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ABSTRACT
Drug resistance is a major barrier against successful treatments of cancer 

patients. Gain of stemness under drug pressure is a major mechanism that renders 
treatments ineffective. Identifying approaches to target cancer stem cells (CSCs) 
is expected to improve treatment outcomes for patients. To elucidate the role of 
cancer stemness in resistance of colorectal cancer cells to targeted therapies, we 
developed spheroid cultures of patient-derived BRAFmut and KRASmut tumor cells and 
studied resistance mechanisms to inhibition of MAPK pathway through phenotypic 
and gene and protein expression analysis. We found that treatments enriched the 
expression of CSC markers CD166, ALDH1A3, CD133, and LGR5 and activated PI3K/
Akt pathway in cancer cells. We examined various combination treatments to block 
these activities and found that a triple combination against BRAF, EGFR, and MEK 
significantly reduced stemness and activities of oncogenic signaling pathways. This 
study demonstrates the feasibility of blocking stemness-mediated drug resistance 
and tumorigenic activities in colorectal cancer.

INTRODUCTION

Colorectal cancer is the third most diagnosed 
cancer and the second leading cause of cancer-related 
deaths in the world [1]. Aberrant activities of multiple 
signaling pathways such as epidermal growth factor 
receptor (EGFR), RAS-RAF, or PTEN-PI3K may 
promote carcinogenic mechanisms in colorectal tissue 
[2]. Mutations that constitutively activate RAS, BRAF, 
or PIK3CA are most common among colorectal cancers 
with frequencies of 30–50%, 10–15%, and 10–20%, 
respectively [3]. Two main downstream pathways that 
harbor mutations in over 50% of colorectal cancers 
are mitogen-activated protein kinase (MAPK) and 
phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR 
pathways [4, 5]. Therapeutic targeting of these pathways 
was shown to suppress growth of colorectal tumors [6, 7]. 
Nonetheless, cancer cells often adapt to the treatments and 

develop resistance through mechanisms such as mutation, 
amplification, or loss of the target; expression of multidrug 
efflux pumps; activation of receptor tyrosine kinases; 
compensatory signaling of alternate pathways; and 
tumor microenvironment-mediated changes in signaling 
activities of cancer cells [8]. Drug resistance remains a 
significant challenge against lasting effects of treatments.

Maintaining monolayer cultures of cancer cells 
under low-dose or stepwise increases in drug pressure has 
been widely used to develop a resistant population and 
study the underlying biological mechanisms. However, 
this approach primarily relies on cancer cell lines and 
takes several months to obtain a culture of drug resistant 
cells. More importantly, monolayer cultures do not mimic 
the three-dimensional (3D) architecture of tumors in 
terms of close cell-cell contacts, gradients of nutrients 
and oxygen, diffusion limitations and non-uniform drug 
exposure, and cellular heterogeneity. To address this 
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shortcoming, we previously adapted 3D spheroid cultures 
of colorectal cancer cell lines to long-term cultures under 
a cyclic treatment regimen that mimics how patients 
receive chemotherapy [9]. We found that BRAFmut 
and KRASmut colorectal cancer spheroids treated with 
different inhibitors of MAPK pathway showed a strong 
response during the initial treatment phase but became 
progressively less sensitive to the drugs during subsequent 
treatment cycles. Feedback activation of PI3K/Akt, JAK/
STAT, and Wnt pathways and gain of a cancer stem cell 
(CSC) phenotype occurred during the treatment cycles 
[10–12]. Interestingly, the expression of CSC markers 
reduced during the recovery cycle but increased during 
the second round of treatments, suggesting the plasticity of 
cancer cells in shifting their states and consistent with the 
proposed role of CSCs in drug resistance and relapse [13–
15]. We demonstrated that specific combination treatments 
suppressed feedback signaling and stemness.

