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ABSTRACT
Multiple Myeloma (MM) is the second most common hematological malignancy and 

is characterized by clonal expansion of malignant plasma cells in the bone marrow. In 
spite of recent advances in the field of MM, the disease has remained incurable. MM is 
preceded by a premalignant state known as monoclonal gammopathy of undetermined 
significance (MGUS), with a risk of progression to MM of 1% per year. Establishing 
a scalable approach that refines the identification of MGUS patients at high risk of 
progression to MM can transform the clinical management of the disease, improve 
the patient’s quality of life, and will have significant socioeconomic implications. 
Here, we provide evidence that changes in the bone marrow adipose tissue (BMAT) 
provide an early sign for progression from MGUS to MM. We employed AI-assisted 
histological analysis of unstained bone marrow biopsies from MGUS subjects with or 
without progression to MM within 10 years (n = 24, n = 17 respectively). Although 
the BMAT fraction was not different between the two groups, bone marrow adipocyte 
(BMAd) density was decreased in MGUS patients who developed MM, compared to 
non-progressing MGUS patients. Importantly, the distribution profile for BMAd size 
and roundness was significantly different between the two groups, indicating a shift 
toward increased BMAd size and roundness in MGUS patients who developed MM. 
These early changes in the BMAT could serve as valuable early indicators for the 
transition from MGUS to MM, potentially enabling timely interventions and personalized 
treatment strategies. Finally, the AI-based approach for histological characterization 
of unstained bone marrow biopsies is cost-effective and fast, rendering its clinical 
implementation feasible.
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INTRODUCTION

Multiple Myeloma (MM) is a malignant 
hematological neoplasm characterized by the uncontrolled 
proliferation of abnormal plasma cells within the bone 
marrow [1]. It represents the second most common 
hematological malignancy, accounting for a significant 
portion of cancer-related morbidity and 2% of cancer 
mortality worldwide [1–3]. Despite recent advances in 
the understanding and treatment of MM, it remains an 
incurable disease with a substantial impact on patient 
outcomes and healthcare systems [4].

MM is preceded by a premalignant condition known 
as monoclonal gammopathy of undetermined significance 
(MGUS) [5]. MGUS is characterized by the presence of 
abnormal monoclonal paraprotein in the blood without 
clinical signs of organ damage, and is often discovered 
incidentally when blood tests are done for other reasons 
[1]. MGUS has a prevalence of approximately 1–2% in the 
general population below 50 years of age, which increases 
with age reaching up to 3–8% in the population above 80 
years [6–9]. While the majority of MGUS cases remain 
stable, approximately 1% of MGUS patients progress 
to symptomatic MM each year, presenting a significant 
clinical challenge in predicting and managing disease 
progression. The current approach that is used in the clinic 
for differentiating the stable and progressive myeloma 
precursor conditions is mainly based on surrogates’ 
measures of disease burden, such as bone marrow plasma 
cell percentage and quantity of serum monoclonal protein 
[10]. However, the utility of this approach is challenged 
by the diversity of MGUS patients and the fact that the 
behavior pattern of MGUS does not always correlate 
with the disease burden [10]. Therefore, development 
of a scalable, cost-effective approach for accurate risk 
stratification and identification of MGUS patients at high 
risk of developing MM could facilitate early detection of 
the disease progression, allowing for timely interventions 
and tailored therapeutic strategies before the onset of end-
organ damage. This has the potential to revolutionize the 
clinical management of high-risk MGUS patients and 
significantly improve patient outcomes, enhance patients’ 
quality of life, and reduce the socioeconomic burden 
associated with MM.

Bone marrow adipose tissue (BMAT) is a major 
component of the bone marrow microenvironment [11–
13]. Although traditionally perceived as a passive filler 
of the bone marrow cavity, BMAT has lately emerged as 
an active player with dynamic interactions that extend far 
beyond its previous characterization [12]. Bone marrow 
adipocytes (BMAds) not only coexist harmoniously 
alongside hematopoietic and stromal cell populations 
within the marrow, but also influence their behavior 
and function. BMAT has been recently implicated in 
various physiological and pathological processes [14], 
particularly in relation to hematological, endocrine, and 

skeletal disorders [15–23]. Obesity, a well-established 
risk factor for various types of cancers, including MM, 
is associated with increased bone marrow adiposity, 
together with altered hematopoiesis and immune 
regulation [24, 25]. Several studies have reported a 
correlation between increased bone marrow adiposity 
and increased risk of MGUS and progression to MM 
[21, 25]. These findings suggest that BMAds could play 
a role in the pathogenesis of MM. On the other hand, 
we have previously shown that BMAT is significantly 
decreased in non-treated MM patients compared to 
MGUS patients and healthy individuals [26], suggesting 
that BMAds could serve as a potential biomarker for 
MM progression. Therefore, in this study, we examined 
whether the composition of the BMAT is different in 
stable and progressing MGUS patients. We employed 
artificial intelligence (AI)-assisted histological analyses 
of unstained bone marrow biopsies and found that BMAd 
density, size, and roundness are significantly different 
between the two groups and could provide early signs 
for progression from MGUS to MM.

