogenous sources of Cystine [17]. Subsequently, to 
survive and proliferate, cancer cells accelerate the uptake 
of extracellular cystine (disulfide forms of cysteine) via 
the CSSC/Glu antiporter (xCT transporter) [17, 18]. This 
research perspective highlights those depleting amino 
acids in cancer cells likely enhances treatment response. 
Our therapeutic strategy approaches highlight four 
mechanistic views.

(i) Would it possible to push the cancer cells over 
the edge by increasing oxidative stress and targeting 

antioxidant defense to the level that they cannot recover?  
Cellular redox potential is largely determined by 
glutathione (GSH), which accounts for more than 90% of 
cellular thiols [19]. GSH is primarily found in the 
cytosol except for a small percentage in the mitochondria 
[20] and is the primary antioxidant responsible for 
maintaining the intracellular microenvironment essential 
for normal cellular function including scavenging ROS. As 
noted above, cancer cells are known to have high levels of 
ROS, such as superoxide anion that can lead to oxidative 
DNA damage and that can be detrimental to cancer cell 
survival [21]. Thus, cancer cells must maintain adequate 
levels of antioxidant defenses (e.g., GSH levels) for 
growth and survival. In support of this thesis, several 
studies have achieved selective killing of transformed cells 
through perturbation of redox status [22–24]. However, 
the upregulation of antioxidant capacity in cancer cells can 
confer drug resistance. It is well document that GSH 
protect the cancer cells against oxidative injury by 
reducing H2O2 and scavenging ROS [25]. Notably, 
mitochondrial GSH depletion induces increased 
mitochondrial ROS exposure which impairs 
bioenergetics and leads to cell death [26–28]. Several 
inhibitors of cyst(e)ine transporter including an FDA 
approved drug sulfasalazine have shown [26] efficacy on 
GSH depletion [29]. Moreover, combination treatments of 
sulfasalazine and vitamin C has demonstrated decrease in 
GSH and an increase in ROS level in prostate cancer [30]. 
While oxidative stress plays a dominant role in GSH 
depletion in cancer cells, some are causally related to 
reduced expression of GSH synthetic enzymes [13]. Low 
concentration of ROS act as signaling molecules to 
activate proliferation and survival pathways [31]. If the 
level of ROS reaches above a certain threshold level that 
may exert a genotoxic and cytotoxic effect, leading to the 
death of cancer cells and thus limiting cancer progression 
[32, 33]. Therefore, reducing GSH levels could be a 
promising approach to increase the oxidative stress within 
cancer cells, potentially enhancing the effectiveness of 
cancer treatment (Figure 1). Treating the cancer cells with 
Cyst(e)inase enhances ROS accumulation, decrease GSH 
level and alter the cell cycle progression pattern [14, 34]. 
Furthermore, combinatorial treatment of the cells with the 
agent that target antioxidant proteins such as Thioredoxins 
(TXNs) that scavenge ROS by cycling between oxidized 
and reduced forms with the help of TXNRs [35, 36] 
provide alternative therapeutic alternative. It is evident 
that mammals have two major isoforms, a cytosolic TXN1 
and a mitochondrial TXN2, that pair up with TXNR1 and 
TXNR2, respectively [37]. Auranofin, which is an FDA 
approved drug (Ridaura®) for the treatment of rheumatoid 
arthritis that inhibits both isoforms of TXNR [38]. In our 
recent work, we target ROS scavenging molecules such as 
TXNR GHS with Auranofin in combination of with 
Cyst(e)inase synergistically enhance the accumulation of 
ROS and reduced PCa cell survival. (ii) Is the ROS 
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induced via amino acid depletion enough to induces DNA 
damage and inhibit DNA repair to synergize cancer cell 
death? ROS are normal byproducts of numerous cellular 
processes, such as mitochondria metabolism [39]. At 
moderately increased levels, ROS induces DNA damage 
and promote genomic instability in cancer cells [40]. 
Recently, we reported that the growth of multiple cancer 
types in vivo, including PCa, is inhibited by increasing 
ROS through administration of an engineered human 
enzyme, Cyst(e)inase, that degrades extracellular cysteine 
(L-Cys) and cystine (CSSC) and subsequently decreases 
the intracellular levels of L-Cys and GSH [14, 41]. Cyst(e)
inase induced ROS causes clustered oxidative DNA 
damage in cancer cells (Figure 1), which is similar to other 
previous studies [42]. Our biochemical characterization of 
depleting cysteine/cystine provides the opportunity to 
enhances ROS associated clustered oxidative DNA 
damage that result in DSBs [34]. On the other hand, DNA 
repair mechanisms protect the cancer cells against ROS 
induced oxidative DNA damage or DNA replication stress 
[43, 44]. Our data suggested that repair of DNA lesions 
induced by ROS requires the interaction of different DNA 
repair pathways, including base excision repair (BER) 
[45]. BER is the predominant pathway for repair of 