Our previous studies used spheroid cultures 
of cancer cell lines in cyclic treatments to establish 
the feasibility of investigating mechanisms of drug 
resistance and testing the efficacy of different drug 
combinations [16]. Using primary cancer cells is critical 
to facilitate translational potential of this approach. 
However, culturing primary cells is challenging and 
often not feasible. To overcome this challenge, here we 
demonstrate the integration of 3D cultures of primary 
tumor cells, maintained as conditionally-reprogrammed 
cells (CRCs), into our cyclic treatment regimen. The 
CRC approach originally used a combination of a ROCK 
inhibitor and irradiated feeder cells to maintain and 
expand primary cells in culture [17]. But more recently, 
a defined growth medium was developed to eliminate the 
need for feeder cells [18]. We found that primary BRAFmut 
and KRASmut colorectal CRC spheroids gain stemness 
and activate compensatory pathways when treated with 
MAPK pathway inhibitors. We evaluated different drug 
pairs against these activities but found that they were 
ineffective against stemness. Only a clinically used 
triple drug combination against BRAF, MEK, and EGFR 
showed significant effects against stemness and signaling 
pathways. Overall, our approach enables mechanistic 
studies of drug resistance with 3D cultures of primary 
cancer cells to develop and test treatments that suppress 
cancer stemness-mediated tumor cell survival.

RESULTS

Characterization of tumor spheroids 

The aqueous two-phase cell patterning confined 
cancer cells into an aqueous nanodrop immersed in an 
immiscible aqueous immersion phase to facilitate spheroid 
formation, while ensuring free diffusive transport of 
nutrients and waste products between the nanodrop and 
the immersion phase [19]. After spheroids formed, we 

maintained them in the complete growth medium (Figure 
1A). CRC2 spheroids showed continuous increase of 
up to ~1.6-fold in cellular metabolic activity over time 
(Figure 1B). We validated this result by immunostaining 
the spheroids for a proliferative cell marker, Ki67 (Figure 
1C). Next, we evaluated basal level oncogenic signaling 
in these cells and found significant activities of BRAF and 
Akt (Figure 1D). To identify effective inhibitors against 
these pathways in our drug resistance studies, we selected 
a panel of inhibitors of MAPK, EGFR, BRAF, and PI3K 
pathways (Supplementary Table 1) and screened them 
dose-dependently against CRC2 spheroids (Figure 1E). 
We compared the effectiveness of the inhibitors based on 
their respective AUC values. AUC ranges from 0 to 1 to 
indicate complete cell death or viability, respectively, and 
segregates compounds based on their effectiveness [20]. 
Trametinib, salinomycin, and sorafenib respectively led 
to AUC values of 0.52, 0.55, and 0.58 and ranked as the 
most three effective compounds (Figure 1F). This analysis 
suggested that suppressing MEK1/2 kinase, which is 
downstream of both KRAS and BRAF signaling, most 
effectively inhibits CRC2 proliferation. Thus, we selected 
MEK inhibition to model drug resistance in subsequent 
studies.

Drug resistance and stemness of colorectal 
cancer cells

To mimic cyclic chemotherapy, we treated spheroids 
of all three CRCs with trametinib in the cyclic regimen 
(Figure 2A) [9]. This approach helped model how cancer 
cells spared by the treatment develop adaptive resistance. 
Trametinib potently inhibited cell proliferation during 
the initial treatment phase (T1) and reduced metabolic 
activities of spheroids by 2.5-fold, 1.8-fold, and 1.7-fold 
for CRC1 (KRASmut), CRC2 (BRAFmut and EGFRmut), and 
CRC3 (BRAFmut), respectively. However, cells became 
significantly less responsive to the subsequent treatment 
(T2) (Figure 2B). At the end of T2, metabolic activities of 
spheroids respectively increased by 2.6-fold, 1.5-fold, and 
1.6-fold for CRC1, CRC2, and CRC3, compared to after 
T1. This was consistent with our prior studies with cell 
lines [12], and the lack of response of tumor xenografts to 
MEK1/2 inhibitors [21]. 

