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ABSTRACT
Here, I suggest that while first-line osimertinib extends median progression-

free survival (PFS) in EGFR-mutant lung cancer compared to first-generation TKIs, it 
reduces individual PFS in 15–20% of patients compared to first-generation TKIs. Since 
detecting a single resistant cell before treatment is usually impossible, osimertinib 
must be used in all patients as a first-line treatment, raising median PFS overall but 
harming some. The simplest remedy is a preemptive combination (PC) of osimertinib 
and gefitinib. A comprehensive PC (osimertinib, afatinib/gefitinib, and capmatinib) 
could dramatically increase PFS for 80% of patients compared to osimertinib alone, 
without harming anyone. This article also explores PCs for MET-driven lung cancer.

INTRODUCTION

In EGFR-mutant-dependent non-small cell lung 
cancer (NSCLC), first- or second-generation EGFR-TKI 
(e.g., gefitinib, erlotinib, afatinib, and dacomitinib) select 
for resistance due to the T790M point mutation (EGFR 
T790M) in 50% of patients [1–4]. In other words, before 
therapy, 50% of patients have pre-existing resistant 
T790M mutations. Only one or a few cells contain the 
T790M mutation, because this resistant mutation confers 
no selective advantage prior to therapy. As soon as 
treatment starts, these rare cells selectively proliferate 
and eventually produce billions of cells [5], rendering the 
tumor resistant to the 1st/2nd generation of tyrosine kinase 
inhibitors (TKI). The cell with T790M is sensitive to the 
3rd generation TKI osimertinib. 

In 2015, the FDA approved osimertinib for NSCLC 
with a T790M mutation as a second-line therapy. This 
approval as a second-line therapy was based on the 
understanding that an untreated tumor cannot be T790M-
positive; the mutation may initially occur in only one cell. 
Furthermore, 50% of patients do not harbor this mutation. 
It might seem logical to administer osimertinib after a 
tumor develops resistance to first- or second-generation 
TKIs, given the uncertainty regarding which patients will 
acquire the T790M mutation.

Consider a hypothetical scenario: If osimertinib 
were a combination of two medications (the first targets 
oncogenic EGFR without secondary T790M and the 

second targets only oncogenic EGFR with secondary 
T790M), then an oncologist would not prescribe the 
second drug to a patient sensitive to the first drug. And 
why would an oncologist prescribe the second (anti-
resistant) drug? The tumor is not resistant to the first drug. 
Even if a patient has a single cell with T790M, its killing 
will be unnoticed at first, even in the months. The response 
rate will not be affected too. But after a year, even a 
transient addition of the anti-T790M drug at the beginning 
of treatment would prevent acquiring the resistance by the 
entire tumor and dramatically extend progression-free 
survival (PFS) and overall survival (OS). Osimertinib 
should be administered without waiting for the tumor to 
develop resistance, as it is feasible to eliminate a T790M-
positive cell, but impossible to eradicate all million cells 
once the mutation is widespread. The latter scenario 
fails because of tumor heterogeneity, bad luck, and a 
mere probability. If the probability to kill one cell out 
of one is 0.99, then the probability to kill 2 cells out of 
2 is 0.99 × 0.99 = 0.98, and the probability of killing all 
million cells is practically zero.

Preemptive two-drug combinations

Here I will re-introduce the notion of preemptive 
combinations (PC) of targeted drugs. Such combinations 
include the therapeutic response activities and anti-
resistant activities that eliminate a few resistant cells. 
In other words, preemptive combinations induce both a 
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therapeutic response and eliminate a few resistant cells 
with pre-existing mutations [6]. For example, if we started 
treatment with osimertinib and the tumor may have one 
cell with the C797S mutation (resistant to osimertinib 
but sensitive to gefitinib), then the addition of gefitinib 
to osimertinib renders this combination preemptive. The 
goal is to eliminate this one resistant cell. And vice versa, 
if we treat the tumor with gefitinib and this tumor may 
have a single cell with the T790M mutation (resistant to 
gefitinib but sensitive to osimertinib), then the addition 
of osimertinib to gefitinib creates the preemptive 
combination. Figuratively, osimertinib is equivalent to 
a preemptive combination of two activities: one activity 
causes tumor shrinkage (by targeting billions of cells 
without T790M and the second activity just to kill one 
cell with T790M. One cell is not noticeable. At first, its 
presence or absence does not affect the response rate and, 
if a response occurs, the degree of therapeutic response. 
Killing one resistant cell cannot increase the response 
rate and initial degree of response. But killing of this one 
cell (if a patient has it) extends PFS and OS. This must 
be done to prevent future resistance in 50% of patients 
and extend PFS. We should not wait for radiological 
progression or detection of T790M by biopsy to kill a 