ROS-induced DNA base damage such as 8-oxo-dG [46]. 
Clustered oxidative DNA damage can also occur (i.e., 
oxidized DNA bases in proximity) and when processed by 
BER can lead to DSBs [47]. We have found that because 
of elevated intracellular ROS levels, Cyst(e)inase-treated 
PCa cells accumulate both single strand and double strand 
DNA breaks (SSBs and DSBs, respectively) due to 
increased oxidative DNA damage. The presence of both 
SSBs and DSBs in PCa cells treated with Cyst(e)inase 
suggests that in addition to BER, other DNA repair 
pathways may also likely play a role in protecting cells 
from this damage. Based on the PCa genomic profiling 
DNA repair targeted therapies including poly-ADP ribose 
polymerase (PARP) inhibitors now FDA-approved for the 
treatment of select men with metastatic castration resistant 
prostate cancer (CRPC) harboring specific aberrations in 
DNA repair genes [48]. In our study, we have shown that 
combination of Cyst(e)inase with Olaparib result in 
accumulation of DNA damage and reduces the survival of 
the PCa cells [34] (Figure 1). (iii) Can we harness genetic 
vulnerability of the cancer cell to increase sensitivity to 
amino acid depletion? Molecular-targeted therapies and 
treatment stratification using genetic landscape of cancer 
cells have rapidly gained momentum in cancer therapy. 

Figure 1: Amino acid depletion induce DNA damage and enhance sensitivity of the cancer cells to DNA repair and/
or antioxidant inhibitor (created with https://www.biorender.com/). Cyst(e)inase mediated depletion of cysteine/cystine 
leads to downregulation of antioxidant GSH. This leads to mitochondrial dysfunction and oxidative stress. However, cells overcome the 
mitochondrial ROS accumulation by utilizing alternative antioxidants defense mechanism i.e., thioredoxin reductase. Therefore, the first 
strategy is to target thioredoxin reductase by auranofin increases the oxidative stress and mitophagy. The second strategy is inhibiting, one 
of the BER factor, PARP1 to block the ROS-induced ssDNA breaks repair and generate dsDNA breaks. The third approach is exploiting 
the DNA repair deficiency of the cancer cells such as BRCA defective cancer cells. In this scenario, Cyst(e)inase treatment alone or in 
combination with either TXNs inhibitors or PARP1 inhibitor sensitizes the PCa cells.
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A  significant proportion of prostate cancers harbor DNA 
damage repair (DDR) and DNA damage response 
deficiency. DNA damage repair (DDR) pathways are 
commonly impaired in prostate cancer [49] with a 
prevalence of germline mutations among men with 
metastatic PCa reported to be ~12% [50]. In addition, 
analysis of The Cancer Genome Atlas (TCGA) reveals that 
19% of primary prostate cancers have mutations in DNA 
repair genes [51]. Other genome sequencing studies 
conducted on metastatic PCa tissue samples have shown 
that 23% had defects in DNA repair genes (i.e., BRCA1/2, 
ATM, CDK12, FANCA, FANC, PALB2, ATR, RAD51B, 
and RAD51C) [52]. For example, the recent genomic 
analysis by Robinson et al. [52] has revealed that 
mutations in BRCA2 which is involved in the HR DNA 
repair pathway are observed in 13.3% of primary prostate 
tumors. Our study has shown that Cyst(e)inase treatment 
in HR deficient (BRCA2−/−) prostate cancer accumulated 
double strand breaks and resulted in a significant decrease 
of cancer cell survival [34]. This part of the study 
unraveled how cancer cells genetic liability enhances 
amino acid depletion-based treatment response. (iv) Can 
we apply combinatorial treatment approaches in amino 
acids depleted cancer cells to enhance immunotherapy 
response? PCa is recognized as a poorly immunogenic 

