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ABSTRACT
GZ17-6.02 has undergone phase I evaluation in patients with solid tumors 

(NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient 
exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in 
this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal 
melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent 
signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ 
and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, 
predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted 
to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to 
significantly enhance tumor cell killing which was associated with greater levels of 
autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α 
were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-
expression of FLIP-s provided greater protection compared to knock down of CD95 or 
FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor 
cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a 
similar extent as observed in cutaneous melanoma cells whereas it was less effective 
at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in 
tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 
in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in 
combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.

INTRODUCTION

GZ17-6.02 is a novel compound, containing the 
synthetically manufactured components: curcumin, 
harmine and isovanillin and has undergone phase I 
safety evaluation in cancer patients (NCT03775525). 
The recommended phase 2 dose (RP2D) is 375 mg PO 
BID, with an uveal melanoma patient exhibiting a 15% 
reduction in tumor mass for 5 months at this dose. We 

have published data showing that GZ17-6.02 kills a 
diverse range of tumor cell types, including prostate, ER+ 
breast, colorectal, pancreatic, hepatic, biliary, NSCLC, 
cutaneous melanoma, sarcoma and actinic keratoses 
[1–9].

Uveal melanoma (UM) is an uncommon cancer 
of the eye with an incidence of approximately 1 person 
per 100,000 of population [10]. Recently, the FDA 
approved the drug Kimmtrak (Tebentafusp) for a specific 
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small subset of UM patients expressing the marker 
HLA-A*02:01, however for the majority of patients, 
there remains no good therapeutic intervention [11]. In 
approximately 90% of UM patients have driving mutations 
in G alpha proteins that, like mutant RAS proteins in other 
tumor types, have lost their GTPase activity [12–16]. In 
approximately 50% of UM patients, BRCA1 associated 
protein-1, BAP1, (ubiquitin carboxy-terminal hydrolase), 
a deubiquitinating enzyme, is mutated inactive, i.e., BAP1 
is a tumor suppressor, and its loss of function subsequently 
was also associated with BAP1 acting as a suppressor of 
metastatic spread [17–20]. BAP1 is proposed to regulate 
the amount of ubiquitination of histones, regulating 
homeobox genes and long-term cell fate and stem-cell like 
behavior [21, 22].

GZ17-6.02 simultaneously regulates multiple 
cell signaling processes which converge to kill tumor 
cells. Activation of ataxia telangiectasia (ATM) 
alongside reduced signaling by receptor tyrosine 
kinases which resulted in the inactivation of mTORC1 
and that was responsible for enhanced autophagosome 
formation and autophagic flux. PKR-like endoplasmic 
reticulum kinase (PERK) or PKR based on the cell 
type were activated concomitant with increased the 
phosphorylation (inactivation) of eIF2α [1–9]. This 
acted to both reduce the protein levels of protective 
MCL-1 and BCL-XL and to enhance expression of 
the autophagy-regulatory proteins Beclin1 and ATG5. 
Based on the tumor cell type, GZ17-6.02 also in a 
cell-type dependent fashion enhanced death receptor 
signaling, with activation of caspase 8 and cleavage of 
the toxic BH3 domain protein BID leading to activation 
of BAX and BAK [1–9].

In animal models of colon and prostate cancer, 
GZ17-6.02 as a single agent significantly prolonged 
animal survival and interacted with 5-fluorouracil in 
the colon cancer cells to further enhance survival [7]. In 
LNCaP prostate cancer tumors treated for 45 days with 
vehicle control or GZ17-6.02, all control animals had died 
prior to day 45 whereas for animals treated with GZ17-
6.02 the median survival was 78 days, i.e., tumor growth 
control was maintained for ~33 days in the absence of 
drug [8]. A phase Ib trial is planned in hormone refractory 
prostate cancer at Massey Cancer Center. 

We have previously published that PDX isolates 
of UM were sensitive to irreversible inhibitors of ERBB 
family members, particularly the multi-kinase inhibitor 
neratinib [23]. Neratinib enhanced autophagosome 
formation and could reduce receptor expression. Others 
have shown that neratinib can enhance macroautophagy 
and reduce receptor expression [24, 25]. The present 
studies defined the biology of GZ17-6.02 in UM cells 
and in parallel determined its interaction with irreversible 
ERBB inhibitors (afatinib, neratinib) and with the 
cytotoxic agent doxorubicin.

