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ABSTRACT
Multiple myeloma (MM) is the most common primary malignancy of the bone 

marrow. No established curative treatment is currently available for patients 
diagnosed with MM. In recent years, new and more effective drugs have become 
available for the treatment of this B-cell malignancy. These new drugs have often been 
evaluated together and in combination with older agents. However, even these novel 
combinations eventually become ineffective; and, thus, novel therapeutic approaches 
are necessary to help overcome resistance to these treatments. Recently, the Janus 
Kinase (JAK) family of tyrosine kinases, specifically JAK1 and JAK2, has been shown 
to have a role in the pathogenesis of MM. Preclinical studies have demonstrated 
a role for JAK signaling in direct and indirect growth of MM and downregulation 
of anti-tumor immune responses in these patients. Also, inhibition of JAK proteins 
enhances the anti-MM effects of other drugs used to treat MM. These findings have 
been confirmed in clinical studies which have further demonstrated the safety and 
efficacy of JAK inhibition as a means to overcome resistance to currently available 
anti-MM therapies. Additional studies will provide further support for this promising 
new therapeutic approach for treating patients with MM.

INTRODUCTION 

Pathophysiology of multiple myeloma

Multiple myeloma (MM) is a blood cancer of 
monoclonal plasma cells that accumulate in the bone 
marrow (BM) and produce M-protein (also known as 
monoclonal immunoglobulin or paraprotein). MM is 
the second most prevalent hematological malignancy, 
accounting for nearly 2% of cancer diagnoses and 
related deaths in the United States [1]. It exhibits a 
notable demographic bias, with a higher incidence 
among the elderly, men, and African Americans [1]. 
Within the spectrum of disorders known as monoclonal 
gammopathies, MM finds its place alongside monoclonal 
gammopathy of unknown significance (MGUS) and 
smoldering myeloma (SM). 

Patients typically present with symptoms related 
to organ dysfunction: hypercalcemia, renal insufficiency, 
anemia, and bone destruction (known as the CRAB 
criteria). While MM remains incurable, recent therapeutic 
advancements have increased the average five-year 
survival rate from 25% in 1975 to 40% in 2008 [2, 3]. A 
recent study of unselected MM patients from our clinic 
shows a median survival of 136.2 months [4]. Although 
the etiology of MM remains elusive, decades of research 
have established a foundational understanding of the 
mechanisms of drug resistance [5, 6].

Understanding MM as a malignancy rooted in 
terminally differentiated plasma cells necessitates a 
comprehensive grasp of the BM microenvironment, 
terminal B-cell biology, and immunology which are all 
pivotal players in identifying potential treatment avenues. 
Within the BM reside hematopoietic stem cells, capable 
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of differentiating into various blood cell types while 
sustaining their own population through self-renewal. 
Among their progeny, B cells hold significance, as they 
have the capability to produce a wide variety of antibodies, 
alerting the adaptive immune system to biological threats 
and eventually giving rise to antibody-producing plasma 
cells [7].

While numerous factors contributing to malignancy 
are intrinsic to tumor cells, they often lack the capability 
to independently drive progression and metastasis. The 
emergence of full-blown malignancy, along with the 
subsequent evasion of apoptosis, typically necessitates a 
supportive or even favorable microenvironment. Beyond 
B cell-related mutations, the BM microenvironment, 
consisting of mesenchymal stromal cells, fibroblasts, 
adipocytes, endothelial cells, osteoclasts, osteoblasts, 
immune cells, and hematopoietic cells, plays a crucial 
role in MM progression. This complex population has the 
capability to induce myeloma cell migration to the BM 
and the erratic proliferation of myeloma cells while also 
mediating survival, proliferation, drug resistance, and 
progression of the disease [8, 9]. The intricate interplay 
within the BM microenvironment, coupled with the 
diverse subclonal makeup of MM cell populations [10], 
significantly contributes to the resistance seen in MM 
patients to their treatment regimens [8, 9]. Consequently, 
despite significant progress in understanding MM and 
the availability of a wide range of therapeutic modalities, 
including immunomodulatory agents (IMiDs), proteasome 
inhibitors (PIs), monoclonal antibodies, histone 
deacetylase inhibitors, selective inhibitors of nuclear 
export, bispecific antibodies, and CAR-T cell therapies, 
MM remains an incurable disease. This current inability to 
effectively treat patients long term highlights the need for 
therapeutic options capable of augmenting and extending 
the efficacy of currently available treatments.

