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Elevated PI3K signaling drives multiple breast cancer subtypes
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AbstrAct:
Most human breast tumors have mutations that elevate signaling through a key 
metabolic pathway that is induced by insulin and a number of growth factors. This 
pathway serves to activate an enzyme known as phosphatidylinositol 3’ kinase 
(PI3K) as well as to regulate proteins that signal in response to lipid products of 
PI3K. The specific mutations that activate this pathway in breast cancer can occur 
in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, 
catalytic and regulatory subunits of PI3K, serine/threonine kinases that function 
downstream of PI3K, and also phosphatidylinositol phosphatase tumor suppressors 
that function to antagonize this pathway. While each genetic change results in 
net elevation of PI3K pathway signaling, and all major breast cancer subtypes 
show pathway activation, the specific mutation(s) involved in any one tumor may 
play an important role in defining tumor subtype, prognosis and even sensitivity 
to therapy. Here, we describe mouse models of breast cancer with elevated PI3K 
signaling, and how they may be used to guide development of novel therapeutics.

INtrODUctION

In 1988, the phosphatidylinositol kinase that copurified 
with tyrosine kinase receptors was found to phosphorylate 
phosphatidylinositol lipids at the 3’ hydroxyl position [1, 
2]. This enzyme, class I phosphatidylinositol 3’ kinase 
(PI3K), was subsequently found to be responsible for 
converting phosphatidylinositol 4,5-bisphosphate (PIP2) 
to phosphatidylinositol 3,4,5-trisphosphate (PIP3), and 
has been implicated in biological processes from insulin-
mediated regulation of glucose uptake and metabolism 
to transformation and even metastatic dissemination of 
tumor cells [1]. Class IA PI3Ks are composed of one 
regulatory and one catalytic subunit. The most frequently 
expressed and commonly studied regulatory subunit is 
p85α. This binds to the p110α catalytic subunit to control 
its stability and activity [3]. PI3K signaling is stimulated 
in response to activation of many growth factor receptors, 
most potently by the insulin receptor tyrosine kinase (InsR) 

or related insulin-like growth factor 1 receptor (IGF-1R)
(Figure 1). In either case, receptor activation leads to 
tyrosine phosphorylation of a large adaptor protein from 
the insulin receptor substrate family (IRS1, 2, 3 or 4) [4]. 
The IRS proteins contain a number of YxxM motifs that, 
when phosphorylated on tyrosine (Y), form high affinity 
binding sites for certain SH2 domains such as those found 
within the p85 regulatory subunit [5]. Recruitment of the 
p85;p110 PI3K complex to tyrosine-phosphorylated IRS 
overrides the inhibitor influence of p85 on its catalytic 
partner [3, 5, 6]. Binding of GTP-loaded Ras to p110 also 
increases kinase activity [7]. These effects synergize, and 
the resulting activated PI3K converts PIP2 into PIP3 [7, 8]. 
PIP3 subsequently recruits, and in some cases activates, a 
series of signaling proteins, most of which contain PIP3-
binding pleckstrin homology (PH) domains. Best studied 
among these PIP3 targets are the Akt (1, 2 3)/PKB (α, 
β or γ) AGC-family serine/threonine kinases [9-11], as 
well as PDK1 which phosphorylates Akt at threonine 308 
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(Akt1), thereby activating it with respect to a number of 
substrates including PRAS40 and TSC2. Phosphorylation 
of PRAS40 by Akt induces sequestration of p-PRAS40 
by 14-3-3 proteins, which prevents it from inhibiting the 
mTOR, Raptor, mLST8 and Deptor-containing TORC1 
serine/threonine kinase complex [12-14]. Similarly, Akt-
mediated phosphorylation of TSC2 leads to suppression 
of the TSC1/TSC2 Rheb GAP activity with subsequent 
accumulation of GTP on the Rheb small GTPase [15]. 
Rheb-GTP activates TORC1. Thus, phosphorylation of 
PRAS40 and TSC2 lead to activation of TORC1, which 
blocks autophagy while increasing cap-dependent protein 
translation, glucose uptake, glycolysis, activation of the 
pentose phosphate pathway as well as fatty acid and sterol 
synthesis [16-20]. TORC1 is also regulated by Rag-family 
GTPases that respond to amino acid levels, AMP kinase 
that is regulated by the AMP:ATP ratio as a readout of 
cellular energy levels, as well as by the Rac GTPase that 
functions downstream of growth factor signaling [21]. Full 
activation of Akt also requires phosphorylation at serine 