RESULTS

GZ17-6.02 comprises by mass three chemically 
synthesized (pure) natural products: curcumin (10%); 
harmine (13%); isovanillin (77%). Compared to its 
individual component parts of harmine, isovanillin 
and curcumin, as single agents or together in pairs, the 
three-compound GZ17-6.02 was the most efficacious 
agent at killing UM cells (Figure 1). Afatinib, neratinib 
and doxorubicin interacted with GZ17-6.02 in an 

Figure 1: GZ17-6.02 kills uveal melanoma cells more efficaciously than the individual components. PDX isolates of 
uveal melanoma were treated with vehicle control, GZ17-6.02 (curcumin (2.0 µM) + harmine (4.5 µM) + isovanillin (37.2 µM)) or with 
component parts of GZ17-6.02 as individual agents at the indicated concentrations or in duo combinations. Cells were isolated 24 h 
afterwards and viability determined via trypan blue exclusion assays (n = 3 +/− SD). #p < 0.05 greater than other tested drug treatments. 
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additive fashion to further enhance UM cell killing. 
The combinatorial lethality of (afatinib plus 602) and 
(neratinib plus 602) were identical when the kinase 
inhibitors were used at a concentration of 50 nM, whereas 
at a concentration of 100 nM, still below the C max of 
the drugs in patient plasma, neratinib was slightly more 
efficacious than afatinib (Figure 2A). The combination 
of GZ17-6.02 and doxorubicin exhibited less killing than 
the combination of GZ17-6.02 with neratinib or afatinib 
(Figure 2B).

The recommended phase 2 dose (RP2D) of GZ17-
6.02 is 375 mg PO BID. A syngeneic mouse model of 
uveal melanoma is not commercially available. Using a 

comparable low amount of GZ17-6.02, 50 mg/kg, dosing 
once daily, we determined the uptake of curcumin, harmine 
and isovanillin in established CT26 mouse colorectal 
tumors growing in their immune-competent syngeneic 
BALB/c mouse host. UM tumors express mutant G alpha 
proteins whereas the CT26 line expresses a mutated 
GTPase inactive KRAS protein. After thirty consecutive 
days of GZ17-6.02 dosing, tumors were isolated and 
processed to determine the concentrations of curcumin, 
harmine and isovanillin in the tumors (Table 1). All three 
components of GZ17-6.02 were detected. As was observed 
previously in prostate cancer studies, mice dosed with 
GZ17-6.02 did not lose body mass (data not shown) [8].

Figure 2: GZ17-6.02 kills uveal melanoma cells more efficaciously than the individual components. (A) PDX isolates 
of uveal melanoma were treated with vehicle control, GZ17-6.02 (curcumin (2.0 µM) + harmine (4.5 µM) + isovanillin (37.2 µM)), 
afatinib (50 nM, 100 nM) or neratinib (50 nM, 100 nM) alone or in the indicated combinations. Cells were isolated 24 h afterwards and 
viability determined via trypan blue exclusion assays (n = 3 +/− SD). *p < 0.05 less than the corresponding value in afatinib treated cells. 
(B) Uveal melanoma cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin, final concentration), doxorubicin (50 µM) or 
in combination for 24 h. Cells were isolated 24 h afterwards and viability determined via trypan blue exclusion assays (n = 3 +/− SD). 
¶p < 0.05 less than the corresponding value in cells treated with 100 nM of the ERBB kinase inhibitors.

Table 1: Treatment of animals with GZ17-6.02 results in tumors containing all three components 
of the drug: curcumin, harmine and isovanillin

Immune-competent BALB/c mice were implanted with syngeneic CT26 cells (1 × 106) and tumors were permitted to grow for 
14 days until they reached a volume of ~100 mm3. Control mice (5 animals) were treated daily by gavage with vehicle control. 
Mice (10 animals) were treated daily by gavage with GZ17-6.02 (50 mg/kg). Mice were treated for thirty days. Tumors were 
then isolated, and flash frozen in liquid N2. Tumor materials were processed to determine their levels of curcumin, harmine and 
isovanillin as described in the Methods section. Control tumors did not contain GZ17-6.02 (not shown). (n = 10 independent 
treated mice/tumors +/− SD).
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We next defined changes in cell signaling 
processes when we combined GZ17-6.02 with afatinib, 
neratinib or doxorubicin. GZ17-6.02 interacted with 
afatinib, neratinib and doxorubicin to activate ATM and 

the AMPK and inactivate mTORC1 (Tables 2 and 3). 
GZ17-6.02 interacted with neratinib to inactivate AKT, 
p70 S6K, ERK1/2, STAT3, STAT5, NFΚB, c-SRC, 
eIF2α. Neratinib and GZ17-6.02 interacted in both 

Table 2: Regulation of cell signaling by GZ17-6.02, afatinib and neratinib in MEL1 uveal melanoma 
cells

MEL1 cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), neratinib (100 nM) or the 
drugs in combination for 4 h. Cells were fixed in situ, permeabilized, stained with the indicated validated primary antibodies 
and imaged with secondary antibodies carrying red- and green-fluorescent tags. The staining intensity of at least 100 cells 
per well/condition is determined in three separate studies. The data are the normalized amount of fluorescence set at 100% 
comparing intensity values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control; *p < 0.05 less than vehicle 
control; **p < 0.05 less than GZ17-6.02 as a single agent.