RESULTS AND DISCUSSION

We employed an AI-assisted approach to perform 
a systematic and objective histological characterization 
of the BMAT in progressing and non-progressing MGUS 
patients, with the aim of identifying possible BMAT 
features that were different between the two groups. 
To facilitate translation to high-throughput clinical 
screening, we utilized unstained bone marrow biopsies 
by taking advantage of the tissue’s autofluorescence in 
the FITC channel (Figure 1A–1C). We did not find a 
significant difference in the BMAT fraction within the 
bone marrow (% of total marrow) between the stable and 
progressing MGUS patients (Figure 2A). This suggests 
that the overall adipose tissue content in the bone marrow 
was comparable between the two groups. However, we 
found decreased BMAd density in MGUS patients who 
experienced progression to MM compared to the non-
progressing MGUS patients (Figure 2B). To gain deeper 
insight into the characteristics of the BMAds associated 
with MM tumorigenesis, we performed a morphological 
characterization of the individual BMAds. Importantly, we 
found a significant shift towards increased BMAd size and 
roundness in progressing MGUS patients (Figure 2C, 2D). 
These observations suggest that during MM development, 
BMAds are subject to alterations which may be indicative 
of the disease progression. We and others have previously 
shown that BMAT is significantly reduced in non-treated 
MM patients [26, 27]. Lack of direct correlation between 
the bone marrow tumor burden and bone marrow adiposity 
in overt multiple myeloma, argues against the “space-
constricted” mechanism causing decreased BMAT [26]. 
An alternative proposed mechanism is that cancer cells 
“hijack” the bone marrow metabolic programs to induce 
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release of fatty acids from BMAds and fulfil their high 
metabolic demand [28]. It has recently been shown that 
induction of lipolysis and uptake of fatty acids by MM 
cells through fatty acid transporter proteins are involved 
in this process [28]. Therefore, it is possible that the shift 
towards increased BMAd size in progressing MGUS 
patients is an early sign that an altered metabolic program 
induced by MM cells has already started to take effect at 
this stage, leading to release of fatty acids from BMAds 
and disappearance of small BMAds, while exerting minor 
visual impact on the large adipocytes.

As expected, the risk stratification score was 
notably higher among progressing MGUS patients than 
their stable MGUS counterparts (Table 1). However, 
within progressing MGUS patients with comparable risk 

stratification scores, especially in the low-risk category, 
we observed a substantial variability in the time taken for 
progression to MM (progression free survival). Therefore, 
we aimed at discerning potential differences in BMAT 
parameters among progressing MGUS patients with 
similar risk scores but distinct timeframes for progression 
to MM. Interestingly, we found a discernible trend toward 
decreased BMAd density in low risk MGUS patients 
who developed MM within less than 5 years following 
biopsy collection, as compared to MGUS patients with 
similar risk score who developed MM in more than 9 
years following biopsy collection (Figure 2E). We did not 
find notable changes in other BMAT parameters between 
these two groups (data not shown). Additional studies with 
larger number of patients are required to establish whether 

Figure 1: Histological analysis of iliac crest bone biopsy. (A) Representative image of the iliac crest bone biopsy from a MGUS 
patient, illustrating the bone and bone marrow compartments. The autofluorescence highlights the structural arrangement of bone trabeculae 
and adipose tissue within the bone marrow. (B, C) Accurate identification of individual BMAds within the bone marrow by AI, indicating 
the heterogeneity in BMAd size and shape.
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decreased BMAd density can be used as a novel risk factor 
for progression from MGUS to MM.

As the samples utilized in this study were obtained 
from biobanks, we did not have access to the data about 
patients’ weight or ongoing therapies that can affect 
bone marrow adiposity. Therefore, additional studies are 
warranted to corroborate the findings presented in this 
study.

To ensure the validity of AI-generated results, we 
performed head-to-head comparison between traditional 
(grid point) and AI-assisted histological analysis of 
BMAT parameters in a parallel cohort of trephine iliac 
crest human bone biopsies and observed comparable 
results (data not show). While one cannot rule out that 
our trained algorithm incorrectly recognizes empty lumen 
of blood vessel cross-sections as adipocytes, we estimate 

these uncommon occurrences to be unlikely and have a 
dismissible effect among the large adipocyte number 
detected in each biopsy.