473 by TORC2, a TORC1-related complex containing 
mTOR, Rictor, mLST8, Deptor, mSIN and Proctor [22]. 
TORC2, or a related Rictor-containing complex, also 
contains integrin linked kinase (ILK) [23-26]. ILK is a 
kinase/adaptor protein that binds to β1-integrins as well 
as to PIP3, and is required for recruitment of caveolae 
to the plasma membrane [23, 25, 27, 28]. AktpT308/pS473 
phosphorylates many signaling proteins, including 
GSK3 serine/threonine kinases and Hdm2 E3 ubiquitin 
ligases, inhibiting the former and activating the latter [10, 
29]. Akt also phosphorylates FOXO1a/3a transcription 
factors, which causes FOXO-14-3-3 complex formation 
and nuclear exclusion, thereby blocking the ability of 
FOXO proteins to activate a pro-apoptotic transcriptional 
program [22, 30]. Indeed, Akt regulates survival on the 
level of transcription, through FOXO, and also through 
phosphorylation of cytoplasmic proteins including Bad 
[10].

Both constitutive and inducible negative regulators 
act to antagonize the PI3K pathway, maintaining the 

Figure 1: schematic diagram of the PI3K pathway and its activation in human breast cancer. The pathway can be 
activated at multiple levels including at the level of InsR/Igf-1R, c-MET or HEH2/HER3 receptors, at the level of adaptor proteins, PI3K 
regulatory or catalytic subunits, at the level of downstream Akt kinases or through deletion/inactivation of inhibitors of the pathway. Note, 
for simplicity, alternative receptor-activated signaling pathways as well as the full spectrum of PIP3 targets and Akt and TORC targets are 
not shown.
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system in an off state under resting conditions and 
returning it to this state once stimulation is relaxed 
(Figure 1). These include ligand-sequestering proteins as 
well as tyrosine phosphatases and endocytic regulators 
that function to shut down receptor signaling. In addition, 
PIP3 levels are held in check by phosphatases that remove 
the 3’ phosphate, the 4’ phosphate or the 5’ phosphate. The 
most direct negative regulator of this pathway is PTEN, a 
phosphatidylinositol 3’ phosphatase and limited specificity 
protein phosphatase [31-35]. PTEN was discovered as 
a tumor suppressor that, when deleted, leads to elevated 
levels of PIP3. Interestingly, PTEN also functions in the 
nucleus as a cell cycle inhibitor via its ability to positively 
regulate the anaphase promoting complex (APC-
CDH1) [36, 37]. Of note, type II phosphatidylinositol 4’ 
phosphatase also functions to limit signaling though PI3K 
pathway targets and is deleted in some tumors (see below) 
[38]. Other inhibitors of this pathway include PHLDA3, 
a p53-inducible PH domain protein that sequesters PIP3 
and blocks activation of Akt [39], as well as the PH-
domain containing PHLPP serine/threonine phosphatases 
that dephosphorylate Akt at serine 473 [40]. In addition 
to PRAS40 and TSC2, which limit TORC1 activation as 
noted above, the Dep and PDZ domain protein, Deptor, 
is a potent inhibitor of TORC1 and TORC2 [40, 41]. 
Interestingly, Deptor can enhance the TORC2/TORC1 
activity ratio in cells [41]. Finally, several PI3K pathway 
kinases function as feedback inhibitors to shut down 
signaling. For example, activated Akt can inhibit FOXO-
mediated expression of growth factor receptors including 
InsR, IGF-1R and HER3 [30, 42]. The TORC1 target, 
p70S6 Kinase (S6K1) can phosphorylate and target IRS 
proteins for degradation, and thereby choke off further 
insulin-mediated activation of PI3K [4, 43].