Motivated by the role of CSCs in chemoresistance 
[13, 14], we quantified the expression of several 
prominent CSC gene markers in colorectal cancer, i.e., 
ALDH1A3, CD166, CD133, and LGR5, following each 
cycle of treatment [22–24]. In addition, we determined the 
expression of proliferative gene markers MYC [25], E2F1 
[26], and CHEK1 [27]. The expression of these markers 
following cyclic treatments of spheroids of all three CRCs 
with trametinib significantly increased (Figure 2C and 
Supplementary Figure 1). Most of the CSC genes were 
significantly upregulated in all three CRCs especially 
after T2. For example, the expression of ALDH1A3 and 
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CD133 increased by 4-fold and the expression of MYC 
and CHEK1 increased over ~2.5-fold in CRC1, CRC2, 
and CRC3 after T2 compared to after T1, suggesting gain 
of stemness and proliferation under treatment pressure. 
To validate our results, we investigated the protein 
expression of ALDH1 and CD133 in CRC2 spheroids and 
found significant increases following T1 and T2 (Figure 
2D). Our molecular analysis also showed significantly 
reduced ERK activity after T1 and T2 (Figure 3). 
However, PI3K/Akt activity decreased by 2-fold after T1 
but increased by 4-fold after T2, consistent with a major 
resistance mechanism to MEK inhibitors in BRAFmut 
colorectal cancer cell lines [9, 28]. Overall, these results 
established that resistance of CRCs to MEK inhibition 
in cyclic treatments is associated with enrichment of a 
CSC phenotype and activation of an alternative signaling 
pathway, PI3K/Akt. Because all three CRCs showed a 
similar response to MEK inhibition and gain of stemness 
following the treatments, we selected to only use CRC2 
spheroids for our remaining studies.

Combination treatments to suppress drug 
resistance of CRCs

Next, we studied whether specific combination 
treatments could prevent adaptive resistance of 
CRCs to MEK inhibition. Guided by various clinical 
trials for colorectal cancer [29–32], we selected and 
tested combinations of BRAF/EGFR, BRAF/MEK, 
MEK/WNT, and BRAF/WNT inhibitors at their IC50

 

concentrations against CRC2 spheroids. Combined 
BRAF/MEK inhibition using sorafenib/trametinib was 
the most effective and reduced the volume of spheroids 
by 2.6-fold and cell viability by 1.8-fold (Figure 4A). 
This was followed by inhibition of BRAF/WNT using 
sorafenib/salinomycin and MEK/WNT using trametinib/
salinomycin that ranked second and third, respectively. 
We asked to what extent these treatments inhibit stemness 
of cancer cells. Our analysis of CRC2 spheroids treated 
with sorafenib/trametinib showed significantly increased 
expression of ALDH1A3 by 1.9- and 2.5-fold, LGR5 by 

Figure 1: Characterization of tumor spheroids. (A) A 0.3 µl drop of the aqueous dextran (DEX) phase containing 1 × 104 CRC2 
cells is immersed in the aqueous polyethylene glycol (PEG) phase within a microwell. The drop settles to the well bottom and confines 
the cells to form a spheroid. Scale bar is 200 μm. (B) Temporal metabolic activity of CRC2 spheroids and representative images of 
spheroids from different days of culture. Error bars represent standard error from the mean (n = 8). Scale bar is 300 μm. *Denotes p < 0.05 
compared to control.  (C) A CRC2 spheroid immunostained for Ki67 cell proliferation marker on day 3 of culture. Scale bar is 100 μm. 
(D) Representative Western blots for phosphorylated and total levels of Akt, and BRAF in CRC2 cells. Bar graph shows quantified results 
of activities of the oncoproteins. (E, F) Dose responses of CRC2 spheroids to different molecular inhibitors and the respective normalized 
AUC values.
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Figure 2: Mechanism of drug resistance of CRC spheroids. (A) A cyclic treatment regimen of CRC spheroids consisting of two 
treatment cycles with 10 nM trametinib separated by a recovery phase. (B) Metabolic activities of CRC1, CRC2 and CRC3 spheroids 
during the cyclic treatment regimen. Error bars represent standard error from the mean (n = 8). *Denotes p < 0.05 compared to control. (C) 
Heatmap shows the normalized fold change values of prominent CSC gene marker after two rounds of 10 nM trametinib treatment. The 
fold change values are relative to the control spheroids on day 2. (D) Representative western blots for ALDH1, CD133, and Gapdh and the 
corresponding quantified results of CRC2 spheroids. Error bars represent standard error from the mean (n = 2). *Denotes p < 0.05 compared 
to control.