JAK/STAT signaling in cancer - inhibition as a 
potential treatment

The JAK/signal transducer and activator of 
transcription (STAT) pathway is a membrane-to-nucleus 
signaling module responsible for instigating the expression 
of numerous regulators associated with both cancer and 
inflammation. This pathway encompasses an extensive 
array of more than 50 cytokines and growth factors, 
including hormones, interferons (IFN), interleukins (ILs), 
and colony-stimulating factors [11]. Consequently, JAK/
STAT-mediated downstream processes exhibit a diverse 
range of critical functions including hematopoiesis, 
immune competence, tissue regeneration, inflammatory 
responses, and regulation of apoptosis [12].

Under normal conditions, JAK and its downstream 
transcription factors, STAT proteins, mediate 
hematopoietic cytokine receptor signaling [13, 14] which 
in turn affects cell growth, survival, and differentiation 

through many cellular events [13, 14]. Within the context 
of myeloproliferative neoplasms, it has been reported 
that through mutations, JAK proteins can become 
constitutively active and consequently promote the 
survival and proliferation of abnormal cells, a process 
thought to contribute to the development of lymphoma, 
leukemia, and more recently MM [8, 13, 14]. Additionally, 
elevated levels of growth factors and cytokines in MM 
have been shown to contribute to increased JAK2 
activation [8]. IL-6, a growth and survival factor for 
myeloma cells, is among those cytokines that activate 
JAK2 and ultimately augment its downstream signaling 
effects [8]; and, therefore, JAK inhibitors represent 
potential therapies for treating MM patients. 

Ruxolitinib (RUX), an oral JAK inhibitor 
approved by the FDA for the treatment of myelofibrosis, 
polycythemia vera, and graft versus host disease works 
through reducing the abundance of cytokines and growth 
factor receptors that utilize JAK1 and JAK2. MM 
implicates JAK1 and JAK2 genes in its pathogenesis, 
much like myelofibrosis does [15]. Myelofibrosis is a 
clonal disorder originating at the level of the hematopoietic 
stem cell and is characterized by BM fibrosis, 
splenomegaly, and extramedullary hematopoiesis [15, 16].  
In the randomized, phase 3 COMFORT-II trial (Controlled 
Myelofibrosis Study with Oral Janus-Associated Kinase 
Inhibitor Treatment-II), RUX treatment showed superiority 
to the best currently available therapy at the time [17]. 
Specifically, it was found to rapidly reduce splenomegaly 
and other debilitating symptoms of myelofibrosis [17]. 
These results demonstrate the beneficial effects of RUX 
on quality of life compared with the current best available 
therapies in myelofibrosis. In contrast to RUX, the best 
available therapy was associated with an increase in spleen 
volume and a worsening of symptoms [17]. The success of 
JAK inhibitors in myelofibrosis has prompted preclinical 
experiments in other hematologic cancers, specifically 
MM, owing to similarities in their pathogenesis. Success 
in preclinical research using JAK inhibitors for the 
treatment of MM has further prompted early-phase clinical 
studies. For example, RUX is being studied as part of an 
all-oral treatment regimen [18–20] that addresses many 
of the current issues that occur with regimens containing 
IMiDs, PIs, and monoclonal antibodies. The following 
sections of this article will be focused on studies of RUX 
in the preclinical [21–24] and clinical settings [18–20] 
focused on the treatment of relapsed/refractory (RR) MM. 

