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ABSTRACT
Purpose: Sequential PET/CT studies oncology patients can undergo during their 

treatment follow-up course is limited by radiation dosage. We propose an artificial 
intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from 
non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT 
scans.

Methods: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial 
network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 
18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, 
validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained 
with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-
Nyul-based. Scan-level performance was evaluated by normalized mean square error 
(NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak 
signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-
interest prospectively from nuclear medicine physicians. SUV metrics were evaluated 
using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear 
mixed-effects modeling.

Results: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 
26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 
0.88 and 0.89, which indicated a high correlation between original and AI-generated 
quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion 
uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05).

Conclusion: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV 
metrics that highly correlate with original images. AI-generated PET images show 
clinical potential for reducing the need for CT scans for attenuation correction while 
preserving quantitative markers and image quality.

https://creativecommons.org/licenses/by/4.0/
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INTRODUCTION

PET-CT is a standard imaging modality in oncology 
for initial diagnosis [1–3]. Furthermore, follow-up 
PET-CTs can help to evaluate quantitative treatment 
response both clinically and in research/clinical trials 
[4]. Roughly half of the radiation exposure to patients 
is from the PET component whereas the remainder half 
from the CT component of the PET-CT, which is mainly 
utilized for attenuation correction of the PET signal [5]. 
The number and the frequency of PET-CT scans which 
patients can undergo during their oncologic care follow-
up are limited by allowable annual radiation exposure. 
Reducing or eliminating the CT component of PET could 
reduce total radiation exposure by half [6, 7]. While some 
artificial intelligence (AI) methods for replacing the 
need for CT in PET-CT studies have been reported in the 
literature, primarily in FDG-PET studies [8–11], AI-based 
methodologies for post-acquisition attenuation correction 
of PET (AC-PET) have been researched in recent years 
mainly for PET-MR applications [12]. Generative-
adversarial network (GAN) is a popular deep-learning 
approach for generating such images. In fact, prior studies 
have shown that GANs can successfully generate AC-PET 
from either a synthetic CT to create µ-maps [13, 14] or 
directly generate AC-PET from non-attenuation corrected 
PET (NAC-PET) [15], both with good similarity metrics 
compared to ground truths. 

Prostate-specific membrane antigen (PSMA) 
targeted PET is a new molecular imaging method for 
identifying and quantifying sites of prostate cancer disease, 

especially for detecting biochemical recurrences after 
initial therapy [16, 17]. 68Ga-PSMA-11 and 18F-DCFPyL 
were recently approved as PET imaging agents by the 
US Food and Drug Administration [18, 19]. PSMA PET 
has demonstrated improved accuracy and specificity for 
recurrence detection over conventional imaging tools 
and alters clinical management in many patients [20]. 
Research on its effect on long-term patient outcomes is 
still ongoing [17]. 

In this study, we aim to use an image-to-image 
translation GAN AI tool to produce attenuation-corrected 
PET (AC-PET) images from non-attenuation-corrected 
PET (NAC-PET) images to reduce need for low-dose CT 
scans while maintaining image quality and quantitative 
standardized uptake value (SUV) metrics. 

RESULTS

Figure 1 shows the training input and workflow 
based on deep-learning model was based on 2D Pix-2-
Pix GAN architecture [21]. The data cohort was divided 
into 183 AI model training studies, 60 validation studies 
during training, and 59 for independent testing studies. All 
splits were performed on the patient-level, i.e., patients 
with multiple scans were only included once in training, 
validation, or testing.

Image-based AI model performance

Table 1 shows the image-based evaluation results 
of comparing the Gen-PET and the AC-PET from both 

Figure 1: Training workflow for the Pix-2-Pix GAN model. The 2D U-net generator is trained to create Gen-PET from NAC-PET. 
The discriminator is used to classify between generated and real AC-PET, and the discriminator loss (BCE loss) is used to update generator 
training parameters.
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models in validation and test datasets; model V1 represents 
the training using NAC-SUV to generate AC-SUV, and 
model V2 refers to the training with the Nyul-normalized 
NAC-SUV to generate the AC-SUV. 