tHE PI3K PAtHWAY Is ONcOGENIc

The PI3K pathway has been linked to growth 
control and transformation in many tissues [19]. Indeed, 
genes coding for most of the proteins described above 
are oncogenes or tumor suppressor genes, depending on 
whether they function to activate signaling through the 
PI3K pathway or act to inhibit it. The gene coding for 
p110α, PIK3CA, was identified as a viral oncogene in 
Avian Sarcoma Virus 16 [44, 45]. This discovery presaged 
identification of PIK3CA mutations in many human 
tumors, most prominently in tumors of the breast, colon, 
endometrium and thyroid gland [11, 45-47]. Mutations in 
this gene map to two hotspots, one coding for a centrally 
located helical domain, typically E542K or E545K, and 
one in the C-terminal kinase domain, most commonly 
H1047R [46]. Surprisingly, while helical domain and 
kinase domain mutations both increase the catalytic 
activity of p110α, they show differing requirements 
for full activation in vivo. Specifically, helical domain 
mutants still depend on Ras-GTP for activation, but not 

on p85. In contrast, full activation of the H1047R kinase 
domain mutant is Ras-independent, but dependent on 
p85-phosphotyrosine interaction [48]. Indeed, helical and 
kinase domain mutations cooperate when present in the 
same cDNA, generating an allele capable of activating 
Akt/PKB to a level 1000-fold higher than observed 
downstream of either single mutant [48]. These mutations 
are not commonly seen together in the same tumor. 
However, PIK3CA mutations do occur with mutations that 
activate tyrosine kinases, activate Ras or inactivate PTEN 
[49]. Thus, greatly enhanced PI3K signaling may only be 
achieved through cooperating oncogenic mutations that 
override negative regulation of this biologically powerful 
pathway. In this regard, p53 and the PI3K pathway 
intersect at multiple levels. For example, Akt activates 
the Hdm2 E3 ligase that targets p53 for destruction [50, 
51], and conversely, p53 induces expression of PI3K 
pathway inhibitors, PTEN and PHLDA3 [39, 52]. These 
interactions may well explain the coincidence of mutations 
that affect both pathways in many tumors (see below). 

MUtAtIONs IN PI3K PAtHWAY IN 
HUMAN brEAst cANcEr

With the advent of tumor re-sequencing, commonly 
mutated oncogenes, tumor suppressor genes and defective 
signaling pathways involved in many tumor types have 
been identified. This analysis yielded a somewhat 
disappointingly complex picture for breast cancer, where 
a large number of mutations have been identified, each in 
a small percentage of tumors [53]. There were, however, 
two genes mutated in a large fraction of breast tumors: 
TP53 and PIK3CA [53]. For example, mutant alleles of 
PIK3CA were identified in approximately 30% of breast 
tumors [46, 54-56]. The specific alleles found include 
both helical and kinase domain mutants, each occurring 
with approximately the same frequency. In some cases, 
PIK3CA gene amplification was also noted [57]. This 
was more common in tumors with helical domain mutant 
alleles [58].

The PI3K pathway is also activated in breast cancer 
through copy number changes and/or mutations or 
deletions in several other genes [59-63] (Figure 1). For 
example, the gene coding for HER2/Neu is amplified and 
frequently associated with high-level expression of HER3, 
a pseudokinase receptor, HER2-binding partner and 
substrate with multiple YxxM sites for recruitment of p85 
[64]. Some breast carcinomas show gene amplification at 
the MET/CAVEOLIN gene locus [65-68]. This results in 
elevated tyrosine kinase signaling from MET through to 
Gab adaptor proteins [69, 70] and potentially to HER3 
[71], both of which bind p85 when phosphorylated [64, 
69, 70]. Caveolin proteins enhance InsR and IGF-1R 
signaling [72-74]. Indeed, the InsR and IGF-1R genes are 
amplified in some breast tumors [75, 76]. Genes coding 
for cytoplasmic adaptor proteins like IRS-4 as well as 
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Gab1 and Gab2 are mutated or amplified in a small 
percentage of breast cancers [53, 77-79]. PIK3R1, the 
gene coding for p85α, is also mutated in some cases [53, 
78]. Downstream of PIK3CA, gene amplifications occur 
in PDPK1, the gene coding for PDK1 [80]. Also, gain-
of-function, activating mutations were found in the PH 
domain of AKT1 (AKT1E17K) [81, 82].

