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ABSTRACT
We recently discovered a putative paclitaxel response predictive biomarker for 

glioblastoma and breast cancer using the whole genome CRISPR knockout screen. 
The biomarker candidate was validated in two independent breast cancer patient 
cohorts that received taxane treatment. To further evaluate the potential application 
of this biomarker in the clinic for patients with glioblastoma, a prospective validation 
in cohorts of patients with glioblastoma is essential and will be performed as part of 
our ongoing phase II clinical trial (NCT04528680). The validation of novel biomarkers 
of susceptibility to therapy is critical to elucidate the efficacy signal of therapeutic 
agents. This is especially important in the context of glioblastoma, where therapeutic 
benefit is variable and unpredictable, leading to negative trials, yet the outcome of 
subset of patients has outperformed expectations.

INTRODUCTION

Repurposing paclitaxel drug for glioblastoma 
treatment

Paclitaxel (PTX) is a widely used and highly potent 
chemotherapeutic agent, being the basis of regimens to 
treat breast, pancreatic, ovarian, and lung non-small cell 
lung carcinomas [1]. However, it is estimated that half of 
the patients treated with PTX do not receive a therapeutic 
benefit, yet are exposed to its toxic effects, causing 
physical, psychological, and social discomfort [2, 3].

In glioblastoma (GBM) treatment, PTX has 
proven a high efficacy at nanomolar concentrations in 
achieving in vitro tumor cell death, with an IC50 1,400-
fold lower than temozolomide, standard-of-care treatment 
[2–4]. However, minimal response to PTX in patients 
was demonstrated in several clinical trials [5–8]. PTX 
efficacy in patients is mainly limited due to factors such 

as inadequate blood-brain barrier (BBB) penetration and 
tumor heterogeneity [3].

Barriers to paclitaxel treatment for glioblastoma 
and ways to overcome them

GBM treatment has faced important challenges 
due to several mechanisms of resistance that encompass 
intrinsic factors such as tumor isolation by the BBB and 
location within the brain; as well as tumor heterogeneity 
and immunosuppressive microenvironment [9]. Promising 
ways to overcome GBM resistance due to BBB isolation 
are being developed, these include convection-enhanced 
delivery, biodegradable wafers, peptide-drug conjugates, 
and low-intensity pulsed ultrasound administered with 
microbubbles (LIPU/MB) [10–13]. The latter strategy has 
been demonstrated safe in several clinical trials [11, 14]; 
and more recently, results from a phase I clinical trial 
where patients with recurrent GBM received paclitaxel 
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or carboplatin after transient opening of the BBB with 
LIPU/MB illustrated that the strategy indeed results in 
a multifold increase in the drug concentrations in the 
brain  [10].

Despite the extensive efforts to overcome the BBB 
and improve drug delivery, response to treatment in 
GBM remains unpredictable and importantly inconsistent 
across patients, highlighting tumor heterogeneity. In that 
context, identifying biomarkers predictive of response 
is crucial to refine patient selection, improve treatment 
efficacy, and prolong survival in patient subpopulations. 
Biomarker discovery is leading to a paradigm shift in 
cancer treatment by providing powerful information to 
improve diagnostic accuracy, predict treatment response 
and determine prognosis [15].

Discovery of predictive biomarkers through 
CRISPR screen and combination of correlative 
evidence from breast cancer

Through techniques such as CRISPR genetic 
knockout (KO) and RNA interference screens in 
cancer cells, it has been possible to target genes whose 
depletion or absence modifies susceptibility patterns to 
chemotherapeutic agents [16, 17]. We identified 51 genes 
that influence PTX susceptibility in gliomas through 
an unbiased CRISPR KO screen in H4 and GBM6 cell 
lines, which were treated with PTX or DMSO for 21 days 
(Figure 1). Considering basal gene expression and through 
guide RNA comparison between PTX-treated versus 
DMSO-treated samples using differential gene expression 
analysis, 51 putative genes involved in PTX susceptibility 
were identified. The above-mentioned have an implication 
in pathways like NFkB, toll-like receptor, and MAPK 
signaling, transcriptional misregulation, and apoptosis [2].