Preclinical evaluation of ruxolitinib in multiple 
myeloma

Checkpoint proteins play a critical role in T-cell 
regulated immune responses and self-tolerance. Expression 
of the key checkpoint protein, programmed cell death 
ligand-1 (PD-L1), is partly regulated by the IL-6/STAT3 
signaling pathway. Its overexpression in MM is likely 
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related to the upregulation of IL-6 levels often seen in 
the disease and, consequently, enhanced downstream 
JAK/STAT signaling [25–27]. Additionally, it has been 
shown that while PD-L1 expression can be detected on 
plasma cells from MM patients, it is rarely detected on 
plasma cells from healthy donors [28, 29]. This increased 
expression occurs not only on the surface of malignant 
cells but also other cell types in the BM stroma [30, 31]. 
This leads to the development of exhausted T cells within 
the MM microenvironment, impairing the function of 
cytotoxic T cells and facilitating tumoral escape and 
resistance to immune-based approaches for treating MM 
patients.

Immune checkpoint inhibitors that target cytotoxic 
T lymphocyte antigen 4 (CTLA-4), PD-1 and PD-L1 
have been shown to enhance the efficacy of many cancer 
therapies [32, 33]. However, anti-PD-1/PD-L1 therapy is 
only effective in a minority of patients with melanoma, 
non-small cell lung and renal cell cancers [34]. Clinical 
trials involving checkpoint inhibitors alone have lacked 
consistent efficacy and have yielded significant safety 
concerns when used to treat MM patients [35–37]. In a 
recent preclinical study, we have shown that treatment 
with RUX is capable of increasing MM cell apoptosis 
when combined with IL-2-stimulated T cells [23]. This 
is similar to the effects of anti-PD-1 or anti-PD-L1 
antibodies but does not appear to be associated with the 
immune-related adverse events (IRAEs) that commonly 
occur with the administration of these types of antibodies 
[18, 19, 25]. We have shown that treatment of MM 
patients’ BM mononuclear cells (MCs) with RUX, even 
at low concentrations, reduces both the proportion of 
PD-L1 expressing cells and levels of PD-L1 expression 
[23]. Additionally, it was shown that RUX was able to 
reduce PD-L1 expression in HS-5 stromal cells and 
increase the cytotoxic effects of T cells on MM tumor 
cells in a co-culture of IL-2 stimulated T-cells with MM 
BMMCs. Comparable data was later collected by our 
group regarding another immune checkpoint protein, 
B7-H3 [24]. Treatment of primary BMMCs from MM 
patients with progressive disease (PD) and three MM cell 
lines (RPMI8226, U2666 and MM1S) with RUX reduced 
B7-H3 expression. Additionally, in both MM BMMCs 
cultured alone or in combination with SUP-T1 T-cells, 
treatment with RUX resulted in increased IL-2 expression 
and CD8 expression, further supporting that inhibition of 
the JAK/STAT signaling pathway through RUX is capable 
of reducing the expression of checkpoint proteins; and, 
therefore, increases the cytotoxic capacity of T-cells 
against MM tumor cells, potentially limiting tumoral 
escape and resistance to immune based approaches in MM 
treatment.

Among the key players in the MM microenvironment 
are macrophages. Depending on the signals they receive 
from support cells such as BM stromal cells, they can 
take on a pro-inflammatory (M1) or an alternative (M2) 

immune inhibitory phenotype [38]. M1 macrophages 
possess anti-tumor effects and are decreased in the BM 
of MM patients with PD while M2 macrophages are 
increased [22, 39] and have been shown to promote tumor 
growth and metastasis through the secretion of growth 
factors and associated promotion of angiogenesis [40–42]. 
Tribbles homolog 1 (TRIB1) is a myeloid oncogene and a 
potent inducer of M2 polarization [43, 44]. The expression 
of TRIB1 along with the transmembrane glycoprotein 
MUC1, the MM cell surface adhesion receptor CD44, and 
the chemokines CXCL12 and CXCR4 are additionally 
upregulated in the BM of MM patients [45, 46]. The 
increased expression of these factors is the result of 
complex, context dependent, feedback loops involving the 
inflammatory tumor microenvironment, immune cells, and 
myeloma cells. An integral signaling pathway implicated 
in MM is the JAK/STAT pathway which has been shown 
to directly activate the MAPK and mTOR pathways, 
additionally influencing cell proliferation, differentiation, 
and survival [11, 12, 14]. The JAK/STAT pathway is also 
capable of indirectly influencing the WNT/β-catenin 
pathway which plays a role in regulating the balance of 
osteoclasts and osteoblasts, as well as in the regulation of 
MUC1 expression [47, 48].