Figure 3: Signaling mechanisms of drug resistant CRCs. (A) Oncogenic pathways that promote survival, proliferation, and drug 
resistance of cancer cells. (B) Representative Western blots for ERK and Akt at the end of trametinib treatment 1 (T1) and treatment 2 (T2) 
of CRC2 spheroids and the corresponding quantified results are shown. Error bars represent standard error from the mean (n = 2). *Denotes 
p < 0.05 compared to control.
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1.8- and 4.6-fold, and CD166 by 1.5- and 1.9-fold after 
T1 and T2, respectively (Figure 4B and Supplementary 
Figure 2A). The expression of the proliferation gene 
E2F1 showed a significant increase by 1.5-fold only 
after T1. Similarly, sorafenib/salinomycin treatment led 
to a significant increase in the expression of CD166 by 
3.0- and 4.7-fold, and ALDH1A3 by 1.8- and 2.7-fold, 
after T1 and T2, respectively, and LGR5 by 8.8-fold 
after T2 (Figure 4C and Supplementary Figure 2B). 
The proliferation gene CHEK1 showed significantly 
elevated expression by 1.6- and 3.2-fold after T1 and 
T2, respectively. Trametinib/mithramycin combination 
decreased the expression of proliferation genes but was 
ineffective against stemness of cancer cells. Expression 
levels were significantly elevated for ALDH1A3 by 3.2- 
and 5.8-fold and for LGR5 by 4.2- and 4.3-fold after T1 
and T2, respectively, and for CD133 by 2.0-fold after T1 
(Figure 4D and Supplementary Figure 2C).

Because these inhibitor pairs did not suppress cancer 
cell stemness, we aimed to study the effectiveness of a 
triple drug combination against BRAF, MEK, and EGFR 
that was used in a clinical trial for patients with BRAFmut 
colorectal cancer [33]. This regimen was tolerated by 
patients and led to confirmed and unconfirmed response 
rates of 21% and 32%, respectively, which are some of 
the highest response rates with any regimen in BRAFmut 
colorectal cancer [34]. We treated the BRAFmut CRC2 
spheroids with combined sorafenib, trametinib, and 
erlotinib in the cyclic regimen. The treatment significantly 
reduced the spheroid volume and metabolic activities of 
the cells. There was a decrease of 2.2-, 4.8-, and 2.7-
fold after T1, R1, and T2, respectively, in the spheroid 

volume and 5.5-, 7.6-, and 8.3-fold after T1, R1, and T2, 
respectively, in cellular metabolic activities (Figure 5A). 
Our results showed a significant decrease in the expression 
of CSC markers ALDH1A3 by over 2.4- and 3.3-fold, 
CD166 by over 1.5- and 1.2-fold, and LGR5 by over 
4.8- and 10-fold after T1 and T2, respectively, compared 
to dual combinations (Figure 5B, Supplementary Figures 
2, 3). To validate these results at a protein level, we 
investigated the expression of ALDH1A3 and CD166 
markers and found a mild but significant expression of 
ALDH1 but a significant decrease in expression of CD166 
(Figure 5C).  The expression of all three proliferative 
genes also significantly reduced following the triple 
combination (Figure 5B and Supplementary Figure 3).