Median scan-level NMSE of the validation set 
was used to select the best model checkpoint during the 
training process, which was found to be 9.54% and 13.4%, 
respectively. Among the independent testing cohort, the 
median NMSEs for V1 and V2 were 13.26% and 13.33%. 
Median MAEs for V1 and V2 GAN models within the 
test cohort were 3.59% and 3.36%, median SSIMs were 
0.891 and 0.951, and median PSNRs for both GAN 
models were 26.82 and 27.12. Figures 2 and 3 show two 
generated images from the testing dataset, qualitatively 
demonstrating areas of highest discordance (i.e., relative 
difference from AC-PET) in high-uptake regions 
corresponding to normal anatomical uptake distribution, 
such as kidneys and bladder. Figure 2 shows a patient with 
a large number of visible lesions, and Figure 3 shows a 
patient with a small number of visible lesions. 

Lesion-based AI model performance

Of the 59 studies in the test cohort, 43 patients had 
a total of 259 positive lesions categorized as PSMARADS 
>4. Table 2 shows the data breakdown by lesions, with 
the majority occurring in lymph nodes (58%), followed 
by bones (29%) and intra-prostate (12%). No significant 
differences were observed for SUV metrics for either 
model compared to the original SUV metrics defined by 
AC-PET by paired Wilcoxon testing (Table 3). Table 4 
reports repeatability metrics calculated from relative 
difference (%) from AC-PET for both methods. ICC 
was observed to be similar for both V1 (SUVmean ICC 
= 0.895, SUVmax ICC = 0.880) and V2 (SUVmean ICC = 
0.888, SUVmax ICC = 0.880), respectively, reflecting 
high agreement with AC-PET SUV metrics. While the 
bias in both SUVmean and SUVmax was higher for the V1 
method compared to the V2 method, the overall RC 
was lower for the V1 method, reflecting modestly better 
agreement (Table 4). Figure 4 shows the scatter plot of 
SUVmax and SUVmean comparisons between the original 

AC-PET images and the AI-generated PET images. A 
representative image of lesion-based uptake differences, 
selected as lesion nearest to mean bias from Table 4, is 
shown in Figure 5. Additional representative images from 
1st quartile of mean bias and 4th quartile of mean bias are 
shown in Supplementary Figures 1 and 2, respectively. 

Several lesion-based features were shown to have 
a significant relationship when evaluating the relative 
difference of Gen-PET SUV metrics to AC-PET SUV 
metrics (Table 5). For both models, Gen-PET models 
had lower overall error in lesions with higher uptake, as 
determined both by the original SUVs and by PSMA-
RADS categorization. CT-based density measured by 
HUmax was also trending (for V2 SUVmax) or significant 
(for V1 SUVmean, V1 SUVmax, V2 SUVmean), reflecting that 
higher error was observed in more dense lesions (Table 5). 
This is further corroborated when evaluating anatomical 
location, which demonstrated that the non-LN lesions (i.e., 
bone or intraprostatic lesions) had higher error with Gen-
PET quantitation.

DISCUSSION

A Pix-2-Pix image translation GAN was developed 
to generate AC- PET from NAC-PET for 18F-DCFPyL 
PSMA whole-body scans. Gen-PET was evaluated 
quantitatively with image comparison metrics, including 
pixel-wise error rates and structural similarities. 
Additional quantitative evaluation included lesion-based 
standard uptake value repeatability metrics, which are 
measured by the SUVmax and SUVmean of lesions contoured 
by expert physicians. Overall, the image-based errors were 
relatively low and approaching clinically acceptable limits 
of agreement according to previously reported FDG PET 
studies. 