We have recently shown both in vitro and in vivo 
that RUX is capable of blocking M2 macrophage 
polarization through several mechanisms [22]. Treatment 
of a co-culture consisting of MM BMMCs from patients 
with PD and normal peripheral blood (PB) MCs showed 
a significant increase in the polarization of macrophages 
to the M2 state after one week in culture. Notably, 
RUX reduced expression of the M2 marker CD36 and 
expression of the MAPK/ERK pathway regulator TRIB1 
in the human leukemia monocytic line (THP-1) when 
cultured with MM cell lines. Similarly, RUX treatment 
of human MM xenograft LAGκ-1A tumors growing 
in severe combined immune deficient mice resulted in 
reduction of M2 CD36 expression and an increase in 
expression of the M1 marker CD86 [22]. We also found 
increased levels of CXCL12 in BM plasma from MM 
patients and in the supernatants from cultured MM BM 
stromal cells. Therefore, these results show that MM 
tumor cells can drive M2 macrophage polarization. 
Consequently, as a response to increased cytokines in the 
MM BM microenvironment, signaling molecules involved 
in the JAK/STAT pathway and WNT signaling pathway 
may mediate M2 polarization by increasing TRIB1 and 
CXCL12/CXCR4 expression in monocytes. Activation 
of the CXCL12/CXCR4 axis upregulates TRIB1 gene 
expression through HOXA9/MEIS1 expression [49]. 
The CXCL12/CXCR4 axis, which we have shown 
to be overactive in MM BM, has been shown to also 
upregulate MUC1 and CD44 gene expression [48, 50]. 
M2 macrophages induced by MM in turn upregulate both 
MUC1 and CD44 on tumor cells [22]. Upregulation of 
MUC1 and CD44 has been shown to be associated with 
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resistance to the highly used IMiD, lenalidomide (LEN), 
in MM [48] and the ability of RUX to downregulate their 
expression, potentially serving as a means to overcome 
resistance, is an attractive benefit of this JAK inhibitor. 
Recent studies also show that M2 macrophages have 
markedly increased expression of PD-L1 when compared 
to M1 macrophages [51, 52]. The increase in M2 
macrophages and accompanying PD-L1 expression likely 
contributes to the high frequency of drug resistance seen 
in MM. This limits the ability of T cells to target malignant 
cells for killing which is reversed by RUX.

Some insight into the ability of JAK inhibitors to 
perform synergistically with currently available MM 
treatments, including IMiDs, has recently been gained 
by our group through in vitro and in vivo analyses of 
the preclinical anti-MM effects of another selective 
JAK1 inhibitor INCB052793 [21]. In the MM cell 
line RPMI8226, the proportion of apoptotic and 
necrotic myeloma tumor cells among cells treated with 
INCB052793 in combination with the PIs carfilzomib 
or bortezomib was markedly higher than cells exposed 
to single agents. Similarly, using fresh tumor cells from 
MM patients, this same doublet combination produced 
a higher percentage of total cell death (early and late 
apoptosis and necrosis) than exposure of these tumor cells 
to single agents. This effect remained consistent across 
drug classes including the immunomodulatory agent LEN 
and the glucocorticosteroid DEX. RUX was able to reduce 
STAT3 activation and increase apoptosis of myeloma cells 
in both IL-6 independent and IL-6 dependent lines.

These preclinical findings regarding the anti-
myeloma effects of RUX and other JAK inhibitors suggest 
that these drugs may be a promising addition to the current 
standard of therapy used to treat MM patients and warrants 
further clinical assessment of this JAK inhibitor in this 
patient population.

Clinical evaluation of JAK inhibitors in multiple 
myeloma 

LEN, an IMiD, exerts its diverse anti-cancer 
effects within both cancer cells and the surrounding 
microenvironment. This includes inducing alterations in 
cytokine production, immune cell activity, and, in some 
cases, inflammation and the death of tumor cells [53]. 
However, over time, patients with MM acquire resistance 
to this drug, underscoring the need for therapeutic 
strategies to address drug resistance.

