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ABSTRACT
Breast cancer is a heterogeneous disease for which effective treatment depends 

on correct categorization of its molecular subtype. For the last several decades this 
determination has relied on hormone receptor status for estrogen, progesterone and 
HER2. More recently, gene expression data have been generated that further stratify 
both receptor-positive and receptor-negative cancers. The fatty acid-activating 
enzyme, ACSL4, has been demonstrated to play a role in the malignant phenotype 
of a variety of cancers, including breast. This lipid metabolic enzyme is differentially 
expressed as a function of subtype in breast tumors, with highest expression observed 
in the mesenchymal (claudin low) and basal-like subtypes. Here we review data 
that support the potential of utilizing ACSL4 status as both a biomarker of molecular 
subtype and a predictor of response to a variety of targeted and non-targeted 
treatment regimens. Based on these findings, we suggest 3 expanded roles for ACSL4: 
1. as a biomarker for classification of breast cancer subtypes; 2. as a predictor of
sensitivity to hormone-based and certain other therapies; and 3. as a target for the
development of new treatment modalities.

INTRODUCTION

ACSL4 is one of five mammalian enzyme isoforms 
responsible for activation (thioesterification) of long-chain 
fatty acids as a prerequisite to their further utilization 
in lipid biosynthetic and fatty acid oxidative pathways 
[1]. ACSL4 is an extrinsic membrane protein that has 
been localized to mitochondria-associated membranes 
[2], peroxisomes [3] and lipid droplets [4]. It is most 
highly expressed in steroidogenic tissues [5] and has a 
substrate preference for highly unsaturated fatty acids, 
including arachidonic acid (AA), eicosapentaenoic acid 
and adrenic acid [6]. ACSL4 plays a pivotal role in AA 
metabolism. The conversion of AA to AA-CoA by ACSL4 
is a mandatory step in the incorporation of AA into 
phospholipids and triglycerides, which can then function 
as structural membrane components (phospholipids), 
signal transducers (phosphinositides) and storage depots 
for AA (phospholipids and triglycerides). It is this stored 
AA that comprises the substrate for stimulated eicosanoid 

synthesis. Thus while ACSL4-mediated storage of AA 
initially lowers levels of unesterified AA, in the long 
term the increase in stored AA may result in enhanced 
eicosanoid production in response to stimulation of 
phospholipase activity [7].

ACSL4 activity has been implicated to play a 
role in both normal and abnormal physiology. Evidence 
to date suggests that ACSL4 functions in a variety of 
normal developmental and cell biological processes, 
including neuronal differentiation [8], germ line sex 
determination [9], adipocyte differentiation [10], insulin 
secretion [11], steroidogenesis [12, 13], and membrane 
fusion [14], as well as in a number of disease processes, 
including x-linked mental retardation [15], kidney 
disease [16], liver disease (NAFLD) [17], obesity [18], 
osteoarthritis [19], and a variety of cancers, including 
those of liver [20], colon [21], prostate [22, 23] and 
breast [22, 24, 25]. A recent review summarizes 
expression of ACSL4 in various cancers and its potential 
role as a target and biomarker [26].
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A role for long-chain fatty acid activating enzymes 
in supporting the malignant phenotype was first suggested 
in 2000 when Cao et al. [27] asserted that ACSL4 
could promote carcinogenesis by lowering the levels of 
unesterified AA, thus inhibiting AA-mediated apoptosis 
in cancer cells. Subsequently, Mashima et al. [28] 
suggested that ACSL activity, in general, functioned as a 
survival factor in cancer cells. For the most part, ACSL4 
expression is upregulated in cancer when compared with 
normal tissue, as is observed in the instances of colorectal 
cancer [21, 29], hepatocellular carcinoma [30–32] and 
multiple myeloma [33] and has been demonstrated to 
mediate increases in proliferation, migration and invasion 
in these cancers. However, in breast cancer, ACSL4 
mRNA expression is significantly less in cancer versus 
normal tissue. A recent meta-analysis of public databases 
comparing ACSL4 mRNA and protein expression in a 
variety of cancers confirmed that ACSL4 expression 
is decreased in malignant versus normal breast tissue, 
while being differentially expressed as a function of 
molecular subtype [34]. This is not surprising given the 
inverse relationship, described in detail below, between 
ACSL4 expression and receptor expression. In fact, most 
normal breast cells do not express estrogen receptor 
(ER) [35], while most breast cancers do express ER. 
Yet, regardless of whether ACSL4 mRNA expression 
is generally increased or decreased in malignant versus 
normal cells, ACSL4 expression is positively correlated 
with a more aggressive phenotype of that particular cancer 
[23–25]. With possible relevance to health disparities, and 
the increased incidence of triple negative breast cancer 
(TNBC) in the African American population, ACSL4 
mRNA is overexpressed in the livers of African Americans 
[17], as is a variant of the AA synthetic enzyme, FADS1, 
thought to be responsible for the higher levels of both 
circulating and tissue AA present in the African American 
population [36]. These data suggest the possibility that 
increased AA levels may contribute to a biological basis 
for the increase in TNBC.