Two models were created and evaluated: one 
with the standard preprocessing step of converting the 
NAC-PET to SUV before training (V1), and the other 
one adding a Nyul normalization step during standard 
preprocessing (V2). According to image comparison 
metrics, the performance of the two models was very 
similar to each other, with V2 model having a slightly 

Table 1: Image-based evaluation results (median and range) for the Pix-2-Pix GAN models
Data cohort AI model NMSE (%) PSNR (dB) MAE (%) SSIM

Validation
V1 9.54 

(2.09, 48.39)
27.026  

(19.568, 29.286)
2.50  

(1.84, 4.71)
0.954  

(0.905, 0.970)

V2 13.40  
(4.89, 80.87)

26.419  
(18.241, 58.423)

3.73  
(3.13, 6.87)

0.733 
(0.684, 0.752)

Test
V1 13.26  

(3.44, 257.37)
26.819  

(16.777, 29.211)
3.59  

(2.22, 7.25)
0.891 

(0.840, 0.911)

V2 13.334 
(3.46, 292.46)

27.122  
(16.999, 29.453)

3.36  
(2.20, 7.02)

0.951  
(0.910, 0.969)
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Figure 2: SUV differences between GAN outputs and original AC-PET, shown in coronal view for patient with high 
tumor burden by expert assessment. Original NAC-PET used as input to GAN algorithms (A) and associated original AC-PET 
(B). AI-generated PET from V1 normalization strategy (C) and calculated difference map (D). AI-generated PET from V2 normalization 
strategy (E) and calculated difference map (F). Bottom row: V2-generated PET (left) and difference map between v2 and AC-PET (right). 
For AC-original, V1, and V2 SUV maps, all images are shown on identical SUV scale. Difference maps reflect absolute error from original 
SUV (red = underestimation of SUV by AI, blue = overestimation of SUV by AI). Larger SUV differences were observed in areas of high 
normal-tissue tracer uptake, including: kidneys, ureters, bladder, and salivary glands.
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Figure 3: SUV differences between GAN outputs and original AC-PET, shown in coronal view for patient with low 
tumor burden by expert assessment. Original NAC-PET used as input to GAN algorithms (A) and associated. Original AC-PET 
(B). AI-generated PET from V1 normalization strategy (C) and calculated difference map (D). AI-generated PET from V2 normalization 
strategy (E) and calculated difference map (F). Bottom row: V2-generated PET (left) and difference map between v2 and AC-PET (right) 
For AC-original, V1, and V2 SUV maps, all images are shown on identical SUV scale. Difference maps reflect absolute error from original 
SUV (red = underestimation of SUV by AI, blue = overestimation of SUV by AI). Larger SUV differences were observed in areas of high 
normal-tissue tracer uptake, including: kidneys, ureters, bladder, and salivary glands.
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better performance in SSIM and MAE, and V1 performing 
better in NMSE and PSNR. While no similar work has 
been previously reported on AI-generated PSMA PET 
domain, the SSIM and PSNR metrics of our GAN model 
show comparable results to previous studies with FDG 
PET and synthetic CT. Tao et al. [22] reported an SSIM of 
0.9 and a PSNR of 29.35 while comparing GAN-created 
synthetic CT with brain MR. Dong et al. [15] reported 
a PSNR of 44.3. In addition, Dong et al. reported an 
NMSE of 1.21%, and Tao et al. reported an error rate of 
17.46%. Potential reasons for higher NMSE metrics in 
our study could be due to differences in tracer and image 
acquisition, specifically due to the high dynamic range 
of SUV using 18F-DCFPyL. Areas of highest voxel-wise 
difference from the Gen-PET models and the original AC-
PET could be observed specifically in the kidneys and 
bladder, where SUV uptake commonly ranges >100 and 
would not be captured by algorithm due to pre-processing 
thresholds to 100 SUV.