It is believed that RUX’s ability to overcome LEN 
resistance results from multiple factors, which includes 
its effects on the WNT/B-catenin/CD44 pathway and 
the inhibition of MUC1 [22, 48]. Resistance to LEN is 
linked to the upregulation of key factors such as MUC1, 
β-catenin, MYC, and CD44. Notably, MUC1 serves to 
stabilize β-catenin, forming a complex that targets specific 
WNT-responsive genes like MYC and CCND1, thereby 

enhancing gene transcription, as evidenced by heightened 
CD44 expression [22, 48]. Indeed, the analysis of MM cell 
lines has unveiled a correlation between increased CD44 
levels and LEN resistance. The inhibition of MUC1 leads 
to enhanced proteasomal degradation of β-catenin, which, 
in turn, reduces WNT gene transcription and results in 
decreased CD44 expression [48, 54]. Furthermore, this 
disruption in redox balance triggers heightened apoptosis 
via reactive oxygen species, ultimately reinstating 
sensitivity to LEN.

Based on these findings, a phase 1 study was 
conducted to assess the efficacy of RUX, LEN, and 
steroids for patients with RRMM [19]. Twenty-eight 
patients participated in the initial part of the clinical 
trial; they had received a median of 6 prior treatments 
(range, 3–14) including LEN and steroids, to which 93% 
were refractory. In the first part of this study, participants 
were divided into four cohorts using a standard 3+3 dose 
escalation design. All subjects received an entirely oral 
treatment regimen consisting of a 28-day cycle of RUX, 
twice daily from days 1 to 28, LEN, once daily from days 
1 to 21, and the glucocorticosteroid methylprednisolone 
every other day from days 1 to 28. No dose-limiting 
toxicities were observed at the maximal administered 
dose (MAD) consisting of 15 mg RUX, 10 mg LEN, and 
40 mg methylprednisolone. Of the 28 patients, 26 were 
refractory to their last LEN treatment and 69% (n = 18) of 
these patients were treated with ≥10 mg of LEN with an 
overall response rate (ORR) of 29% and a 41% clinical 
benefit rate (CBR). Notably, 72% (N = 13) of the 18 
patients had undergone treatment with a LEN-containing 
regimen immediately prior to joining this study. Among 
these 13 patients, the responses included one complete 
response (CR), one very good partial response (VGPR), 
three partial responses (PR), one minimal response 
(MR), and seven cases of stable disease (SD). Overall, 
the CBR and ORR observed in this study was 46% 
and 38%, respectively and notably, all 12 patients who 
responded were refractory to LEN. Given the promising 
findings and exceptional tolerability demonstrated in this 
study, the trial was expanded to encompass an additional 
cohort of 21 patients, thereby increasing the total study 
population to 49 patients. Newly enrolled patients were 
treated at the MAD, consisting of RUX 15 mg, LEN 10 
mg, and methylprednisolone 40 mg. These 21 patients 
and those treated as part of the dose escalation phase of 
the study (N = 28) were recently reported together (N 
= 49) [20]. Patients had received a median of 6 prior 
treatments (range, 3–15), including LEN and steroid-
containing regimens, of which 94% were refractory. 
The CBR was 49% and the ORR was 36%. The median 
progression free survival (PFS) for all evaluated patients 
was 3.5 months, and the duration of response (DOR) for 
22 patients who were observed to have MR or better was 
7.2 months. Overall, the treatment was well tolerated, 
and the observed adverse events were consistent with 
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established toxicities associated with the respective 
medications. We have recently reported that baseline 
serum B-cell maturation antigen (sBCMA) levels 
predicted outcomes for RRMM patients starting new 
therapies [55]. Similarly, we found that lower baseline 
sBCMA levels were associated with a longer PFS in this 
study [56, 57].