Table 3: Regulation of cell signaling by GZ17-6.02, afatinib and neratinib in MEL4 uveal melanoma 
cells

MEL4 cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), neratinib (100 nM) or the 
drugs in combination for 4 h. Cells were fixed in situ, permeabilized, stained with the indicated validated primary antibodies 
and imaged with secondary antibodies carrying red- and green-fluorescent tags. The staining intensity of at least 100 cells 
per well/condition is determined in three separate studies. The data are the normalized amount of fluorescence set at 100% 
comparing intensity values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control; *p < 0.05 less than vehicle 
control; **p < 0.05 less than GZ17-6.02 as a single agent.
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tested lines to inactivate ERBB3. Downstream of these 
signaling events we observed enhanced expression of 
Beclin1 and ATG5 and increased phosphorylation of 
ATG13, which predicts we could observe autophagosome 
formation.

Hence, we next examined autophagosome formation 
and autophagic flux using a plasmid to express LC3-GFP-
RFP: autophagosomes stain (GFP+ RFP+) and acidic 
autolysosomes where GFP is quenched stain (RFP+). 
GZ17-6.02 interacted with both afatinib and neratinib to 
increase autophagosome formation which was temporally 
followed by a decrease in autophagosome numbers and 
an increase in autolysosome levels, i.e., autophagic 

flux (Figure 3). Knock-down of ATM significantly 
reduced the abilities of the drugs to cause formation of 
autophagosomes and autolysosomes. 

We next determined the importance of Beclin1, 
ATG5, eIF2α and mTORC1 inactivation in the 
autophagy response when combining GZ17-6.02 and 
neratinib. Knock down of Beclin1, ATG5 or eIF2α 
significantly reduced the formation of autophagosomes 
and autolysosomes (Figures 4 and 5). Expression of 
an activated form of mTOR also significantly lowered 
the numbers of autophagosomes formed and reduced 
autolysosome formation. Collectively, the findings in 
Tables 2, 3, and Figures 3–5, link drug-induced changes 

Figure 3: Regulation of macroautophagy by (GZ17-6.02 + ERBB inhibitors) requires ATM. Cells were transfected with 
a scrambled siRNA or with an siRNA to knock down expression of ATM. In parallel, cells were transfected with a plasmid to express 
LC3-GFP-RFP. After 24 h, cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), neratinib (100 
nM) or in combination for 4 h and 8 h. At each time point, the mean number of GFP+RFP+ vesicles and only RFP+ vesicles per cell 
were determined in forty randomly selected cells (n = 3 +/− SD). *p < 0.05 less than corresponding values at 4 h; #p < 0.05 greater than 
corresponding values at 4 h; ¶p < 0.05 less than corresponding values in siSCR cells.
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in signaling to the regulation of macroautophagy in PDX 
uveal melanoma cells.

We next defined the role of macroautophagy and 
other survival-regulatory processes in the control of cell 
viability after drug exposure. Knock down of Beclin1, 
ATG5 or eIF2α significantly reduced the abilities of 
GZ17-6.02, afatinib and neratinib as single agents or when 
in combination to kill UM cells (Figure 6). Knock down 
of CD95 or of FADD was protective, but not to the same 
extent as knock down of ATM, AMPKα, eIF2α, Beclin1 
or ATG5 (Figures 7A, 8). Over-expression of FLIP-s 
was protective in all three lines tested, significantly more 
protective than knock down of CD95/FADD, collectively 

arguing that caspase 8 was being activated via a feed-
back loop with caspase 3, rather than from death receptor 
signaling. In MEL4 cells, the expression of activated 
MEK1 was significantly more protective than expression 
of activated mTOR or activated STAT3 (Figure 8). 
Treatment of UM cells with (GZ17-6.02 + neratinib) 
reduced the expression of BCL-XL and MCL1 (Figures 
7B, 8). Knock down of eIF2α did not alter basal levels of 
BCL-XL or MCL1 but prevented the drug combination 
from reducing their expression. Expression of activated 
STAT3 increased basal expression of BCL-XL and MCL1 
approximately 2-fold, and activated STAT3 also prevented 
the drug-induced decline in their protein levels. Thus, both 