ACSL4 IN BREAST CANCER

Inverse relationship between ACSL4 expression 
and receptor expression/activity

Breast cancer is a heterologous disease initially 
subcategorized as a function of receptor expression with 
respect to ER, progesterone receptor (PR) and human 
epidermal growth factor 2 (HER2) receptors. Cancers 
lacking all three receptors are termed triple negative 
breast cancer (TNBC). TNBC exhibits a more aggressive 
phenotype than receptor positive cancer (RPBC) and 
currently lacks targeted treatment options. This receptor-
based characterization has been further refined by means 
of mRNA expression analyses, with receptor-positive 
cancers comprising mainly the luminal A, luminal B 

and HER2-enriched subcategories [37], and most TNBC 
classified as basal-like [38]. TNBC has been further 
subdivided into 4 categories by Burstein et al. [39] based 
on mRNA expression data: luminal androgen receptor 
(LAR), mesenchymal (MES), basal-like immune-
suppressed (BLIS) and basal-like immune-activated 
(BLIA). Lehmann et al. [40] have reported four similar 
subdivisions. Due to the fact that the LAR subcategory, 
which is unique in expressing androgen receptor (AR), is 
significantly different from the other three subcategories, 
AR-negative TNBCs have been grouped together in a 
category referred to as quadruple negative breast cancer 
(QNBC) [41–43]. As has previously been reported, 
ACSL4 overexpression is a defining characteristic of 
QNBC [24].

Observational studies have demonstrated that 
ACSL4 mRNA expression is inversely correlated with 
ER, AR and HER2 expression in both breast cancer cell 
lines and tumor samples, and is most highly expressed 
in TNBCs that fall into the category of claudin-low and 
basal-like cancers [24]. In particular, ACSL4 is expressed 
in TNBCs that lack AR, and it has been suggested that 
ACSL4 might function in general as a biomarker for this 
AR-negative class of TNBC (QNBC). Based on data 
derived from 71 breast cancer cell lines, positive ACSL4 
expression predicted QNBC status with a sensitivity of 
78% and a specificity of 86% [24]. mRNA expression 
data reported by Burstein et al. [39], which subcategorize 
TNBC into the 4 classes described above, confirm that 
ACSL4 mRNA is differentially expressed in TNBC 
as a function of AR status, with highest expression in 
mesenchymal breast cancers. 

There are limited proteomic data with respect to 
breast cancer subtypes; however, these data also support 
the conclusion that ACSL4 is differentially overexpressed 
in basal-like breast cancers. A study comparing protein 
expression in luminal B versus basal-like breast cancer 
samples clearly indicates that ACSL4 protein is more 
highly expressed in the basal-like subset [44]. A more 
recent study supports this finding [45].