Furthermore, our preclinical studies suggested that 
JAK inhibitors may show clinically significant effects 
even in the absence of immunomodulatory agents to 
treat MM patients [21–24]. RUX’s ability to reverse 
desensitization to dexamethasone in MM patients involves 
a complex interplay between the JAK/STAT pathway 
and glucocorticosteroids. Notably, the administration of 
dexamethasone has been observed to elevate both STAT3 
and the pro-survival factor PI3K levels within melanoma 
cells, consequently leading to an increase in STAT3 levels 
[58]. Thus, prolonged exposure to dexamethasone often 
leads to the development of resistance. However, this 
resistance can be partially overcome by inhibiting the 
JAK/STAT pathway [58, 59], highlighting the potential 
of JAK inhibitors like RUX to restore sensitivity to 
dexamethasone treatment, as well.

Considering these observations, the phase 1 study 
was amended to assess the efficacy of RUX with steroids 
alone for treating RRMM patients [18]. The study enrolled 
and treated 29 patients who had previously undergone 
extensive prior treatments, including a median of 6 (range 
3–12) lines of therapy, all with prior exposure to PIs and 
LEN. The treatment regimen involved the administration 
of RUX at a dose of 15 mg twice daily, along with 40 mg 
of oral methylprednisolone every other day. Notably, 
9 patients exhibited at least a partial response (PR) to 
the treatment, with one patient achieving a very good 
(VG) PR and 8 attaining PRs. This translated to an 
ORR and CBR of 31%. The DOR was encouraging at 
13.1 months. Furthermore, those who responded to the 
therapy displayed a median PFS of 15.6 months, while 
non responders showed a significantly shorter PFS of 1.6 
months. This was the first clinical study to demonstrate the 
efficacy of JAK inhibitors combined with steroids alone 
for the treatment of MM patients. Similar to what was 
observed with the addition of LEN to this combination, 
higher baseline sBCMA levels correlated with a shorter 
PFS (JRB, manuscript in preparation), offering valuable 
insights and encouraging further investigation into 
potential predictive factors for this regimen for treating 
MM patients. As part of the study, 20 patients who were 
failing the two-drug combination had LEN at 10 mg daily 
added to the regimen and showed an ORR of 30% and 
CBR of 40%. Notably, 71% of patients who had initially 
achieved a MR or better responded to the addition of LEN, 
whereas only 23% of patients who did not achieve better 
than a MR responded to the addition of this IMiD [60]. 
Overall, responses following the addition of LEN were 
as follows: 2 VGPR, 4 PR, 2 MR, 8 SD, and 4 PD. The 

median PFS was 3.5 months and the PFS2 (time from start 
of first treatment to end of the study) was 7.3 months. 
Interestingly, as noted with the previously discussed 
studies, sBCMA levels were predictive of PFS2 with those 
showing lower levels showing a longer survival.

Because of these encouraging findings, the current 
trial (clinical trials.gov number, NCT03110822) has 
been expanded to include treatment of the RUX/LEN/
methylprednisolone at the MAD for those with impaired 
renal function, a common occurrence among patients with 
RRMM [61]. In addition, since RUX is used at higher 
doses to treat those with myeloproliferative disorders, the 
current study has also added an arm that includes a 20 mg 
dose of RUX BID with methylprednisolone.

Considering the favorable outcomes observed 
with RUX, subsequent studies have been initiated to 
evaluate the efficacy of alternative JAK inhibitors in 
the management of MM, as well as other hematologic 
malignancies. Phase 1 of the phase 1/2 study was 
conducted to assess INCB052793, a potent JAK1 
inhibitor, alone and in combination with standard therapies 
for patients with MM, acute myeloid leukemia (AML), 
and myelodysplastic syndrome (MDS) [62]. The Phase 
2 study examined the combination of itacitinib with 
azacitidine among patients with AML and MDS, and did 
not pertain to MM. The study utilized a phase 1a/1b design 
to assess INCB052793’s safety, tolerability, and efficacy. 
Phase 1a involved a dose escalation using INCB052793 
as a monotherapy in patients with MM, refractory to 
at least two prior therapies, following a 3+3 design. 
Phase 1b evaluated INCB052793 in combination with 
dexamethasone in MM patients. Monotherapy in Phase 
1a of the study showed that all MM patients experienced 
treatment-emergent adverse events of grade 1 or higher. 
Unfortunately, no therapeutic responses were observed in 
this cohort. In phase 1b, 2 out of 7 MM patients exhibited 
minimal response when treated with INCB052793 and 
dexamethasone, indicating limited efficacy. The study 
was terminated prematurely due to a lack of efficacy 
across all patient populations and therapy combinations. 
Despite promising preclinical data suggesting the potential 
of INCB052793 and itacitinib, this clinical trial faced 
significant challenges in achieving therapeutic responses 
in MM patients.