Next, we asked to what extent this combination 
could suppress oncogenic signaling in colorectal cancer 
cells. Our analysis showed that activities of BRAF, ERK, 
and EGFR significantly reduced after both T1 and T2 by 
up to 10-fold (Figure 5D). We have shown in the past that 
blocking MAPK pathways leads to feedback activity of 
PI3K/Akt pathway in colorectal cancer cells [9, 12]. This 
compensatory signaling was active in CRC2 following 
T1 but was suppressed after T2 by 2.5-fold (Figure 5D). 
Overall, our results indicate that the triple combination 
treatment blocked stemness and adaptive responses of 
BRAFmut colorectal cancer cells. 

DISCUSSION

We demonstrated that monotherapy of three different 
lines of BRAFmut and KRASmut patient-derived colorectal 
cancer cells with a MEK inhibitor led to resistance due to 

Figure 4: Combination treatments to suppress drug resistance of CRCs. (A) Responses of CRC2 spheroids to four different 
combination treatments measured using percent viability and volume of spheroids with respect to non-treated spheroids. Error bars 
represent standard error from the mean (n = 8). *Denotes p < 0.05 compared to control. Images represent control and treated spheroids. 
(B–D) The heatmaps show the normalized mRNA fold change values of CSC and proliferation genes in CRC2 spheroids following 
different combination treatments with (B) 100 nM sorafenib/10 nM trametinib, (C) 100 nM sorafenib/100 nM Salinomycin, and (D) 5 nM 
trametinib/1 nM mithramycin. The fold change values are relative to the control spheroids from day 2. The colored bar shows the range of 
fold change values.
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compensatory signaling and gain of stemness, consistent 
with our previous studies using cell lines [9, 12], and 
suggesting these mechanisms underlie resistance to MEK 
inhibition [35, 36]. Elevated expression of CSC markers 
CD166, ALDH1A3, CD133, and LGR5 was consistent 
with their role in drug resistance of colorectal carcinoma 
and correlation with a poor prognosis for patients [31, 
37, 38]. Selecting trametinib to model drug resistance 
was based on its specificity and potency and use in 
clinical trials of colorectal cancer [39, 40].  Our finding 
is consistent with studies that showed cyclic treatments 
of tumor xenografts with MEK inhibitors did not reduce 
tumor size [21, 41]. 

Our molecular analysis showed that cancer cells 
develop adaptive responses to MEK inhibition and 
gain stem cell-like and proliferative properties. This is 
consistent with past studies that showed genes such as 
E2F1 regulate cancer cell proliferation, self-renewal, 
and drug resistance and act as stemness regulators in 
tumors [42]. We previously showed MEK inhibition of 
BRAFmut colorectal tumor spheroids derived from cell 
lines downregulates ERK activity but activates Akt [9]. 
This was consistent with our finding with patient-derived 
cells, suggesting that compensatory PI3K/Akt signaling 
is a common resistance mechanism in colorectal cancer 
[43]. Moreover, we showed that dual inhibition of MEK 
and Akt was unsuccessful in blocking stemness of 

cancer cells and led to activation of other pathways [12]. 
Considering that this combination generated excessive 
toxicity to patients in clinical trials [44], different studies 
have explored alternative therapeutic options for patients 
with BRAFmut colorectal cancer. For example, BRAF 
inhibition alone using vemurafenib demonstrated striking 
lack of efficacy in colorectal cancer patients, in contrast 
to BRAFmut melanomas, and produced a response rate of 
only 5% [45]. This was due to the complex redundant 
and feedback signaling in colorectal tumors. To evaluate 
effectiveness of different drug combinations against 
cancer stemness, we adapted several dual combinations 
used in clinical trials of colorectal cancers. For example, 
dual BRAF and MEK inhibition in patients that showed a 
complete response led to reduced ERK activity relative to 
pretreatment despite PIK3CA mutations, suggesting that 
this mutation did not confer resistance to the treatment 
[30]. However, dual targeting of BRAF and MEK did not 
suppress CSC gene markers in our study. Motivated by 
the role of Wnt signaling in stem cells and cancer [46], we 
evaluated whether dual targeting of BRAF and Wnt could 
block cancer stemness. However, this approach was also 
ineffective. Mithramycin A, an FDA approved drug, which 
was recently shown to inhibit cancer stemness [47], was 
also ineffective in our study.