Figure 4: Knock down of Beclin1, ATG5 or eIF2α, or expression of an activated mTOR protein, reduces autophagosome 
formation and autophagic flux. Cells were transfected with a plasmid to express LC3-GFP-RFP and in parallel transfected with a 
scrambled siRNA or with siRNA molecules to knock down the expression of Beclin1, ATG5 or of eIF2α. In parallel, other cells were 
transfected with an empty vector plasmid (CMV) or a plasmid to express an activated form of mTOR. Twenty-four h later, cells were treated 
with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), neratinib (100 nM) or the drugs in combination for 4 h and 8 h. 
At each time point, the mean number of GFP+RFP+ vesicles and only RFP+ vesicles per cell were determined in forty randomly selected 
cells (n = 3 +/− SD). *p < 0.05 less than corresponding values at 4 h; #p < 0.05 greater than corresponding values at 4 h; ¶p < 0.05 less than 
corresponding values in siSCR cells.
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ER stress signaling and reduced STAT3 signaling play 
overlapping roles in regulating MCL1 and BCL-XL levels 
that regulates tumor cell viability after drug exposure.

The Hippo pathway plays a key role in initiation, 
the development and therapeutic resistance in uveal 
melanoma [26–30]. Hence, we next defined the impact of 
GZ17-6.02, afatinib and neratinib on the Hippo pathway 

co-transcription factors YAP and TAZ. As single agents, 
both GZ17-6.02 and neratinib variably increased the 
phosphorylation of YAP S127 and YAP S397, whereas 
afatinib had no effect (Table 4). As single agents, both 
GZ17-6.02 and neratinib increased the phosphorylation 
of TAZ S89 whereas afatinib had no effect. When GZ17-
6.02 was combined with neratinib, the phosphorylation of 

Figure 5: Knock down of Beclin1, ATG5 or eIF2α, or expression of an activated mTOR protein, reduces autophagosome 
formation and autophagic flux. MEL4 cells were transfected with a plasmid to express LC3-GFP-RFP and in parallel transfected with 
a scrambled siRNA or with siRNA molecules to knock down the expression of Beclin1, ATG5 or of eIF2α. In parallel, other cells were 
transfected with an empty vector plasmid (CMV) or a plasmid to express an activated form of mTOR. Twenty-four h later, cells were treated 
with vehicle control, GZ17-6.02 (2 µM), afatinib (100 nM), neratinib (100 nM) or the drugs in combination for 4 h and 8 h. At each time 
point, the mean number of GFP+RFP+ vesicles and only RFP+ vesicles per cell were determined in forty randomly selected cells (n = 3 
+/− SD). *p < 0.05 less than corresponding values at 4 h; #p < 0.05 greater than corresponding values at 4 h.

Figure 6: Cell-killing by (GZ17-6.02 + ERBB inhibitors) requires Beclin1, ATG5 and eIF2α, and is reduced by 
expression of activated mTOR. Cells were transfected with a scrambled siRNA or with an siRNA to knock down expression of 
Beclin1, ATG5 or eIF2α. In parallel, other cells were transfected with an empty vector plasmid (CMV) or a plasmid to express an activated 
form of mTOR. Twenty-four h later, cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (50 nM, 100 nM), 
neratinib (50 nM, 100 nM) or the drugs in combination for 24 h. Cells were isolated 24 h afterwards and viability determined via trypan 
blue exclusion assays (n = 3 +/− SD). *p < 0.05 less than the corresponding value in cells transfected with scrambled siRNA or empty vector 
plasmid.
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YAP S109, YAP S127 and YAP S397 was significantly 
elevated. Afatinib also interacted variably with GZ17-6.02 
to enhance YAP phosphorylation in the MEL4 isolate. 
This data strongly supports the use of both GZ17-6.02 
and neratinib as therapeutic agents to inactivate Hippo 
pathway signaling and suppress the growth and viability 
of uveal melanoma cells.

Unlike cutaneous melanoma, which responds 
to checkpoint inhibitory antibodies, uveal melanoma 
is considered to be “cold” to checkpoint inhibitory 
immunotherapy. We determined the effect of GZ17-
6.02 exposure on the expression levels of checkpoint 
immunotherapy biomarkers PD-L1 and MHCA in 
uveal melanoma cells and compared the effects to those 
observed previously in other tumor cell types. GZ17-
6.02 significantly reduced the expression of PD-L1 and 
enhanced the expression of MHCA (Table 5). However, 
these alterations in protein expression trended to be less 
than observed in many other tumor cell types, and for 
some tumor types this was significant. For example, the 

reductions in PD-L1 expression in NSCLC cells were 
significantly greater than those observed in the uveal 
melanoma cells. Similarly, the increases in MHCA 
expression in PDX isolates of cutaneous melanoma were 
significantly greater than was observed in uveal melanoma 
cells.