We found a significant difference in the BMAd 
roundness coefficient between stable and progressing 
MGUS patients. In addition to the importance of this 
finding from the perspective of a potential biomarker for 
early detection of progressing MGUS patients, this finding 
indicates that the integration of advanced computational 
analysis and AI-driven algorithms in pathology holds 
the promise of revolutionizing the field by unraveling 
hidden patterns and subtle anomalies within the tissues 
that traditional methods might overlook. This paradigm 
shift towards computer/AI-augmented pathology could 
lead to enhanced diagnostic accuracy, personalized 
treatment strategies, and a deeper understanding of disease 

Table 1: Clinical characteristics of the patients
Stable MGUS (n = 17) Progressing MGUS (n = 24)

Age (years; mean ± SD) 42.53 ± 8.96 45.96 ± 11.70
Sex (male n, %) 10 (58.82) 6 (25.00)
Serum paraprotein (g/L; mean ± SD) 11.32 ± 8.28 11.62 ± 5.85
Plasma cell burden (%; mean ± SD) 5.04 ± 3.61 4.94 ± 3.22
Risk stratification (low n, %) 13 (76.47) 21 (87.50)

Figure 2: AI-assisted quantitative analysis of BMAT parameters in MGUS subjects with or without progression to MM. 
(A) BMAT fraction within the marrow represented as adipocyte area/marrow area (Ad.Ar/Ma.Ar, %). (B) Density of adipocytes within the 
bone marrow (#/mm2). (C) Distribution profile of individual BMAd size in stable and progressing MGUS patients. (D) Distribution profile 
of individual BMAd roundness in stable and progressing MGUS patients. (E) Density of adipocytes within the bone marrow (#/mm2) in low 
risk MGUS patients who progressed to MM in more than 9 years after obtaining the biopsy compared to MGUS patients who had similar 
risk stratification score, but progressed to MM in less than 5 years after obtaining the biopsy. Data presented in A–D are obtained from 
17 patients with stable MGUS and 24 patients with progressing MGUS. For C and D, number of analyzed BMAds was 26,601 for stable 
MGUS and 65,394 for progressing MGUS. Error bars on A and B represent standard error of the mean. **p < 0.01, ****p < 0.0001. Unpaired 
Student’s T-test was used for A and B, Kolmogorov-Smirnov test was used for C and D.
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mechanisms across a spectrum of medical conditions. 
The additional advantage of applying this approach 
on unstained tissue sections highlights its potential for 
implementation as a cost-effective approach for routine 
pathological screening.

Taken together, our findings contribute to the 
growing understanding of the interplay between BMAT 
and hematological malignancies and the complex role 
of BMAT in the trajectory from MGUS to MM, urging 
further exploration and validation of these early indicators 
of the disease development to improve patient care and 
outcomes.

MATERIALS AND METHODS

Patient cohorts

Iliac crest bone biopsies from 41 MGUS patients 
were used in this study, including 17 stable MGUS 
patients who did not progress to MM within 10 years 
after biopsy collection, and 24 MGUS patients with 
known progression to MM within 10 years following 
biopsy collection. The cohort of MGUS patients without 
progression to MM had a median age of 68 years (55–83 
years, ~53% male) and the cohort of MGUS patients 
with progression to MM had a median age of 69 years 
(47–83 years, ~29% male). Patient characteristics are 
presented in Table 1. Patient risk stratification was 
performed based on myeloma type (IgA or not), M 
component (<15 g/L or not) and κ/λ ratio (normal or not) 
as described before [29]. Briefly, patients were stratified 
into a binary score of “yes” or “no” for each of the 
described risk factors and the sum of positive outcomes 
was defined as the overall risk stratification. Patients 
stratified into risk of progression ≤1 are defined as “low 
risk of progression”.

Histological analysis

Formalin-fixed, paraffin-embedded 3-mm trephine 
iliac crest bone biopsies were sliced into 3.5-µm 
sections and scanned at 82.6 ms exposure in the FITC 
immunofluorescent channel of an Olympus VS200 slide 
scanner. The artificial intelligence (AI) module from 
HALO (v.3.5, IndicaLabs, NM, USA) was used to detect 
and characterize bone marrow adipocytes, using the 
autofluorescence from unstained sections.

Statistical analysis

Data were analyzed in GraphPad Prism v9.3.1 
(GraphPad Inc.) and are presented as mean ± standard 
error of the mean (SEM) or cumulative histograms. 
Data were analyzed by unpaired Student’s T-test or 
Kolmogorov-Smirnov test for cumulative distributions.
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