Mutations that disrupt negative regulators of the 
PI3K pathway have also been detected in breast cancer. For 
example, the gene coding for PTPN12/PTP-Pest, a non-
receptor tyrosine phosphatase, is commonly disrupted, 
leading to enhanced tyrosine phosphorylation of multiple 
growth factor receptors, with resulting downstream PI3K 
pathway activation [83]. Heterozygous loss-of-function 
germline mutations in PTEN cause PTEN hamartoma 
tumor syndromes (PHTS) including Cowden’s syndrome 
that is associated with a high incidence of breast cancer 
[84]. Accordingly, approximately 30% of sporadic 
breast tumors show PTEN inactivation, either through 
mutation or epigenetic suppression [31, 32, 84-88]. miR-
21 has been shown to suppress PTEN gene expression in 
response to IL6/Stat3 signaling in many breast tumors [89-
92]. HER2-mediated activation of the Src tyrosine kinase 
causes phosphorylation of PTEN and its dissociation 
from the plasma membrane, thereby enhancing PI3K 
pathway signaling [93, 94]. Finally, as noted above, loss-
of-function mutations in type II phosphatidylinositol 4’ 
phosphatase (INPP4B) also occur in breast cancer [38, 
95]. As more breast cancer genomes are sequenced, it is 
not unreasonable to expect evidence for each and every 
PI3K pathway regulatory gene to be implicated in a subset 
of breast tumors.

tHE PI3K PAtHWAY AND brEAst 
cANcEr sUbtYPEs

The diagnosis of breast cancer describes a collection 
of diseases. The distinction between hormone receptor 
positive and negative forms dates back many years, and 
pathologists have long noted a wide range of histological 
and clinical features in breast cancer. However, with 
advances in transcriptional profiling, a relationship 
between pathological subtype and what is now called 
molecular subtype has emerged [96]. Equally exciting 
is the realization that less common mutations in breast 
cancer as a whole can be quite common when individual 
breast cancer subtypes are considered [97]. The major 
molecular subtypes are: luminal A and B, HER2+, basal 
and claudin-low. Luminal A and B are both estrogen 
receptor (ERα) positive subtypes, whereas basal and 
claudin-low are triple negative tumors (ERα-negative, 
progesterone receptor negative and HER2 negative) [98].

PIK3CA mutations are found in tumors from most 
subtypes, which explains why this gene scored as one of the 
two most commonly mutated genes in breast cancer [53-
56]. For example, 35% of estrogen receptor (ERα) positive 

tumors, 23% of HER2/Neu positive tumors and 8% of basal 
tumors have PIK3CA mutations [99]. PIK3CA mutations 
either do not occur, or occur at a very low frequency, in 
claudin-low breast cancer [99]. In addition to the major 
subtypes, there are a number of rare pathological variants 
of breast cancer that are not represented in most studies. 
Indeed, metaplastic breast cancer, a relatively rare form 
[100], shows the highest frequency of PIK3CA mutations 
(47%) [99]. Finally, PIK3CA mutations are found in many  
papillary breast tumors and in androgen receptor positive 
apocrine breast tumors, as well as in premalignant lesions 
such as DCIS [101-104]. Remarkably, breast cancers 
with helical and kinase domain mutant alleles show 
widely differing prognoses. Helical domain mutations are 
associated with dramatically reduced overall and disease-
free survival, whereas patients with kinase domain mutant 
breast tumors show enhanced survival as compared to 
patients with either wildtype or helical mutant PIK3CA 
[105]. In line with this finding, expression of an E545K 
helical domain mutant of PIK3CA in MDA-MB-231 cells 
induced a highly motile and malignant state, in contrast to 
the effect of expressing an H1047R allele, which caused 
more limited transformation [106].