BAP1 (BRCA1 associated protein-1) a ubiquitin 
carboxy-terminal hydrolase is a tumor suppressor and 
prevents metastatic spread [31]. Approximately 50% of 
all uveal melanomas express a mutated inactive form of 
BAP1, with the majority of metastatic disease having 
BAP1 mutations [31–33]. Persons with a single germline 
mutant allele of BAP1 are also pre-disposed to developing 
uveal melanoma [34]. Thus, we determined the impact, 
if any, of GZ17-6.02, afatinib and neratinib upon the 
expression of BAP1 in our uveal melanoma isolates. As 
a single agent, GZ17-6.02 significantly enhanced BAP1 
expression (Table 6). Neither afatinib nor neratinib altered 
BAP1 expression and they did not interact with GZ17-
6.02 to further enhance BAP1 expression. Mutation of 

Figure 7: Drug lethality requires signaling by ATM-AMPK and the actions of toxic BH3 domain proteins. (A) Cells 
were transfected with a scrambled siRNA or with siRNA molecules to knock down the expression of ATM, AMPKα, CD95, FADD, eIF2α, 
Beclin1, ATG5, BIM, BAX, BAK or BID. In other portions of cells, they were transfected with an empty vector plasmid or with plasmids 
to express BCL-XL, FLIP-s, dominant negative caspase 9, activated MEK1, activated AKT, activated mTOR or activated STAT3. Twenty-
four h later, cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), neratinib (100 nM), or the drugs in combination 
for 24 h. Cells were isolated 24 h afterwards and viability determined via trypan blue exclusion assays (n = 3 +/− SD). *p < 0.05 less than 
the corresponding value in cells transfected with scrambled siRNA or empty vector plasmid; **p < 0.05 less than corresponding values in 
siCD95 and siFADD cells; ¶p < 0.05 less than corresponding values in siATM and siAMPKα; †p < 0.05 less than corresponding value in 
dominant negative caspase 9 expressing cells. (B) Mel1 and Mel4 cells were either transfected with a scrambled siRNA or with an siRNA 
to knock down eIF2α expression or transfected with an empty vector plasmid or with a plasmid to express activated STAT3. Twenty-four h 
later, cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), neratinib (100 nM), or the drugs in combination for 4 h. 
Cells were fixed in place and the expression of BCL-XL, MCL1 and ERK2 (not shown, loading control) determined. (n = 3 +/− SD) 
*p < 0.05 less than the corresponding value in cells transfected with scrambled siRNA or empty vector plasmid; ‡p < 0.05 greater than 
corresponding value in CMV cells.
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Figure 8: In MEL2 and MEL4 cells drug lethality requires signaling by ATM-AMPK and the actions of toxic BH3 
domain proteins. Cells were transfected with a scrambled siRNA or with siRNA molecules to knock down the expression of ATM, 
AMPKα, CD95, FADD, eIF2α, Beclin1, ATG5, BIM, BAX, BAK or BID. In other portions of cells, they were transfected with an empty 
vector plasmid or with plasmids to express BCL-XL, FLIP-s, dominant negative caspase 9, activated MEK1, activated AKT, activated 
mTOR or activated STAT3. Twenty-four h later, cells were treated with vehicle control, GZ17-6.02 (2 µM), neratinib (100 nM), or the 
drugs in combination for 24 h. Cells were isolated 24 h afterwards and viability determined via trypan blue exclusion assays (n = 3 +/− 
SD). *p < 0.05 less than the corresponding value in cells transfected with scrambled siRNA or empty vector plasmid; **p < 0.05 less than 
corresponding values in siCD95 and siFADD cells; ¶p < 0.05 less than corresponding values in siATM and siAMPKα; †p < 0.05 less than 
corresponding value in dominant negative caspase 9 expressing cells. 

MEL1 and MEL4 cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), neratinib 
(100 nM) or the drugs in combination for 4 h. Cells were fixed in situ, permeabilized, stained with the indicated validated 
primary antibodies and imaged with secondary antibodies carrying red- and green-fluorescent tags. The staining intensity of at 
least 100 cells per well/condition is determined in three separate studies. The data are the normalized amount of fluorescence 
set at 100% comparing intensity values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control; *p < 0.05 
less than vehicle control.