Experimental, as opposed to observational data, 
provide further evidence of the inverse relationship 
between ACSL4 and receptor expression. Table 1 
summarizes the results from these experiments. 
Specifically, forced expression of ACSL4 in ER-positive, 
ACSL4-negative breast cancer cells lowers ER expression 
both in vitro and in vivo; and conversely, silencing of ER 
expression in MCF7 cells induces expression of ACSL4 
in vitro [24]. Re-expression of ER in ACSL4-positive, 
ER-negative MDA-MB-231 cells has been reported to 
downregulate ACSL4 mRNA and protein expression 
[46]. When hybrid breast cancer cells are generated from 
ACSL4-positive, ER-negative MDA-MB-231 cells and 
ACSL4-negative, ER-positive ZR75-1 cells, mRNA 
expression profiles demonstrate that the hybrid cells most 
closely resemble the ACSL-4-positive MDA-MB-231 
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cells. Not only is ACSL4 expression preserved, but ER 
expression in the hybrid is ablated [47]. Of particular 
interest is the observation that forced expression of ACSL4 
in estrogen dependent MCF7 cells induces resistance 
to the stimulatory effects of estrogen as well as to the 
inhibitory effects of tamoxifen, thus mediating resistance 
[24]. Conversely, subclones of MCF7 cells that have been 
selected for tamoxifen-resistance demonstrate an increase 
in ACSL4 mRNA expression (2.26-fold, p = 0.0013, 
[48]). Forced expression of ACSL4 in the HER2-enriched 
cell line, SKBr3, induces resistance to treatment with 
lapatinib [24]. That resistance to lapatinib is associated 
with ACSL4 expression is also supported by studies of 
lapatinib resistance in a variety of breast cancer cell lines 
[49, 50]. An analysis of the microarray data from these 
studies indicates that resistance to lapatinib is positively 
associated with expression of ACSL4. 

This inverse relationship between ACSL4 and 
hormone receptor expression is not unique to breast 
cancer. Similar results have been reported for the 
relationship between AR and ACSL4 expression in 
prostate cancer. LNCaP androgen-dependent prostate 
cancer cells, which do not express ACSL4, induce 
expression of ACSL4 when transformed into LNCaP-AI, 
which is androgen independent [22]. Additional studies 
expand on a role for ACSL4 in promoting prostate cancer 
growth, invasion and hormone resistance, confirming 
an inverse relationship between ACSL4 expression 
and that of the androgen receptor [23]. As observed for 
breast cancer, the presence of both ACSL4 and androgen 
receptor in prostate cancer cells predicts resistance to 
androgen deprivation therapies. 

In summary, ACSL4 expression is inversely 
correlated with ER, AR and HER2 expression. Forced 
expression of ACSL4 in cells that express these receptors 

induces a decrease in receptor expression and resistance 
to receptor-based therapies. As such, ACSL4 status could 
function as a biomarker of resistance to hormonal therapy. 
Based on the fact that ACSL4 is more highly expressed 
in the more aggressive breast cancer subtypes, it might 
be expected that ACSL4 status would also function as a 
prognostic indicator of disease progression and overall 
survival. However, data with respect the prognostic 
significance of ACSL4 expression are mixed, most 
likely due to a number of confounding parameters, such 
as the particular cutoff used to differentiate high from 
low expression, the follow-up threshold, receptor status 
and previous treatment [34]. For example, while the 
expression of ACSL4 coincides with a more aggressive 
subtype of breast cancer and thus might be assumed to 
be associated with a worse prognosis, it is conceivable 
that the increased proliferation associated with ACSL4 
expression might make cancer cells more sensitive to 
certain chemotherapeutic interventions and thus be 
associated with a better prognosis. Further analyses will be 
required to determine the role of ACSL4 as a prognostic 
biomarker.