Motivated by the results of a phase III BEACON 
trial that demonstrated  a triple drug combination in 

Figure 5: Triple combination to suppress drug resistance of CRC spheroids. (A) Metabolic activity and volume of spheroids 
during cyclic treatment with the triple drug combination. Error bars represent standard error from the mean (n = 8). (B) Normalized mRNA 
fold change values of CSC and proliferation gene markers following each round of treatment with 100 nM sorafenib/10 nM trametinib/100 
nM erlotinib. The fold change values are relative to the control spheroids. The colored bar shows the range of fold change values. (C) 
Representative Western blots for ALDH1, CD133, and Gapdh and the corresponding quantified results (D) Representative Western blots of 
BRAF, ERK, EGFR, and Akt following cyclic treatments with the triple combination and the corresponding quantified results are shown. 
Error bars represent standard error from mean (n = 2). *Denotes p < 0.05 compared to control.
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BRAFmut colorectal cancer significantly increased the 
response rate and the median overall survival with well-
tolerated toxicity [33], we adapted this approach and 
designed a treatment against BRAF, MEK, and EGFR 
in our tumor model. Opposing effects of BRAF, MEK, 
and EGFR inhibitors in normal cells may counterbalance 
the MAPK pathway effects [34], providing a mechanistic 
explanation for the observed reduced toxicity in the 
clinical trial. This strategy generated significant benefits 
by suppressing expression of ALDH1A3, CD133, LGR5, 
CD166, and proliferation genes and simultaneously 
downregulated BRAF, ERK, EGFR, and Akt signaling. 
Our finding supports the hypothesis that CSCs confer drug 
resistance and suppressing stemness is a viable approach 
in BRAFmut colorectal cancer.

In conclusion, this study presented a model of 
cyclic drug treatment and recovery of patient-derived 
tumor spheroids and established that single-agent MEK 
inhibition of colorectal cancer cells lead to adaptive 
resistance of cancer cells through gain of stemness. A triple 
combination treatment used in a clinical trial of colorectal 
cancer patients effectively blocked growth, stemness, 
and activities of several oncogenic signaling pathways 
in cancer cells. Our approach to identify mechanisms of 
drug resistance of patient-derived cancer cells to targeted 
therapies and develop effective treatments is promising 
toward cancer precision medicine.

MATERIALS AND METHODS

Cell culture and spheroid formation

Three patient-derived conditionally-reprogrammed 
cells (CRCs) were received from the NCI Patient-Derived 
Model Repository (PDMR): CN0375 (CRC1), 817829 
(CRC2), and 997537 (CRC3). Advanced DMEM/F12 
medium was supplemented with 5% fetal bovine serum 
(FBS) (Hyclone), 0.04% hydrocortisone (Sigma), 0.001% 
EGF recombinant human protein (Invitrogen), 1% Adenine 
(Sigma), 1% Pen/Strep (Invitrogen), 1% L-glutamine 
(Invitrogen), and 0.1% Y-27632 dihydrochloride (Tocris 
Bioscience) and used to culture the cells. Cells were 
dissociated with Accutase (Stem Cell Technologies) from 
80–90% confluent monolayer cultures in tissue culture 
flasks. Accutase was neutralized using a stop buffer 
(90% PBS and 10 % FBS). The cell suspension was 
centrifuged down at 1000 rpm for 5 min. After removing 
the supernatant, cells were suspended in 1 mL of the 
culture medium and counted using a hemocytometer prior 
to spheroid formation. The culture conditions followed 
published protocols [17].