From lesion-based repeatability studies, V2 results 
showed slightly less mean difference in SUVs, but V2 
results had slightly higher RC. We have not identified 
any study which used repeatability metrics in assessing 
GAN-generated PET; therefore, we compared our results 
with prior PSMA test-retest repeatability studies. In a 
test-retest repeatability study for 18F-DCFPyL by Jansen 
et al. [3], bias for SUVmax and SUVmean was 1.9% and 
1.0%, respectively. RCs for SUVmax and SUVmean were 
31% and 24.4%, respectively. Seifert et al. [2] reported 
RCs of lesion SUVmax and SUVmean of 34.% and 32.7%, 
respectively, using 68Ga-PSMA-HBED-CC PET-CT 
scan. Future work is needed to determine whether 
the described Gen-PET methods would be within 
reliability metrics for response assessment criteria, such 
as PERCIST [23]. However, limited longitudinal data 
were available in the present study, and the clinical 
utility of PSMA PET/CT imaging in treatment response 
assessment is uncertain due to complex biological 

Table 2: Data breakdown of lesions included in evaluation of differences between original and 
generated PET
Variable Median (range) or n
n lesions per patient 2 (1–56)
PSMA RADS 4 65

5 194
Location Lymph node 151

Bone 74
Prostate 32
Other 2

HUmean 9.3 (−825, 565)

Table 3: Comparison of SUV metrics derived from physician contours
Original V1 V2 p-value, V1 p-value, V2

SUVmax 9.985 (1.246, 134.246) 8.14 (0.564, 99.9) 8.93 (0.941, 99.9) 0.3297 0.7598
SUVmean 6.454 (0.593, 80.470) 5.23 (0.437, 75.3) 5.28 (0.654, 74.3) 0.1758 0.9591

p-values are from Wilcoxon signed rank test for clustered data to test differences in SUVs between AC-PET and Gen-PET.

Table 4: Repeatability metrics for AI-generated PET
Method Metric B (%) stdev (%) RC (%) ICC

v1
SUVmean 13.15 22.02 61.04 0.895
SUVmax 14.85 23.20 64.31 0.880

v2
SUVmean 5.89 24.02 66.58 0.888
SUVmax 6.33 26.84 74.40 0.880

Bias reported as mean relative difference from original AC-PET. Standard deviation (stdev), Repeatability Coefficient (RC), 
and Intraclass Correlation Coefficient (ICC) determined from mixed effects model accounting for clustered data.
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relationships between PSMA and standard-of-care 
androgen-deprivation therapies [24].

Examining our statistical results independently, we 
found that our p-values (>0.05) from the Wilcoxon test 
showing the AI-generated SUV metric are not statistically 
different from the original SUVs. We have found that 
SUVmean has higher repeatability metrics than SUVmax, 
which agrees with prior research in repeatability studies 
[3, 25, 26]. Results from repeatability evaluation confirm 
that the quantitative diagnostic measure of SUV does not 
change significantly from the AI-generated AC-PET. We 
also performed ANOVA to assess stand-alone factors that 
impact the AI-generated images. These factors include 
AC-PET SUVmean, AC-PET SUVmax, HUmean, HUmax, lesion 
location (prostate, lymph node, bone, and organ), lesion 
volume, and PSMA RADS (4 and 5). We found that higher 
uptake values correlate with lower bias, which can be 
corroborated with Werner et al. [26]. Higher HUmax (i.e., 
areas of higher attenuation/scatter errors) significantly 
correlates with bias, which is also represented in higher 

bias for lesions in bone versus lymph nodes. These results 
suggest that future research is needed on how to improve 
Gen-PET methods accounting for anatomical density (HU) 
and proximity to areas of clearance uptake (prostate) is 
warranted.

The results of our study indicate that AC-PET data 
can be generated from NAC-PET data using our Pix-2-
Pix GAN model for 18F-DCFPyL PSMA-targeting PET 
imaging without using an attenuation correction CT. 
Such an AI-assisted strategy may help to reduce the 
radiation dose exposure related to attenuation correction 
CT acquisition in prostate cancer patients. While our 
method has such an advantage, the disadvantage is 
having no access to low-dose CT images during PSMA 
PET evaluations. This can be compensated for by use of 
staging diagnostic CT scans which are frequently required 
to be obtained prior to PSMA PET imaging by established 
cancer care guidelines. The staging CT scans can be 
registered to AI-assisted AC-PET data for diagnostic 
evaluations on PACS workstations.