With additional transcriptional profiling, the 5 
molecular subtypes have been further subdivided on the 
basis of signaling pathway activation to 17 identifiable 
groups of tumors [97]. This analysis has shown that PI3K 
pathway activity is elevated in over half of the luminal 
subtypes, in 1 of 2 HER2/Neu subtypes and 3 of 3 basal 
subtypes. Particularly striking is the very high level of 
PI3K pathway activation observed in luminal B subtype 6, 
suggesting that mutations in several genes may cooperate 
to hyperactivate the pathway in these tumors [97]. 

In contrast to PIK3CA mutations, some PI3K pathway 
mutations are found in a limited group of breast tumors 
because they are associated with one or few subtypes. 
For example, and by definition, high-level expression of 
HER2/Neu activates PI3K signaling in HER2+ subtype 
tumors. Loss of PTEN gene function or expression is 
frequently observed in basal-like breast tumors [107, 
108]. In addition, INPP4B is preferentially lost in basal 
breast cancers [95, 109]. In contrast, activating mutations 
in Akt1 are most frequently observed in luminal tumors 
and specifically in papillary tumors [101].

Some forms of breast cancer show very high level 
PI3K pathway activation [97], and this situation is 
associated with poor survival [61, 62]. Initially, it was 
thought that different mutations in the pathway would 
be mutually exclusive and unnecessary to achieve 
transformation. However, this idea has proved to be 
incorrect and cooperation between several oncogenic 
mutations on the pathway is relatively common, especially 
in poor prognosis tumors [49]. For example, amplification 
of HER2 and mutational activation of PIK3CA or PTEN 
inactivation occur together in many breast tumors [56]. 
This situation has been associated with resistance to HER2 
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targeted therapy [93, 94, 110-112]. Also, in MCF10A 
cells expressing high levels of HER2/Neu, a kinase 
domain mutant of PIK3CA (H1047R) induced expression 
of Heregulin, the ligand that activates HER2/HER3 
signaling through the PI3K pathway [113]. In contrast, a 
helical domain mutant (E545K) enhanced transformation 
without inducing Heregulin expression [113]. Therefore, 
in HER2 subtype breast cancers with PIK3CAH1047R 
or other kinase domain mutant alleles, therapy with 
Herceptin/Trastuzumab together with an antibody that 
blocks Heregulin could be particularly effective. As noted 
above, the gene coding for PDK1 is amplified in many 
breast tumors with PI3K pathway activation, including 
tumors with HER2 amplification, activating mutations in 
PIK3CA or PTEN inactivation [80]. PTEN inactivation 
and PIK3CA mutation occur together in a subset of tumors 
[1], as do PTEN inactivation and inositol polyphosphate 
4-phosphatase II gene deletion [109]. 

MOUsE MODELs

Mouse models of breast cancer have been refined 
through use of gene targeting to generate conditional 
mutants and transgenics that mimic pathological features 
of specific breast cancer subtypes [114-118]. To model 
PIK3CA-mutant breast cancer we generated mice with an 
H1047R mutant Pik3ca cDNA targeted to the ubiquitously 
expressed ROSA26 locus (R26) [119]. This cDNA was 
preceded by 5’ loxP-flanked transcriptional stop sequences 
and, when mated to MMTV-Cre mice, approximately 
70% of the resulting female R26-Pik3caH1047R;MMTV-Cre 
mice developed mammary adenosquamous carcinoma or 
adenomyoepithelioma starting at about 5 months of age. 
Control R26-Pik3cawt;MMTV-Cre females were also 
generated but these animals did not develop mammary 
tumors. Glandular regions of the H1047R mutant 
tumors included cells expressing luminal and basal 
epithelial markers, whereas squamous regions expressed 
mesenchymal markers such as vimentin, desmin and/
or N-cadherin. A subset of glandular cells expressed the 
estrogen receptor, which matches molecular subtype data 
in humans, where PIK3CA mutations are commonly found 
in ERα-positive luminal breast cancers. As expected, 
tumors from this mouse model showed evidence of PI3K/
Akt pathway activation. To test for cooperation between 
PIK3CA and TP53, the two most common mutations in 
breast cancer [53], R26-Pik3caH1047R;MMTV-Cre mice 
were also crossed with p53loxP conditional mutants [120]. 
The resulting double mutant females showed accelerated 
tumor onset as well as an altered spectrum of mammary 
tumors [119]. A second model of PIK3CAH1047R-induced 
breast cancer has also been reported. In this study, a 
ROSA-targeted H1047R mutant cDNA was activated by 
expression of either WAP-Cre or MMTV-Cre. Mammary 
tumors in this model, which were ERα-positive and 
contained cells expressing either cytokeratin type as 