Table 4: Regulation of Hippo pathway signaling by GZ17-6.02, afatinib and neratinib in uveal 
melanoma cells
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MEL1 and MEL4 cells were treated with vehicle control or GZ17-6.02 (2 µM, curcumin final) for 4 h. In parallel, other tumor 
cell types were also treated with GZ17-6.02. Cells were fixed in situ, permeabilized, stained with the indicated validated 
primary antibodies and imaged with secondary antibodies carrying red- and green-fluorescent tags. The staining intensity of at 
least 100 cells per well/condition is determined in three separate studies. The data are the normalized amount of fluorescence 
set at 100% comparing intensity values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control; *p < 0.05 less 
than vehicle control; ‡p < 0.05 less than corresponding values in uveal melanoma cells; §p < 0.05 greater than corresponding 
values in uveal melanoma cells.

Table 5: GZ17-6.02 regulates the expression of PD-L1 and MHCA in uveal melanoma cells

MEL1, MEL2 and MEL4 cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), afatinib (100 nM), 
neratinib (100 nM) or the drugs in combination for 4 h. Cells were fixed in situ, permeabilized, stained with the indicated 
validated primary antibodies and imaged with secondary antibodies carrying red- and green-fluorescent tags. The staining 
intensity of at least 100 cells per well/condition is determined in three separate studies. The data are the normalized amount of 
fluorescence set at 100% comparing intensity values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control.

Table 6: GZ17-6.02 enhances BAP1 expression in uveal melanoma cells
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BAP1 can also result in alterations to histone methylation, 
and we further explored whether GZ17-6.02 changed 
the methylation of Histone H3 in uveal melanoma cells. 
Twenty-four h after treatment, the methylation of lysine 9 
in histone H3 was reduced (Table 7). The methylation of 
lysine 4 was also reduced and this correlated with a trend 
for increased di-methylation of lysine 4. A trend was also 
observed for reduced lysine 27 di-methylation and lysine 
79 methylation.

DISCUSSION

The present studies demonstrated that GZ17-
6.02 interacted with irreversible inhibitors of the EGF 
receptor and HER2 to kill uveal melanoma cells. The 
mechanisms by which the GZ17-6.02 interacted with the 
kinase inhibitors to cause tumor cell death were multi-
factorial. GZ17-6.02 interacted with the kinase inhibitors 
to increase autophagosome formation and promote 
autophagic flux, which was associated with the drug 
combinations, but not the individual agents, increasing 
the protein levels of Beclin1 and ATG5. Knock down 
of Beclin1 or ATG5, or expression of an activated form 
of mTOR, significantly reduced uveal melanoma cell 
killing. GZ17-6.02 and neratinib interacted to enhance 
eIF2α S51 phosphorylation, i.e., its inactivation resulting 
in endoplasmic reticulum stress signaling. Knock down 
of eIF2α significantly reduced autophagosome formation, 
flux and uveal melanoma cell killing. Using a syngeneic 
immune-competent tumor model system, dosing of 

mice with GZ17-6.02 resulted in tumor uptake of all 
three components of the drug: curcumin, harmine and 
isovanillin.

The GZ17-6.02 combination with neratinib not only 
inactivated eIF2α but also reduced signaling by STAT3 and 
STAT5 and reduced the expression of BCL-XL and MCL1. 
Knock down of eIF2α prevented the drug-induced decline 
in BCL-XL and MCL1 levels. Expression of an activated 
form of STAT3 enhanced basal expression of BCL-XL and 
MCL1 and prevented the drugs from lowering their levels. 
Over-expression of BCL-XL or knock down of toxic BH3 
domain proteins significantly reduced drug-induced tumor 
cell killing, however, expression of dominant negative 
caspase 9 was less protective than BCL-XL suggestive 
that both apoptotic and non-apoptotic cell killing was 
occurring. 

Almost half of all uveal melanomas express a 
mutated inactive form of BAP1; mutation of a single 
allele of BAP1 is associated with tumor progression and 
metastatic spread [17, 31–33]. BAP1 is a deubiquitinase, 
regulating the ubiquitination of Histone 2A [33]. We 
found that GZ17-6.02 as a single agent increased BAP1 
expression in uveal melanoma cells that was not altered 
by ERBB receptor inhibitors. In addition to histone 
ubiquitination, BAP1 also plays a role in regulating CpG 
site DNA methylation and histone methylation [21, 34–
38]. The BAP1 promoter itself is subject to epigenetic 
regulation and hypermethylation of its DNA is inversely 
correlated with BAP1 mRNA expression. Methylation 
of the BAP1 promoter can be used as a proxy for its 

Cells were treated with vehicle control, GZ17-6.02 (2 µM, curcumin final), neratinib (100 nM) or the drugs in combination 
for 24 h. Cells were fixed in situ, permeabilized, stained with the indicated validated primary antibodies and imaged with 
secondary antibodies carrying red- and green-fluorescent tags. The staining intensity of at least 100 cells per well/condition 
is determined in three separate studies. The data are the normalized amount of fluorescence set at 100% comparing intensity 
values for vehicle control (n = 3 +/− SD). #p < 0.05 greater than vehicle control.