Figure 4: Scatter plots of original SUVs and AI-generated SUVs. SUVmean of original and V1 model (A) and V2 model (B). 
SUVmax of original and V1 model (C) and V2 model (D). Note all axes plotted on log scale.
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Limitations of this study include the fact that we 
only assessed one type of PSMA tracer (18F-DCFPyL) from 
a single scanner in the dataset. While the homogeneity of 
the data protocol is important for initial training of the AI 
model, variety in training data (such as tracers, modalities, 
patient population, etc.) could make the model more 
robust. A larger collection of data in training and testing 
can also increase model performance. An evaluation of 
intra-subject SUV changes from two time points between 
the original AC-PET and the Gen-PET was considered, 
but ultimately was not viable due to insufficient data. 
Additionally, since we did not conduct a reader study in 
AI-model based AC-PET data, potential false-positive 
predictions created during image generation was not 
evaluated. However, we aim to evaluate the interaction 
between the nuclear medicine physicians and the AI-
model based AC-PET in larger, independent validation 
cohorts. Finally, the GAN was trained to generate the 

AC-PET only, one of our future goals is to generate the 
synthetic CT for anatomical mapping purposes. Within our 
study population, we did not have a high representation of 
cases with CT-based artifacts, such as prosthetics, ports, 
or medical hardware which may influence the accuracy 
of attenuation correction. Future work and validation is 
needed to evaluate the performance of the model in these 
challenging clinical scenarios. 

We have developed a Pix-2-Pix GAN model to 
perform attenuation correction on whole-body PSMA PET 
images with 18F-DCFPyL. The model successfully generates 
AC-PET images with high PSNR and low MAE. A 
repeatability study from segmented lesions shows reasonable 
reproducibility of SUVmax and SUVmean between the original 
AC-PET and the generated AC-PET. AI-generated PET 
images has clinical potential for reducing the need for CT 
scans for attenuation correction while preserving quantitative 
markers and image quality in prostate cancer patients.

Figure 5: AI-generated PET results shown overlaid on CT. (A) original CT images, sternum)lesion contour in yellow, (B) original 
AC-PET overlaid on CT (SUVmax = 23.45, SUVmean = 12.18); (C) V1-PET on CT (SUVmax = 19.80, SUVmean = 10.11); (D) V2-PET on CT 
(SUVmax = 20.06, SUVmean = 10.57). Note: CT images were resampled to the voxel resolution of the PET images and shown in unenhanced 
formatting (no smoothing) for voxel-based visual comparison between methods.



Oncotarget296www.oncotarget.com

Table 5: Linear mixed-effects models for assessing impact of lesion features on relative difference 
in SUV metrics
Model SUV metric Fixed effect beta std error t statistic p-value

V1

SUVmean

Base ref
Original SUVmean −0.636 0.172 −3.71 2.56E-04

HUmean 0.020 0.014 1.42 0.154
HUmax 1.20E-04 5.69E-05 2.11 0.035

Volume −0.128 0.122 −1.04 0.296
Location Bone 6.79 4.99 1.36

0.075Other 30.9 17.7 1.75
Prostate 12.2 6.35 1.92

PSMARADS 5 −8.20 3.80 −2.16 0.032

SUVmax

Base ref
Original −0.384 0.101 −3.80 1.78E-04
HUmean 0.027 0.014 1.85 0.065
HUmax 0.014 0.006 2.36 0.019

Volume −0.141 0.129 −1.10 0.273
Location Bone 11.4 5.22 2.19

0.060Other 32.1 18.5 1.73
Prostate 6.38 6.63 0.962

PSMARADS 5 −10.9 3.97 −2.74 0.007

V2

SUVmean

Base ref
Original SUVmean −0.410 0.190 −2.15 3.20E-02

HUmean 0.023 0.015 1.55 0.120
HUmax 0.013 0.006 2.06 0.040

Volume −0.134 0.133 −1.01 0.314
Location Bone 9.21 5.40 1.71

0.084Other 37.9 19.2 1.97
Prostate 7.47 6.86 1.09

PSMARADS 5 −9.56 4.13 −2.32 0.021

SUVmax

Base ref
Original −0.252 0.119 −2.12 3.51E-02
HUmean 0.019 0.017 1.14 0.253
HUmax 0.011 0.007 1.53 0.127