resistant cell. One cell can be killed and all cells out of a 
billion cells cannot. The view on osimertinib as an analog 
of preemptive combination predicts the outcome of first-
line treatment, when a tumor is not yet T790M-positive. 
The response rate will not be increased. In responders, the 
degree of initial response will not be changed. But PFS 
and OS will be extended in responders. That is exactly 
what was observed in a famous clinical trial published 
in 2018 [7]. The median progression-free survival (PFS) 
was significantly longer with osimertinib than with the 
1st generation of EGFR inhibitors (18.9 months vs. 10.2 
months; P < 0.001). The median duration of response was 
17.2 months with osimertinib versus 8.5 months with 1st 
generation inhibitors. Yet, the objective response rate was 
similar in the two groups: 80% with osimertinib and 76% 
with 1st generation EGFR-TKIs [7]. Compared with the 
1st generation of TKI, osimertinib prolongs PFS almost 
twofold (Figure 1A). This is especially dramatic given 
that not all patients have T790M. But osimertinib must be 
given to all patients because we do not know which patient 
has this mutation. If T790M were the only resistance 
mechanism, then PFS would be eternal, so patients 
would have a normal lifespan on chronic treatment with 
osimertinib. But roughly half of the resistance mechanisms 

Figure 1: Progression-free survival (PFS): Gefitinib vs. Osimertinib. (A) PFS in a Total Cohort with EGFR-Mutant-Driven 
NSCLC: Patients Treated with Gefitinib vs. Osimertinib. (B) PFS in Cohorts Depending on Pre-existing Secondary Mutation within 
EGFR-Mutant: T790M vs. C797S. (a) T790M. (b) Neither T790M nor C797S. (c) C797S. To simplify, other pre-existing alterations are 
not shown.
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are on-target such as secondary L718, G724, L792, G796, 
C797 in EGFR, and all off-target mechanisms such as 
MET and HER2 amplifications. Osimertinib selects for 
on-target resistance due to secondary mutations such as 
L718, G724, L792, G796, C797 [1, 8, 9] and the cells 
with these mutations can be targeted by the 1st or/and 
2nd generation of EGFR inhibitors such as gefitinib 
and afatinib. So, addition of these EGFR inhibitors to 
osimertinib would prevent on-target resistance. 

Preemptive multi-drug combinations

The most common off-target resistances acquired 
after treatment with EGFR inhibitors are amplification of 
MET and HER2/3/4, and the latter is sensitive to afatinib. 
Adding capmatinib (the most effective MET inhibitor) 
would prevent MET-dependent resistance.

What percentage of patients with EGFR-driven 
cancer would benefit from a preemptive combination like 
Osimertinib, afatinib, and capmatinib?

Monotherapy with 1st or 2nd-generation EGFR 
TKIs causes resistance in 75% of patients due to either 
secondary T790M EGFR mutation plus MET or HER2 
amplification [2–4, 10].

Monotherapy with 3rd-generation EGFR-TKI 
(osimertinib) causes at least 50% of resistance cases due 
to secondary mutations such as L718, G724, L792, G796, 
C797 plus MET and HER2 amplification [1, 9]. Specifically, 
resistance mechanisms to second-line osimertinib include 
MET 5–50%; HER2 5%; on-target 10–26% (mostly 
C797X); KRAS 2–8% [9]. Resistance mechanisms to 
first-line osimertinib include MET 7–15%; HER2 1–2%; 
on-target 6–10% (mostly C797X); KRAS 3–4% [9].

Thus, we can calculate that at least 75% of 
resistance mechanisms are preventable by a combination 
of osimertinib, afatinib, and capmatinib (OAC). Whether 
the combination should include afatinib or a 1st-generation 
TKI may depend on the primary activating mutation in 
the EGFR: del19 or L858R or uncommon. Osimertinib, 
afatinib, capmatinib (OAC) is most preferable because 
afatinib (i) inhibits HER2-4 [11] (ii) shows improved PFS 
compared with 1st generation [12, 13], especially when 
followed by osimertinib [14], and is effective in targeting 
brain metastases [11].

I estimate that by preventing 75% of resistance 
mechanisms, a combination of osimertinib, afatinib, and 
capmatinib (OAC) would extend median PFS from 18 
months (osimertinib alone) to approximately 40 months. 
Such a remarkable extension takes into account that 25% 
of patients cannot benefit from OAC because they do 
not have pre-existing mechanisms of relevant resistance. 
However, all EGFR-dependent patients must be treated 
because it is not clear who will benefit. It is a mistake to 
wait for tumor progression or for resistance detection by 
biopsy.