above, also showed evidence of enhanced PI3K/Akt 
pathway signaling. These mice developed mammary 
adenosquamous carcinomas and adenomyoepitheliomas, 
as well as adenocarcinomas with squamous metaplasia, 
adenocarcinomas and adenocarcinmatosis with invasive 
periductal cords of neoplastic cells [121]. Thus, in both 
cases, Pik3caH1047R induced a heterogeneous mixture of 
ERα-positive mammary tumors, some of which showed 
metasplastic differentiation. These data fit with the wide 
spectrum of PIK3CA mutant breast tumors observed 
in humans. However, these results contrast studies with 
activated Akt. Several groups have generated transgenic 
mice expressing mutationally activated Akt1 in the 
mammary gland. In each case, mutant Akt1 delayed 
involution but did not induce tumor formation [122, 
123]. As with R26-Pik3caH1047R-Cre model mice, but 
unlike Akt1 transgenics, Pten loss-of-function mutants 
develop mammary tumors. This was first observed in Pten 
heterozygous mice that model Cowden’s syndrome [124], 
but also confirmed in PtenloxP;MMTV-Cre conditional 
mutants which developed mammary tumors starting at 2 
months of age [125]. These tumors ranged from benign 
fibroadenomas to pleiomorphic adenocarcinomas [125]. 
Finally, mammary tumors were also induced in transgenic 
mice overexpressing Igf1R in mammary epithelium 
[126]. A heterogeneous mixture of tumor types was also 
observed in this model, with adenosquamous carcinoma 
and adenomyoepithelioma occurring at a high frequency. 
In addition, more homogenous HER2/Neu-like tumors 
were also noted as were metaplastic Wnt-like tumors 
[126, 127].

Mouse studies have also revealed cooperative 
interaction between PI3K pathway genes and other genes 
or pathways implicated in human breast cancer. As noted 
above, TP53 deletion showed cooperative interactions 
with Pik3caH1047R [119]. Also, a dominant Akt1 mutant 
reduced latency of tumor formation in MMTV-Neu mice, 
while decreasing invasion and metastasis in this model 
[128]. In contrast, deletion of Pten decreased tumor 
latency in MMTV-Neu mice but induced development of 
heterogeneous basal-like mammary tumors with enhanced 
metastatic dissemination [129]. These results were 
somewhat surprising and revealed further complexity 
in PI3K pathway signaling. Indeed, in vitro studies 
have shown that, like p110α [130], Akt2 activation is 
associated with enhanced β1-integrin mediated migration 
[131]. In fact Akt1 and Akt2 appear to play opposite roles 
in this context, with Akt1 suppressing Akt2-dependent 
migration [132]. In vivo, Akt1 enhanced growth of HER2/
Neu primary tumors, but suppresses their dissemination, 
whereas Akt2 impairs local growth but stimulated 
metastasis [133-135]. The mechanism by which Akt 
isoforms regulate migration and metastasis in opposite 
directions may involve differential regulation of Pak kinase 
by Akt1 and Akt2 and/or distinct subcellular localization 
[134, 136, 137]. Also, Akt1 signaling maintains high 
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expression of miR-200-family microRNAs that suppress 
epithelial mesenchymal transition and Akt2 upregulates 
miR-21, which inhibits PTEN expression as noted above 
[138, 139]. On the other hand, differential activation 
of Akt1 and 2 may be achieved through PHLPP serine/
threonine phosphatases. PHLPP1 dephosphorylates and 
thereby inactivates Akt2, whereby PHLPP2 targets Akt1 
for dephosphorylation [140]. 