Volume −0.147 0.149 −0.986 0.324
Location Bone 10.4 6.00 1.73

0.059Other 39.7 21.4 1.86
Prostate −0.313 7.61 −0.411

PSMARADS 5 −7.92 4.63 −1.71 0.088

Base model: Rel.Diff ~ (1|patient). Evaluated models: Rel.Diff ~ <variable> + (1|patient). Statistical significance relative to 
base model determined from ANOVA.
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MATERIALS AND METHODS

Study population, image acquisition and 
annotation

18F-DCFPyL PET/CT imaging was performed in 283 
consecutive patients (n = 302 scans) with histologically 
confirmed prostate cancer, including high-risk localized 
disease, biochemically recurrent disease, or suspected and/
or known metastatic disease. All patients gave informed 
consent prior to participation in one and/or both clinical 
trials (BLINDED FOR PEER REVIEW). 18F-DCFPyL 
was synthesized under good manufacturing practices as 
previously described [27]. Patients were injected with 
271.10 ± 38.00 MBq of 18F-DCFPyL and whole-body 
images were acquired after a 2-hour uptake period (3 min/
bed position) using a 3D time of flight (TOF) GE Discovery 
MI DR scanner, with a 20-cm coronal and a 70-cm axial 
field of view. Image reconstruction used an AC 3D iterative 
MLEM algorithm using 29 subsets, 3 iterations, TOF, 
point spread function regularization parameter 6.0, and a 
Gaussian post-filter with 4.1-cm kernel, producing a final 
voxel resolution of 2.73 × 2.73 × 3.27 mm3. A low-dose 
non-contrast CT (120 kV, 60 mAs) was acquired with each 
PET scan for attenuation correction and anatomical co-
registration purposes. For all studies, the non- attenuation-
corrected PET (NAC-PET) and attenuation-corrected PET 
(AC-PET) were collected for analysis.

In the testing set, previously delineated volumetric 
contours of suspicious lesions were extracted for 
statistical analysis. Briefly, contours were drawn by two 
experienced nuclear medicine physicians (five years 
of experience reading PSMA PET/CTs) using a MIM 
workstation (version 6.9.2; MIM Software Inc.) based on 
study analysis completed in previously published research 
[28–30]. Only lesions highly suggestive of prostate 
cancer by consensus were included, i.e., those lesions 
matching PSMA Reporting and Data System (PSMA-
RADS) category 4 or 5 [31]. All DICOM-RT structures 
for lesions in the testing cohort meeting inclusion criteria 
were extracted and converted to binary masks of lesion 
volumes for performance analysis.

Image processing for AI model development

All PET and CT images were converted from 
the original DICOM format to NIFTI, with CT images 
resampled to PET image resolution for visualization 
purposes. Acquired in-plane resolutions were maintained 
(i.e., no resampling), reflecting 256 × 256 voxels in x-y 
directions, and number of slices in the z direction is kept 
consistent for all three series acquired within the same 
study session (range 299–623 slices in PET studies). PET 
studies were converted to SUVs based on DICOM header 
information to avoid compounding factors such as patient 
weight, radiotracer concentration, and scan time [32]. AC-

PET images were clipped to an upper threshold of 100 
before scaling to range (0, 1) for algorithm training. 

Two methods were evaluated for NAC-PET pre-
processing. First, NAC-PET images were clipped and 
scaled using the identical procedure as AC-PET described 
above (SUV threshold = 100). Second, a Nyul-based 
normalization step [33] was implemented on NAC-
PET images to evaluate improvement in training due to 
uncertainties and variabilities in attenuation maps. Briefly, 
a set of 20 landmarks was obtained from each image of 
the training cohort, taken at equal increments from 80th to 
99th percentiles. The mean landmarks obtained from all 
NAC-PET images in the training set were used to define 
the standard histogram for piece-wise normalization of all 
NAC-PET images. The mean landmarks from the training 
set were applied to both validation and testing datasets. 
Resultant images from both with and without Nyul-
normalization models were compared. 