Even superior monotherapy hurts 20% patients

Osimertinib prolongs median progression-free 
survival (PFS) and overall survival (OS) compared 
with first-generation tyrosine kinase inhibitors (TKIs), 
such as gefitinib. Osimertinib is superior because the 
osimertinib-sensitive mutation (T790M) is more common 
than osimertinib-resistant mutations, such as C797S. We 
may suggest that osimertinib extends median PFS by 
prolonging PFS only in patients who have the T790M 
mutation (Figure 1B (a)). In patients lacking the T790M 
mutation, osimertinib should not extend PFS beyond 
the extension afforded by first-generation TKIs such 
as gefitinib (Figure 1B (b)). Furthermore, in a patient 
lacking T790M and having a preexisting C797S mutation, 
osimertinib selects for C797S (and L718, G724, L792, 
G796), making the tumor resistant and thus shortening 
PFS compared to first-generation TKIs such as gefinitib 
(Figure 1B (c)). Therefore, although most patients 
(approximately 55%) benefit from osimertinib, some 
patients (approximately 20%) are harmed. It is impossible 
to detect one (or a few) cells with a resistant mutation in 
untreated patients, so we must choose osimertinib for all 
patients. If we are obligated to use monotherapy, many 
patients (approximately 20%) will be adversely affected, 
even though the median PFS for the entire cohort is 
improved. Neither the unfortunate patient nor patient’s 
doctor can know that superior TKI shortened PFS in this 
particular patient. The solution is remarkably simple: to 
use preemptive combinations of osimertinib + gefitinib 
(O+G) and osimertinib + gefitinib + afatinib (O+G+A) 
from the start. Current therapy drives resistance and even 

Figure 2: Preemptive combinations. (A) EGFR-Mutant-Driven NSCLC. See text. (B) METex14-Driven NSCLC. See text.
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finds a way to achieve the infamous cis-T790M/C797S 
triple mutations that are resistant to all existing EGFR 
inhibitors and any of their combinations [15]. This cis 
mutation will not appear when the O+G combination 
is used preemptively. What is more, there will be no 
need for the development of a fourth generation of 
EGFR inhibitors to target this cis mutation. In addition, 
preemptive combinations should include drugs that target 
the most common off-target mechanisms, such as MET 
inhibitors (capmatinib). Preemptive combinations can be 
used in a sequence of transient two-drug combinations 
(Figure 2A) if an oncologist is uncomfortable with three- 
and four-drug combinations. (Ironically, an oncologist is 
comfortable with multi-kinase inhibitors such as lenvatinib 
and cabozantinib against one intended target, which is 
akin to a multi-drug combo with one intended target and 
all other random drugs. If so, why then an oncologist is 
uncomfortable with preemptive combinations of selective 
inhibitors). Preemptive combinations to prevent both on-
target and off-target resistance have been discussed [6]. In 
general, combinations are necessary to abrogate resistance 
[10, 16–20].

If a patient has EGFR-driven NSCLC, they are in 
some ways fortunate because this is the most common 
type of lung cancer, and it has been studied extensively. 
There are three generations of inhibitors available, and 
drug combinations, especially with MET inhibitors, are 
occasionally used. The treatment for MET-driven lung 
cancer is less developed, but the insights gained from 
EGFR-driven cancer can be beneficial. The approaches to 
treatment can be similar.

Preemptive combination for MET-driven 
NSCLC

A year ago, I was hospitalized at Massachusetts 
General Hospital (Boston) with multiple brain metastases 
from lung cancer, driven by a MET exon 14 skipping 
mutation (METex14) [6]. The response to capmatinib 
(a selective MET inhibitor, type I) was outstanding. 
However, resistance tends to develop within a year 
of treatment [21]. The most common mechanism of 
on-target resistance involves secondary mutations in 
METex14, such as D1228 and Y1230 [22]. Resistance 
mutations against type I MET inhibitors are sensitive to 
type II inhibitors, and vice versa [22–26]. In patients with 
METex14 NSCLC, cabozantinib can overcome resistance 
selected by type I MET inhibitors [27–29]. Furthermore, 
cabozantinib is effective in METex14-positive NSCLC 
with brain metastases [30].

Cabozantinib is the only FDA-approved type II 
MET inhibitor, so our choices are limited to this multi-
kinase inhibitor, which has unpleasant side effects if used 
long-term. Yet, cabozantinib can be used transiently for 
a few weeks, for example, to eliminate cells with pre-
existing mutations such as D1228 or Y1230 before they 

expand due to capmatinib. Simultaneous treatment with 
type I and type II MET inhibitors may delay the emergence 
of on-target MET resistance mutations [31].

The most common off-target mechanisms of 
resistance include alterations in EGFR and HER2 [26, 
32, 33]. These can be targeted by afatinib (Figure 2B). 
Combinations including a MEK inhibitor (trametinib) will 
be discussed in the forthcoming article “My Battle with 
Cancer: Part III.”

Preemptive treatment with capmatinib, afatinib, and 
cabozantinib may prevent 50% of all potential resistance, 
and half of all patients with METex14-driven lung cancer 
may experience prolonged progression-free survival 
(PFS), leading to a longer and happier life.
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