UsING tHE MOUsE tO GUIDE 
EFFEctIVE tHErAPY

These data highlight a series of questions that 
can be resolved through the study of mouse models of 
PI3K-pathway activated breast cancer. Furthermore, the 
answers to these questions can help guide development of 
effective therapy. First of all, breast cancer patients with 
helical and kinase domain mutants show dramatically 
different survival [105]. Why is this? Perhaps helical 
mutants activate pro-migratory Akt2 dependent signaling 
and metastasis, whereas kinase domain mutants activate 
Akt1? If so, how does this operate at the molecular 
level? Alternatively, helical or kinase domain mutants 
may activate a different set of PIP3 targets such as ILK 
or SGK3, an estrogen-regulated AGC family kinase that 
is required for survival of the ERα-positive breast cancer 
cell line MCF7 [141, 142]. These questions can be readily 
addressed with mouse models. Firstly, a mouse model 
of Pik3caE545K-induced breast cancer would have to be 
generated, analyzed and compared to an isogenic model of 
Pik3caH1047R-induced disease. As helical domain mutants 
are more frequent associated with infiltrating lobular 
carcinoma and patients with these mutants show relatively 
poor survival [105], it would be interesting to determine 
whether tumors in a mouse model of Pik3caE545K-induced 
breast cancer are lobular and metastatic, in contrast to the 
essentially non-metastatic tumors typically observed in 
Pik3caH1047R-model mice [119]. 

Helical and kinase domain mutants are dependent on 
distinct signaling inputs for full PI3K pathway activation 
[48]. Consequently, a different network of oncogenic 
mutations may cooperate with each. Perhaps, mutations 
that activate Ras signaling will be selected for in tumors 
with helical domain mutants of PIK3CA, whereas tyrosine 
kinase receptor genes will be activated or amplified in 
tumors with kinase domain mutants. By using retroviral- 
or transposon-based insertional mutagenesis screens 
in Pik3ca(E545K vs H1047R)-model mice, or deep sequencing 
of Pik3ca(E545K vs H1047R)-model tumors, the cooperative 
network associated with each Pik3ca mutant can be 
defined and new combination therapies developed for 
patients with analogous PIK3CA mutant breast tumors. 
To test whether helical and kinase mutant alleles activate 
different PIP3 targets, such as Akt1, Akt2, ILK, SGK3 
or guanine nucleotide exchange factors for Rho family 
proteins including Rac, signaling experiments can be 

performed on mouse tumors induced by each mutant. 
These experiments are particularly important as activated 
Akt1 does not induce tumors in mice but overexpression of 
ILK does [143], and ILK has been shown to play a critical 
role in MMTV-Neu mouse mammary tumors [144]. Thus, 
with the genomic tools available today, sophisticated 
mouse models can be used to define how PI3K pathway 
genes cooperate with other mutations to control tumor 
dissemination. 

Another unresolved question is the relationship 
between specific PI3K pathway mutations and breast 
tumor subtype. As noted above, PIK3CA mutations occur 
in many breast cancer subtypes but are rarely, if ever, seen 
in claudin-low tumors [99]. In contrast, PTEN mutations 
tend to cluster in triple negative tumors, a designation 
including basal-like and claudin-low breast cancers [107, 
108, 145]. Potentially, this could be due to a specific 
biological response to each mutation type in the same cell-
of-origin, and/or to distinct sensitivity of mammary stem 
cells or luminal progenitors to transformation by PIK3CA 
gain-of-function mutation versus PTEN deletion [146]. 
With respect to different biological response, activation of 
the PI3K signaling pathway at the level of HER2/Neu or 
IGF1 will result in activation of PI3K signaling together 
with activation of other signaling pathways stimulated by 
these receptors. This would not occur when the pathway 
is activated through PIK3CA mutation or PTEN deletion. 
Similarly, stimulation of the pathway by PIK3CA 
mutation will necessarily have different consequences 
than stimulation through PTEN inactivation, since PTEN 
protein also functions to inhibit the Src tyrosine kinase [35, 
147, 148] and activate the APC-CDH1 complex [36, 37]. 
Once again, this question can be addressed using existing 
mouse models of breast cancer. Recently described 
Pik3caH1047R breast cancer models are Cre-dependent [119, 
121]. Therefore, by using multiple mammary specific Cre 
driver lines (eg. Wap-Cre versus MMTV-Cre [121] or 
K14-Cre) it will be possible to compare tumors that arise 
through expression of a Pik3ca mutant or deletion of Pten 
within the same mammary stem or progenitor cell.