A Cox analysis was performed using two 
independent breast cancer datasets, The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO). 
Breast cancer was studied given PTX routine treatment 
in this neoplasm, robust studies of patient outcomes, and 
possible immediate application after the discovery of a 
predictive biomarker. Through TCGA, gene expression 
and overall survival (OS) among patients with breast 
cancer treated with taxanes, other chemotherapeutic 
agents, and untreated patients were assessed. Five of the 
51 previously identified genes displayed a significant 
interaction between gene expression and OS in taxane-
treated patients. Among them, the signal sequence 
receptor 3 (SSR3) gene showed to be predictive of PTX 
susceptibility in TCGA, giving patients a favorable OS and 
higher relapse-free survival when treated with taxanes [2]. 
In the GEO dataset, which is composed of patients who 
did not receive hormonal therapy or chemotherapy, SSR3 
did not show to be predictive of relapse-free survival [2]. 

Heterotopic tumors were seeded in mice through 
intracranial and mammary fat pad injections and further 

treated with PTX or phosphate buffer solution (Figure 1). 
Cell lines’ susceptibility to PTX was measured through 
determination of the area under the curve values and 
SSR3 expression was studied by Western blot analysis 
[2]. A negative correlation was found between higher 
SSR3 expression and PTX resistance in GBM and breast 
cancer cell lines. SSR3 KO cells showed a decreased 
susceptibility to PTX, while cells overexpressing SSR3, 
had increased susceptibility to PTX [2]. In order to 
confirm the role of SSR3 in PTX susceptibility, single-
gene KO for SS3 and overexpression induction through 
a plasmid were performed. SSR3 KO in PTX-sensitive 
breast cancer (MDA-MB-468) and glioma H4 cells 
resulted in resistance to PTX. Correspondingly, SSR3 
overexpression rendered PTX-resistant cells (GBM6) 
susceptible to PTX [2].

The role of SSR3 gene in paclitaxel susceptibility 
and implied biological pathways

SSR3 gene codifies the gamma subunit of the 
signal sequence receptor (SSR) complex, a glycosylated 
membrane receptor located at the endoplasmic reticulum 
(ER), consisting of four different subunits associated 
with protein translocation across the membrane of the 
ER [18]. SSR complex is also known as TRAP complex, 
essentially involved in folding and transport of protein to 
the ER. Its functions are related to the unfolded protein 
response (UPR) pathway, which reduces the amount of 
unfolded proteins in the cell under stressful conditions. 
IRE1, PERK, and ATF6 are signaling pathways implicated 
in UPR activation in order to achieve protein homeostasis 
[19]. IRE1 (Inositol/requiring enzyme type 1) is a 
serine/threonine kinase that has been found in animals, 
plants, and yeast. IRE1 activity increase has been 
confirmed in neoplastic, inflammatory, metabolic, and 
neurodegenerative disorders [20].

We discovered a positive correlation between SSR3 
expression and IRE1a levels in glioma PDX cells. A deep 
interaction between SSR3 and IRE1a can be explained by 
ER stress response and transport machinery. SSR3 KO 
in H4 cells led to a decrease in phosphorylation levels in 
IRE1a in the presence of PTX treatment [2]. Moreover, 
KO of IRE1a in PTX-sensitive H4 cells provided them 
resistance to PTX. In the GBM6 cell line (characterized 
by basal resistance to PTX), induction of SSR3 over-
expression conferred cells susceptibility to PTX. However, 
inducting IRE1a KO rendered cells resistant to PTX. 
Conversely, IRE1a KO in PTX-resistant GBM6 cells 
(SSR3 low), conferred an increase in PTX resistance [2].

Paclitaxel susceptibility biomarkers involved in 
microtubule function

Given that PTX’s primary mechanism of action 
relies on microtubule stabilization, genes coding 
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for proteins involved in microtubule assembly and 
cytoskeleton biology have been investigated as potential 
biomarkers of response to PTX. Rodrigues-Ferreira 
[21] investigated the predictive value in breast cancer 
of 280 genes encoding proteins involved in microtubule 
functions; finding the MTUS1 gene and its codified 

protein ATIP3 as predictive biomarkers to taxanes [21]. 
Low ATIP3 levels correlated with a better response to 
neoadjuvant chemotherapy, by inducing proapoptotic 
effects, mitotic abnormalities, and aneuploidy [21].