DISCUSSION

The JAK family, which includes JAK1 and JAK2, 
plays a pivotal role in the pathogenesis of MM [14, 63, 
64]. Within the BM microenvironment of MM patients, 
cytokines have been observed to trigger the activation of 
the JAK/STAT signaling pathways within tumor cells. This 
activation, in turn, contributes significantly to the growth, 
survival, and development of drug and resistance that 
occurs in MM patients. The preclinical and clinical studies 
included in this article highlight the potential of the JAK 
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inhibitor, RUX, to treat heavily, previously treated RRMM 
patients in combination with steroids as well as LEN, 
even among those resistant to both drugs. Its capacity 
to overcome resistance mechanisms and synergistically 
complement existing treatments holds promise for 
enhancing the therapeutic strategies employed against 
this incurable disease. Importantly, RUX is well tolerated 
and associated with few side effects. Additionally, its oral 
administration provides a convenient treatment option 

for patients which also holds true when combined with 
steroids and LEN.

Preclinical studies and clinical studies have 
suggested other areas of potential usefulness for JAK 
inhibitors for treating MM patients (Figure 1) based on 
its ability to increase the expression of CD38 on MM 
tumor cells and reduce the risk and severity of IRAEs 
from bispecific antibody and CAR-T cell therapies while 
simultaneously augmenting the anti-tumor effects of 

Figure 1: Ruxolitinib exerts its anti-myeloma effects through several mechanisms. Ruxolitinib is able to block M2 polarization 
in macrophages (top left) and is able to inhibit the expression of immune checkpoint proteins while at the same time increasing the 
cytotoxic activity of T-cells (top right). Additionally, through direct inhibition of the JAK/STAT pathway and indirect interactions with the 
WNT/β-catenin pathway, RUX is able to reduce the production of inflammatory cytokines from myeloma cells and BM stromal cells while 
increasing CD38 expression on myeloma cells (bottom left) which augments the activity of established anti myeloma agents (bottom right). 
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these immune-based therapies. First, RUX increases the 
expression of CD38 on MM cells [65], and as a result, 
this may increase the efficacy of the commonly used 
anti-CD38 antibodies daratumumab and isatuximab to 
treat MM patients [66, 67]. Second, despite the fact that 
RUX impairs vaccination responses to COVID-19 among 
patients with MM and myeloproliferative disorders  
[68–70], RUX and other JAK inhibitors have been shown 
to improve outcomes for treating hospitalized patients with 
COVID-19 infection [71]. In addition, abrupt withdrawal 
of RUX among patients infected with COVID-19 has 
been shown to lead to poor outcomes [72]. This effect is 
thought to be related to the ability of RUX to shutdown 
inflammatory responses brought on by high levels of 
inflammatory cytokines associated with COVID-19 
infection [73]. Thus, it is possible that treatment of patients 
undergoing CAR T-cell or bispecific antibody therapy 
with RUX may mitigate cytokine release syndrome and 
neurologic side effects that commonly impact patients 
undergoing these newer and highly effective anti-MM 
therapies [74, 75]. Third, given the inhibitory effects of 
RUX on checkpoint inhibitor gene and protein expression 
as we have demonstrated in MM and others have shown 
in other malignancies combined with its ability to augment 
anti-MM effects of T-cells [22–24], it is possible that RUX 
may improve the efficacy of immune-based therapies that 
rely on T-cell activity including CAR T-cell and bispecific 
antibody treatments. Thus, the results of the studies 
presented in this review will hopefully provide the impetus 
for conducting additional preclinical and clinical studies to 
evaluate RUX in the setting of MM as well as other types 
of cancer.
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