Mouse models of breast cancer have been used to 
define signaling proteins and pathways that are required 
to initiate tumor formation, to sustain tumors and/or to 
promote metastasis. Indeed, as discussed above, this 
approach has shown that Akt1 and Akt2 perform very 
different roles with respect to growth and dissemination 
of HER2/Neu subtype tumors [134]. This approach can 
also be used to define the role or function of Akt1 and 2 
downstream of mutant Pik3ca or Pten deletion in mice. 
The specific PI3K pathway involved in transformation 
may be different in tumors with amplified HER2/Neu, 
amplified InsR/Igf-1R, with mutant PIK3CA, with PTEN 
inactivation or with Akt1E17K. With the exception of 
activated Akt1, there are now mouse models for each of 
these, and with loxP/Cre-mediated deletion or even gene 
knockdown, the role of other components on the PI3K 
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pathway can be determined. For example, the p110β 
subunit of PI3K may play an important role in PTEN 
inactivated tumors [149-152]. 

New pathways that activate PI3K signaling have 
been discovered. For example, the non-canonical 
IκB Kinase, IKKϵ, can phosphorylate Akt in a PI3K-
dependent, but mTOR-independent, manner [153]. IKKϵ 
is overexpressed in most breast cancers and in 30% of 
cases this is associated with amplification of sequences 
on the long arm of human chromosome 1, including the 
IKKϵ gene, IKBKE [154]. As RTK/PIK3CA/AKT1/PTEN 
and IKK/NFκB are the two most frequently mutated 
pathways in breast cancer, any crosstalk between them 
may represent a critical therapeutic target [53]. Once 
again, a mouse model would help to probe this issue. 
Would a mouse model of Ikbke-induced breast cancer 
show cooperation with mouse models of activated Pik3ca? 
Indeed, IKBKE is amplified and overexpressed together 
with PIK3CA mutation in some human breast tumors 
suggesting that these mutations can cooperate (e.g. MCF7 
cells show IKBKE amplification/overexpression and 
PIK3CAE545K mutation [141, 154]). By generating a mouse 
model of IKBKE overexpressing and PIK3CAE545K mutant 
breast cancer, it would be possible to define which PI3K 
pathway components are involved in growth and invasion 
in this context, and whether the specific oncogenic 
pathway is different from tumors with Pik3caE545K and 
other cooperating mutations.

Finally, with the development of new mouse models 
to mimic specific forms of human breast cancer, it should 
be possible to perform high-throughput screens for 
chemicals or shRNAs that target mouse mammary tumor 
initiating cells while sparing normal mammary stem 
cells as well as other normal cells and tissues throughout 
the body. Thus, models that mimic each breast cancer 
subtype, with specific molecular lesions or combinations 
of lesions, can be developed and used to identify targets 
for combination therapy that will justify clinical trials on 
patients with analogous breast tumors. As activation of the 
mTOR pathway occurs in most breast tumors, it may also 
be possible to exploit this feature [155]. For example, in 
a mouse model of basal breast cancer with activated Ras, 
Igf1r signaling is required for survival [156]. Also, while 
direct mutational activation of the PI3K pathway in many 
breast tumors will preclude therapy based solely on caloric 
restriction [157], a number of reports have identified 
metabolic sensitivities associated with activation of 
specific oncogenic signaling pathways. For example, 
melanomas with activation of the Ras/Mapk pathway 
undergo apoptosis in response to leucine depletion. This 
effect is related to maintenance of activated TORC1 at 
lysosomes where it blocks autophagy, even in the absence 
of leucine [158]. As most breast tumors have sustained 
mutations that affect the very pathway used to sense 
nutrient availability, it is plausible that mouse models 
could prove useful in designing and testing nutrition based 

therapies.
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