ACSL4 expression induces an aggressive 
phenotype: induction of EMT and stimulation of 
proliferation, migration and invasion

The epithelial-to-mesenchymal transition (EMT) is a 
process by which epithelial cells take on the characteristics 
of mesenchymal cells with respect to migration and 
invasion thus increasing their ability to metastasize 
[51]. Experiments designed to either induce expression 
of ACSL4 in ACSL4-negative cells (MCF7 or SKBr3) 
or ablate expression in ACSL4-positive cells (MDA-
MB-231) demonstrate a role for ACSL4 in stimulating 

Table 1: Experimental data supporting the inverse relationship between sex-steroid hormone 
receptor expression and ACSL4 expression

Experiment Results Reference
GEO* Number

Forced expression of ACSL4 in MCF7 cells in vitro Increased ACSL4 
Decreased ER, PR and AR

[24]
GSE40968

Forced expression of ACSL4 in MCF7 cells in vivo Increased ACSL4
Decreased ER and PR [52]

Silencing of ESR1 in MCF7 in vitro Increased ACSL4
Decreased ER

[24]
GDS4061

Forced expression of Raf-1 in MCF7 cells in vitro Increased ACSL4
Decreased ER

[22]
GDS1925

Hybrid cells derived from ACSL4-positive, ER-negative 
MDA-MB-231 and ACSL4-negative, ER-positive ZR75-1 

Hybrid cells are ACSL4-positive and 
ER-negative

[47]
GDS4067

Forced expression of ACSL4 in HER2-positive SKBr3 cells Decreased response to treatment with 
lapatinib

[24]
GSE40968

*GEO: Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

https://www.ncbi.nlm.nih.gov/geo/
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proliferation, migration and invasion in breast cancer [24, 
25, 52]. Similar results are observed in prostate cancer 
cells; and in colon cancer cells, ACSL4 has been shown to 
be part of a triad (ACL1/ACSL4/SCD) that induces EMT 
[29, 53].

Data also support a role for ACSL4 in mediating 
EMT induced by other agents. RAF1, for example, 
which has been linked to EMT [54], induces expression 
of ACSL4 mRNA when overexpressed in MCF7 cells 
[24]. Similar results are seen for SNAI1 induction of 
EMT in MCF7 cells [55]. Analysis of microarray data 
indicates that the tyrosine phosphatase, SHP2, which has 
been demonstrated to increase migration of TNBC cells 
[56] and to have a role in promoting TNBC and basal-
like breast cancer [57], and whose inhibition results in 
a basal-to-luminal transition [58], regulates expression 
of ACSL4 protein in MA-10 Leydig cells [59]. The 
transcription factor, FOXM1, has been demonstrated 
to effect breast cancer cell migration; and functional 
assays in MDA-MB-231 mesenchymal breast cancer 
cells implicate ACSL4 as possible mediator of the 
FOXM1 effect [60]. Conversely, data support a role for 
FOXM1 in mediating ACSL4-induced radioresistance in 
breast cancer cells [61]. Data also suggest that ACSL4 
plays a role in conferring susceptibility to breast cancer 
tumorigenesis associated with the expression of the 
PADI2 gene [62].

Mechanism of ACSL4 action

Data presented above support a role for ACSL4 
activity in inducing a more aggressive form of breast 
cancer. The question remains as to the mechanism of the 
ACSL4 effect. How does activation of specific long-chain 
fatty acids by ACSL4 instigate these changes? Figure 1 
outlines a potential pathway for ACSL4-induced effects 
on breast cancer cells that relies on enhanced production 
of PGE2 to mediate effects on growth and metastasis. 
Elevated PGE2 levels have been shown to be associated 
with more aggressive breast cancer phenotypes [63]. The 
preference of ACSL4 for AA as a substrate suggests that 
the actions of ACSL4 may be mediated, at least in part, by 
elements of the AA metabolic pathway that terminate in 
the production of eicosanoids. Data reported by Maloberti 
et al. [25] support this hypothesis. These data demonstrate 
that forced expression of ACSL4 in MCF7 cells increases 
both the level of PTGS2 (COX2) protein as well as the 
production of the prostaglandin, PGE2. PGE2, in turn, 
has been demonstrated to induce EMT and concomitant 
aggressive behaviors in a variety of cancers, including 
breast [64]. In brief, the hypothesis entails a sequence of 
events whereby the conversion of free AA to AA-CoA 
facilitated by ACSL4 increases the level of stored AA in 
the form of phospholipids and triglycerides, which are 
then available upon stimulation of phospholipase activity 
to be utilized for the production of PGE2. This PGE2, 