A polymeric aqueous two-phase system was used 
to form tumor spheroids [48, 49]. Bio-ultra polyethylene 
glycol (PEG) with a molecular weight of 35 kDa (Sigma) 
and dextran (DEX) with a molecular weight of 500 kDa 
(Pharmacosmos) were dissolved in the complete growth 

medium to obtain final stock solutions of 5.0% (w/v) 
PEG and 12.8% (w/v) DEX. The PEG phase solution was 
supplemented with 0.24% of methylcellulose powder. 
A round-bottom ultralow attachment 384-well plate 
(Corning) was used as a “destination plate”. Each well of 
this plate was loaded with 30 µl of the aqueous PEG phase 
medium. A suspension of 1 × 108 cells/ml was prepared, 
and 100 µl of the suspension was thoroughly mixed with 
100 µl of the 12.8% (w/v) aqueous DEX phase medium. 
This mixing reduced DEX concentration to 6.4% (w/v) 
and adjusted the density of cells to 5 × 107 cells/ml. A 1% 
collagen solution (4 mg/ml) was added to DEX phase to 
facilitate forming spheroids. Each well from one column 
of a flat bottom 384-well plate (Corning), which was used 
as a “source plate”, was filled with 25 µl of the resulting 
cell suspension in the DEX phase. A robotic liquid handler 
(Bravo SRT) (Agilent Technologies) was used to aspirate 
0.3 µl of the suspension containing 1 × 104 cells from each 
well and dispense it into each well of the destination plate 
containing the aqueous PEG phase. The destination plate 
was incubated for 48 hours to allow cells in each well to 
aggregate into a compact spheroid.

Metabolic activity and immunohistochemical 
analysis of spheroids

A total of 8 spheroids were analyzed daily to assess 
their metabolic activities. Culture medium was renewed 
every 2 days for 9 days. Metabolic activities of cells 
in spheroids were determined by adding a PrestoBlue 
reagent (Life Technologies) to wells at 10% of total 
volume in each well, incubating the plates for 2 h, and 
measuring the fluorescence intensity from the wells using 
a plate reader (Synergy H1M, Biotek Instruments) [50]. 
Spheroids were harvested on day 3 of culture, fixed with 
4% paraformaldehyde, and immunostained for Ki67 
(Cell Signaling Technology). Nuclei were stained with 
Hoechst (Life Technologies). Fluorescence images were 
captured with a confocal microscope (Nikon A1) at a 10× 
magnification. FITC filter was used to capture stacks of 
images with a z-spacing of 20 µm. NIS Elements software 
was used for image acquisition. Z-projected images were 
reconstructed by collapsing the stacks in ImageJ (NIH).

Drug tests, cyclic regimen, and combination 
treatments

Trametinib, sorafenib, salinomycin, neratinib, 
MYCi361, dactolisib, vemurafenib, and erlotinib were 
purchased from Selleckchem. Mithramycin A was 
purchased from Sigma. All compounds were dissolved 
in dimethyl sulfoxide (DMSO) except for dactolisib that 
was dissolved in dimethylformamide. Stock solutions 
of these compounds were prepared according to the 
manufacturers’ instructions. Stocks solutions were stored 
in −80°C. The compounds were tested against tumor 
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spheroids according to our published protocol [11, 51]. 
For cyclic drug treatments of spheroids, a concentration 
of 10 nM trametinib was selected from dose-dependent 
tests. CRC spheroids were subjected to two treatment 
rounds (T1 and T2), each for 6 days with a treatment 
renewal after 72 h, and with a recovery phase (R1) for 6 
days in between [9]. Prior to the start of the experiments 
and at the end of each cycle of treatment and recovery, 
metabolic activities of cells were measured using a 
PrestoBlue reagent.