Table 7: GZ17-6.02 and neratinib regulate Histone H3 methylation and acetylation in uveal 
melanoma cells



Oncotarget339www.oncotarget.com

genomic copy loss and its reduced protein levels, i.e., the 
promoter of a mutated BAP1 allele is methylated inactive. 
Hence, our discovery that GZ17-6.02 is enhancing BAP1 
expression favors increased expression from the wild type 
unmutated BAP1 allele in uveal melanoma cells.

GZ17-6.02 changed the methylation and acetylation 
of Histone H3 in uveal melanoma cells, most notably, the 
mono-methylation of lysine 9 and lysine 4 was reduced and 
this correlated with a trend for increased di-methylation 
of lysine 4. The acetylation of lysine 9 remained elevated 
for 48 h. Methylation of di- and tri-methylation of lysine 
4 in histone H3 in uveal melanoma cells is believed to 
represent activation of transcription, on the other hand, 
demethylation of lysine 4 is associated with transcriptional 
repression [39–41]. The methylation of histone 3 lysine 
9 was reduced by GZ17-6.02, which is of note because 
the methylation of lysine 9 regulates the survival response 
of cells to endoplasmic reticulum stress, with lysine 9 
methylation being predictive of resistance to ER stress-
induced killing [42]. In prostate cancer, methylation of 
lysine 9 drives androgen receptor antagonist resistance 
[43]. The histone-lysine methyltransferase G9a is often 
over-expressed in tumors and blocking its function, 
reducing lysine 9 methylation, reduces tumorigenic 
potential and enhances autophagic-induced cell death [44]. 
Others have linked ERBB1 signaling, lysine 9 acetylation 
in the ability of cells to activate ATM and initiate a DNA 
damage response [45].

The co-transcription factors YAP and TAZ 
(the Hippo pathway) play a central role in initiation, 
the development and therapeutic resistance of uveal 
melanoma cells [26–30]. Regulation of the Hippo pathway 
in uveal melanoma cells has been linked to signaling by 
the mutated G alpha proteins Gα11 and Gαq [29, 30, 46]. 
We discovered that GZ17-6.02 as a single agent and 
more so when combined with neratinib enhanced the 
phosphorylation of YAP at S127 and S397 and TAZ at 
S89. Increased phosphorylation at these sites causes YAP 
and TAZ to exit the nucleus and S397 phosphorylation 
predisposes YAP to be degraded, as was observed in 
Mel4 cells. Other studies from our group in NSCLC and 
pancreatic cancer cells using neratinib, as well as prior 
work in uveal melanoma cells, have demonstrated that the 
drug rapidly reduces the protein levels of RAS proteins 
and mutant G alpha proteins, resulting in enhanced 
macroautophagy-dependent tumor cell killing [23, 47–49]. 
Studies beyond the scope of the present manuscript will be 
required to fully understand the regulation of BAP1 and 
the Hippo pathway in uveal melanoma cells.

MATERIALS AND METHODS

Materials

The PDX UM isolates cell lines were kindly provided 
by Dr. Kirkwood at the University of Pittsburgh. Afatinib 

and doxorubicin were purchased from Selleckchem 
(Houston, TX, USA). The established MP46 uveal 
melanoma cell line was obtained from the ATCC (Bethesda, 
MD, USA). Neratinib maleate was kindly provided 
by Puma Biotechnology (Los Angeles, CA, USA). All 
Materials were obtained as described in the references [1–
9]. Trypsin-EDTA, DMEM, RPMI, penicillin-streptomycin 
were purchased from GIBCOBRL (GIBCOBRL Life 
Technologies, Grand Island, NY, USA). Other reagents and 
performance of experimental procedures were as described 
[1–9]. Antibodies were purchased from Cell Signaling 
Technology (Danvers, MA, USA); Abgent (San Diego, 
CA, USA); Novus Biologicals (Centennial, CO, USA); 
Abcam (Cambridge, UK); and Santa Cruz Biotechnology 
(Dallas, TX, USA). Specific multiple independent siRNAs 
to knock down the expression of CD95, FADD, Beclin1, 
ATG5, AMPKα1, ATM, BIM, BAX, BAK, BID and 
eIF2α, and scramble control, were purchased from Qiagen 
(Hilden, Germany) and Thermo Fisher (Waltham, MA, 
USA). Control studies were presented in prior manuscripts 
showing on-target specificity of our siRNAs, primary 
antibodies, and our phospho-specific antibodies to detect 
both total protein levels and phosphorylated levels of 
proteins [1–9] (Table 8).