Additionally, since 2005, Rouzier [22] demonstrated 
the predictive potential of microtubule-associated protein 

Figure 1: From genome-wide CRISPR screen to the creation of combined predicting models. A whole-genome CRISPR/
Cas9 knockout was performed using single-guide RNA in selected cells. Genomic DNA was extracted in some cells before a treatment 
course with paclitaxel in dimethyl sulfoxide or dimethyl sulfoxide alone for 21 days. Cells were harvested on days 0, 14, and 21. Genomic 
DNA was extracted and amplified. After paclitaxel treatment, expansion of resistant clones and susceptibility-conferring genes were 
identified. In order to validate the role of a specific gene after its identification, differential gene expression in clones was correlated 
with paclitaxel susceptibility in vitro and in vivo assays (by seeding heterotopic tumors in mice, which were further treated with albumin-
bound paclitaxel). In order to validate the reproducibility and generalizability of a biomarker, validation in independent cohorts should be 
performed. Furthermore, studying the combination of non-overlapping biomarkers’ expression, in addition to clinical and sociodemographic 
data could generate predictive models for paclitaxel susceptibility.
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tau (MAPT). Differential gene expression was correlated 
with a pathological complete response (pCR) to PTX 
treatment. Tau protein was negative in 74% of pCR cases, 
predicting a higher pCR rate [22]. Down-regulation of 
tau through siRNA increased PTX sensitivity in breast 
cancer. One of the mechanisms proposed is that in 
presence of high tau protein expression, microtubules 
are physiologically stabilized, reducing PTX binding 
to tubulin [22]. Regarding microtubule assembly and 
SSR3 gene, we found no correlation between these 
mechanisms [2].

Validation and consideration of multiple 
genes and models to advance the precision of 
prediction

Beyond SSR3, the expression of other genes such 
as CEP63, IRAK4, TMEM131, MBNL1, ZBTB20, and 
TDRD1 demonstrated a significant correlation with OS 
in taxane-treated patients [2]. The predictive potential 
of this set of genes remains to be validated. While other 
potential biomarkers of response to PTX have been 
explored, their use in the clinic is still limited due to the 
less informative results in external validation cohorts. In 
fact, after identifying a potential predictive biomarker in 
a training cohort of patients, it is crucial to validate the 
reproducibility and generalizability of the finding in an 
independent cohort (Figure 1). Currently, the correlation 
between patients’ OS and SSR3 expression is under study 
in the Ultrasound-based Blood-brain Barrier Opening and 
Albumin-bound Paclitaxel and Carboplatin for Recurrent 
Glioblastoma (SC9/ABX) Phase 2 trial at Northwestern 
University (NCT 04528680).

Validation studies in independent sample cohorts 
such as clinical trials or retrospective analysis employing 
statistical and bioinformatic evaluation should be 
performed through robust assays, reviewing technical 
reproducibility, patient-to-patient variations, and other 
possible sources of bias [23, 24].

As shown in Figure 1, further directions encompass 
generating predictive models that build on individually 
validated biomarkers to integrate them into a more 
comprehensive assay. As such, the expression of several 
non-overlapping histologic and molecular biomarkers 
can form “gene signatures” that can be combined with 
radiographic and physiological biomarkers as well as 
patient demographics to predict patients’ clinical outcomes 
with higher reliability [24, 25].

Predictive biomarker discovery leading to a 
paradigm shift in cancer treatment

The discovery of predictive biomarkers to PTX 
vulnerability as SSR3 promises to significantly impact 
cancer treatment. In fact, breast, lung, ovarian, and 
pancreatic cancer, which are among the leading causes of 

death worldwide and represent a huge burden to healthcare 
systems, rely heavily on treatment with PTX. Validation of 
biomarkers of response to this therapy is therefore crucial 
to refine patient selection for PTX therapy and provide 
personalized treatment based on the predicted response. 
As equally important as treating potentially responsive 
patients, avoiding treatment in potentially resistant patients 
reduces unnecessary toxicity, decreases the time to trial of 
another therapy, potentially improves health outcomes and 
quality of life, and significantly alleviates the healthcare 
burden [26].

Precision and personalized medicine can lead to 
a transition from a stochastic treatment response into 
predictable scenarios. Further identification of predictive 
biomarkers, validation, and study of combinations as 
predictive models is critical to generate a greater impact 
that can be translated to the bedside of patients. 
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