For combination treatments, IC50 concentrations 
of the compounds were used: 10 nM trametinib/100 
nM salinomycin against MEK/WNT and 140 nM 
sorafenib/116 nM salinomycin against BRAF/WNT. 
To evaluate the effect of combined inhibition of MEK 
and CSCs, a matrix format combination treatment was 
used, and the fraction of cells affected was computed 
(Supplementary Figure 4). Based on this analysis and to 
avoid highly toxic concentrations, a 5 nM trametinib/1 
nM mithramycin combination was selected. A triple drug 
combination with 140 nM sorafenib/10 nM trametinib/300 
nM erlotinib was used against BRAF/MEK/EGFR. 
Combinations treatments were done in the cyclic regimen 
and viability of cells was measured. The volume of 
spheroids was determined using their phase images as 
demonstrated previously [28].

Quantitative RT-PCR 

Gene expression analysis with CRC spheroids was 
performed after T1, R1, and T2 for each treatment. All 
fold changes values were expressed relative to that after 
24 h, which was used as the control for all three time 
points. Spheroids were lysed using a Total RNA Kit 
(TRK) lysis buffer (Omega Biotek) and the lysate was 
homogenized by passing it through homogenizer mini 
columns (Omega Biotek). Total RNA was obtained using 
an RNA isolation kit (Omega Biotek). After removing 
DNA using RNase-free DNase (Omega Biotek), purity and 
concentration of isolated RNA were assessed using optical 
density (OD) 260/280 spectrophotometry (Synergy H1M, 
Biotek Instruments). cDNA was synthesized from 1 μg 
of total RNA using random hexamer primers (Roche). 
Real-time q-PCR was performed in a LightCycler 480 
instrument II using a SYBR Green Master Mix (Roche). 
After combining 50 ng of cDNA with primers and the 
SYBR Green Master Mix to a final volume of 15 μL, the 
reactions were incubated at 95°C for 5 min followed by 45 
cycles of amplification, that is, at 95°C for 10 s, at 60°C 
for 10 s, and at 72°C for 10 s. The primer sequences for 
the genes are listed in Supplementary Table 2. Expression 
levels of mRNA for different proliferation gene markers 
were calculated relative to β-actin and hypoxanthine 
phosphoribosyltransferase (HPRT) using the ΔΔCt 
method. All the expression values were calculated with 
respect to control (non-treated) samples. The fold changes 

in the expression of each mRNA was determined according 
to the 2−ΔΔCt method [52]. A total of 384 spheroids were 
collected for each condition and every experiment had two 
biological and two technical replicates. 

Western blotting

Western blot analysis with spheroids was performed 
using our established protocol [11]. Primary antibodies 
were phospho-p44/42 MAPK (pErk 1/2), p44/42 
MAPK (Erk1/2), phospho-Akt (Ser473), Akt (pan), 
phosphor-BRAF (Ser445), BRAF (D9T6S), phosphor-
EGFR (Tyr1068), EGFR (Tyr1173), CD133 (D2V8Q), 
and ALDH1A1 (D9J7R) (Cell Signaling Technology). 
Solutions of primary antibodies were prepared at 
concentrations recommended by the manufacturer. 
Nitrocellulose membranes were incubated overnight at 
4°C with primary antibody solutions. After several wash 
steps, membranes were incubated with a horseradish 
peroxidase (HRP)-conjugated secondary antibody for 
1 h, followed by repeated washing. Detection was 
carried out using ECL chemiluminescence detection kit 
(GE Healthcare) with a FluorChem E imaging system 
(ProteinSimple).

Statistical analysis

Student’s t-test or one-way ANOVA were used to 
evaluate spheroid volume differences between single-agent 
treatments and vehicle control, to compare mRNA fold 
change values between treated and non-treated samples, 
and to compare protein phosphorylation levels from a 
drug-treated group to its respective vehicle control group. 
The analysis was performed in Microsoft Excel. Graphpad 
Prism 5 was used to fit a four-parameter sigmoidal dose-
response curve to metabolic activity data and to determine 
the area under dose-response curves (AUC). 
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