Deep-learning-based AI model development

The deep-learning model was based on 2D Pix-2-Pix 
GAN architecture for direct image-to-image translation 
[21]. The model consisted of two separate networks: the 
generator and discriminator. Figure 1 shows the training 
input and workflow. 

Briefly, the generator architecture was based on 
a 2D U-net convolutional neural network [34], a well-
documented and widely used network in biomedical image 
deep-learning solutions. The defining U-net feature, a 
skip connection between corresponding encoding and 
decoding layers in the model, was emphasized to preserve 
lower-level spatial information in direct image-to-image 
translation [35]. The generator was trained with paired PET 
slices, with NAC-PET as input and AC-PET as target at size 
256 × 256. The discriminator network used the PatchGAN 
architecture, a convolutional neural network consisting of 
three layers [21]. The discriminator operated within 30 × 
30 pixel patches from the input image with kernel size = 4, 
stride size = 2, and padding width = 1. Responses from all 
patches in the image were averaged to produce the ultimate 
discriminator output per input image (i.e., 2D slice). The 
discriminator loss is calculated from binary cross-entropy 
loss. The generator loss was calculated from a combination 
of discriminator loss and Least Absolute Deviations (L1) 
loss from generated and original images [21]. 

During the model training, studies in the training 
cohort were loaded into the model in a random order. 
The slices were fed into the training step in batches of 25 
slices. Loss values from each batch within a single study 
were aggregated, and the overall training loss of each 
epoch was calculated by averaging aggregated loss from 
all studies. The validation step used mean square error 
as the metric for model evaluation. The model with the 
lowest averaged normalized mean squared error (NMSE) 
among validation data was saved as the final model.
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The GAN model was prototyped in Python 3.8, 
including PyTorch 1.12 and MONAI 0.9 [36]. The model 
was trained with learning rate of 0.0002, Adam optimizer, 
in 25 epochs. 

Statistical analysis

At inference, generated AC-PET output images were 
multiplied by 100 to translate to SUV. Image-based and 
lesion-based methodologies were used to evaluate GAN-
generated AC-PET (Gen-PET): image-based and lesion-
based.

For image-based evaluation, the whole image was 
evaluated for pixel-wise value differences and structural 
similarities between AC-PET and Gen-PET. Image-based 
evaluation metrics included NMSE, mean absolute error 
(MAE), peak signal-to-noise ratio (PSNR), and structure 
similarity index (SSIM). Data were reported separately for 
validation and testing datasets.

Lesion-based analysis was performed within 
physician-derived volumes to assess the quantitative 
performance of the generated SUV metrics in Gen-PET 
compared to the original SUV metrics derived from the 
acquired AC-PET. For each lesion contour, maximum of 
SUV (SUVmax) and mean SUV (SUVmean) were calculated 
on both the original AC-PET and the Gen-PET. Paired 
Wilcoxon signed-rank test was used to assess differences 
between original and generated SUV metrics using the 
Rosner–Glynne–Lee method to account for intrapatient 
correlation [37]. The lesion-based intraclass correlation 
coefficient (ICC) and repeatability coefficient (RC) 
were estimated from a mixed effect model of the relative 
difference in measurements with nested random effects for 
each SUV metric. Bias was reported as the mean relative 
difference between Gen-PET- and AC-PET-derived SUV 
metrics, calculated for each metric as relative difference 
= (AC-PET – Gen-PET)/AC-PET. Various fixed effects 
were subsequently added to the mixed effects model, such 
as AC-PET uptake value, Hounsfield unit (HU) summary 
statistics, lesion volume, lesion anatomic location, and 
PSMA-RADS score to assess their impact on relative 
difference in SUVs. Statistical testing of these models in 
comparison to a baseline model were completed using 
ANOVA. All p-values corresponded to two-sided tests, 
and any p-value < 0.05 was considered to represent a 
significant difference between results. Statistical analysis 
was completed using R (version 3.6.2).
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