tissue with immunological cold with low antigen-
presenting process and T-cell activation and recruitment of 
immunosuppressive cells [53]. The development of 
immunotherapy in cancer treatment has brought an 
exciting era of anti-prostate cancer therapy through 
antitumor immune responses. Immune checkpoint 
blockade (ICB) has shown limited benefit in prostate 
cancer in several studies [54, 55]. Nonetheless, durable 
objective responses have been reported, suggesting that 
patients with molecularly defined subsets of prostate 
cancer may benefit from this therapeutic approach [56]. 
Pembrolizumab, an antibody targeting the programmed 
cell death protein 1 (PD-1) receptor, recently earned 
accelerated approval by FDA for the treatment of 
microsatellite instability–high (MSI-H) or mismatch repair 
deficient (dMMR) solid tumors, independent of site of 
origin [57]. Notably, prostate tumors with HR gene 
mutations confers sensitivity to PARP inhibitors [52, 58, 
59] and correlates with increased immune checkpoint 
expression [60]. Wang et al. demonstrated that Cyst(e)
inase treatment in combination with ICB, enhances anti-
tumor immunity by elevating the infiltration of CD8+ and 
CD4+ cells, along with promoting tumor ferroptosis [61]. 
Shah A, et al. shows that Cyst(e)inase treatment increase 
the expression of PD-L1 in prostate tumor (Figure 2). 

Figure 2: Amino acid starvation enhances the efficacy of immunotherapy (created with https://www.biorender.com/). 
Limiting Cysteine transportation in cancer cells by Cyst(e)inase results in reduced cellular GSH that causes clustered oxidative DNA 
damage [34]. In addition to DNA damage, it increases the infiltration of immune cells including the CD8+ T cells, CD8+Gr8 + cytotoxic 
T cell as well as triggers the ferroptosis of tumor cells in tumor microenvironment [61]. Thus, combining the amino acid depletion strategy 
with anti-PD-L1 therapy have synergistic effect and can convert immunologically cold tumors to hot tumors.
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Furthermore, combinatorial treatment of PCa with Cyst(e)
inase in combination with ant-PD-L1 antibody shows that 
increase infiltration of cytotoxic T cell and reduce tumor 
size in vivo model [34]. This discovery may open 
opportunity to explore the unknown outcomes via 
pharmacological depletion of amino acids in cancer cells 
to benefit from combinatorial therapeutic approaches. 
Overall identifying the metabolic need or manipulating the 
amino acid need of the cancer cells likely generate a better 
opportunity to enhance the tumor immunogenicity and 
increase the efficacy of the ICB response.

Future works

Dietary restriction is typically not sufficient 
to achieve a therapeutically relevant level of amino 
acid depletion for cancer treatment. Therefore, 
pharmacological intervention using enzymes to deplete 
non-essential amino acids in tumor microenvironment 
for therapeutic purposes provides alternative therapeutic 
potential. Depleting amino acid likely expose the Achilles 
heel of the cancer and exacerbate DNA repair targeted and 
immune based therapy response. Furthermore, the genetic 
vulnerability of the tumor provides a better platform 
to enhance sensitivity to amino acid depletion-based 
treatment. Integrative analyses combining genomics with 
other features such as metabolic demand to exploit the 
tumor microenvironment, could be used for therapeutic 
opportunity to benefit from current therapeutic models 
and inform the development of novel therapeutic 
biomarker-driven therapy approaches for cancer patients. 
In the future, exploring additional non-essential amino 
acid demand of tumor decoding and engineering other 
molecular profiling may help to fulfill unmet needs 
for predictive biomarkers in novel immunotherapeutic 
approaches.
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