Methods

All bench-side Methods used in this manuscript 
have been previously performed and described in detail in 
the peer-reviewed references [1–9]. 

Assessments of protein expression and protein 
phosphorylation [1–9]

At various time-points after the initiation of drug 
exposure, cells in 96-well plates are fixed in place 
using paraformaldehyde and using Triton X100 for 
permeabilization. Standard immunofluorescent blocking 
procedures are employed, followed by incubation of 
different wells with a variety of validated primary 
antibodies and subsequently validated fluorescent-tagged 
secondary antibodies are added to each well. Assessments 
of staining intensity were made using a Hermes wide field 
microscope (Idea Biotechnology, Rehovot, Israel).

Detection of cell death by trypan blue assay [1–9]

Cells were treated with vehicle control or with 
drugs alone or in combination for 24 h. At the indicated 
time points cells were harvested by trypsinization and 
centrifugation. Cell pellets were resuspended in PBS and 
mixed with trypan blue agent. Viability was determined 
microscopically using a hemocytometer. Five hundred 
cells from randomly chosen fields were counted and the 
number of dead cells was counted and expressed as a 
percentage of the total number of cells counted.
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Transfection of cells with siRNA or with 
plasmids [1–9]

Cells were plated and 24 h after plating, transfected. 
Plasmids to express FLIP-s, BCL-XL, dominant negative 
caspase 9, activated AKT, activated STAT3, activated 
mTOR and activated MEK1 EE were used throughout the 
study (Addgene, Waltham, MA). Empty vector plasmid 
(CMV) was used as a control. For siRNA transfection, 
10 nM of the annealed siRNA or the negative control (a 
“scrambled” sequence with no significant homology to 
any known gene sequences from mouse, rat or human cell 
lines) were used.

Assessments of autophagosome and 
autolysosome levels [1–9, 50]

Cells were transfected with a plasmid to express 
LC3-GFP-RFP (Addgene, Watertown MA). Twenty-four 
hours after transfection, cells are treated with vehicle 
control or the indicated drugs alone or in combination. 
Cells were randomly imaged and recorded at 60X 
magnification on a Ziess microscope 4 h and 8 h after 
drug exposure. The mean number of intense fluorescing 

(GFP+RFP+) and (RFP+) puncta per cell was determined 
from >50 randomly selected cells per condition.

Treatment of mice with GZ17-6.02 and 
measuring the levels of curcumin, harmine and 
isovanillin in pre-formed flank tumors

Female BALB/c mice were implanted with 
syngeneic CT26 colon cancer cells which express a 
mutant KRAS. Tumors were permitted to form for 14 
days where tumor volumes were ~100 mm3. Mice were 
treated daily with either vehicle control or with GZ17-
6.02 (50 mg/kg). After 30 days, tumors were isolated, 
and flash frozen in liquid N2. Tumor material was cryo-
crushed under liquid nitrogen, then homogenized in 
glass tube/rotary pestle with 3 parts water. Curcumin 
and harmine were analyzed together by extraction of 
tumor homogenate with ethylacetate, nitrogen stream 
evaporation, and reconstitution by mobile phase 
A-acetonitrile (1:1). Isovaniline was extracted from 
tumor homogenate by chloroform-isopropanol (4:1), 
organic phase dried by nitrogen stream, and the residue 
derivatized by pentafluorobenzoyl-hydroxylamine 
(PFBHA) in water-methanol-acetonitrile (1:1.5:2.5) with 

Table 8: Control data for transfection efficiency of uveal melanoma cells

MEL2 cells as indicated were transfected with siRNA molecules to knock down the expression of the indicated proteins or 
transfected with plasmids to over-express the indicated proteins. The percentage remaining after knock-down or the percentage 
over-expression above basal levels is indicated. (n = 3 +/− SD) (total ERK2 is included as an invariant total protein loading 
control).
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40 mM ammonium acetate at pH 4. The obtained samples 
were analyzed by LC/MS/MS (Agilent/AB-SCIEX 
API5500). Curcumin-d6, harmine-d3, and isovanilin-d3 
were used as internal standards. Lower limits of 
quantification for curcumin, harmine, and isovanilin in 
tumor samples were 1.6, 1.6, and 20 ng/g wet tissue, 
respectively.

Data analysis

Comparison of the effects of various treatments 
was using one-way ANOVA for normalcy followed by 
a two tailed Student’s t-test with multiple comparisons. 
Differences with a p-value of < 0.05 were considered 
statistically significant. Experiments are the means of 
multiple individual data points per experiment from 3 
independent experiments (± SD).
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