in turn, can act in an autocrine or paracrine manner to 
induce increased proliferation, migration, invasion and 
angiogenesis. A role for mTOR in ACSL4-mediated effects 
on growth and survival is supported by the findings of 
Orlando et al. [65]. This same study also noted an increase 
in AKT (protein kinase B or PKB) phosphorylation on 
Ser473.

Further supporting the hypothesis outlined in 
Figure 1 is the concomitant increase in mRNA expression 
of other protein entities comprising the AA metabolic 
pathway. The genes involved in the metabolism of AA 
are broken down into 6 categories: Synthesis of AA from 
the precursor, DGLA (FADS1); Transport of AA into the 
cell (FABP5); Activation of AA (ACSL4); Storage of AA 
(PLIN2, LPIN1); Mobilization of AA (MGLL, PNPLA2, 
PLA2G4A); and Utilization of AA in the synthesis of 
PGE2 and its action via the PTGER4 receptor (PTGS2, 
ABCC4, PTGER4). A previous analysis indicated that 
there is increased mRNA expression of a number of these 
proteins in TNBC [66]. The details from two specific 
studies are documented as heat maps in Figure 2. These 
data indicate similar results for both cell lines (Figure 2A) 
and tumor samples (Figure 2B). Table 2A details the 
results of an ACSL4 co-expression analysis for some 
of these genes. Only those results with a Spearman 
coefficient >0.4 are included. Note that alterations in 
mRNA expression patterns may not reflect changes in 
protein expression or enzyme activity. Although proteomic 
analyses are limited, the available data align with the 
mRNA expression data, as demonstrated in Table 2B 
comparing tumor samples from luminal B and basal-like 
breast cancers [44]. For each protein listed in the table, 
expression was higher in the basal-like sample than in 
the luminal B sample. In addition, forced expression of 
ACSL4 in MCF7 cells has been demonstrated to induce an 
increase in PTGS2 protein [25]. In summary, both mRNA 
and protein expression data, where available, align with 
the hypothesis presented in Figure 1, suggesting that 
breast cancer molecular subtypes that express ACSL4 
also exhibit increased expression of other protein entities 
involved in AA metabolism.

Lastly, it has been previously demonstrated that 
silencing of the estrogen receptor alpha gene (ESR1) in 
MCF7 cells induces expression of ACSL4 mRNA [24], 
raising the question of whether such silencing affects 
the expression of any other genes in the AA pathway. 
Table 3 illustrates the effect of ESR1 silencing of 
mRNA expression of the AA metabolic pathway genes 
in MCF7 cells. As expected from data documenting 
an inverse relationship between ESR1 and ACSL4 
expression (Table 1), silencing of ESR1 expression in 
MCF7 cells results in significant increases in mRNA 
expression of genes involved in PGE2 synthesis and 
action. No significant differences were observed 
for mRNA levels of ALOX enzymes involved in 
leukotriene production. 
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ACSL4 is a biomarker for sensitivity to some 
chemotherapeutic reagents

In addition to inducing resistance to hormone-based 
therapies, ACSL4 expression is also associated with, and 
can mediate, resistance to chemotherapeutic regimens. 
Forced expression of ACSL4 in breast cancer cells induces 
resistance to the cytotoxic effects of etoposide [24], 
cisplatin, doxorubicin and paclitaxel, possibly mediated 
by an increased expression of multidrug resistance 
transporters including ABCC4, ABCC8 and ABCG2 [71]. 
The data indicate that ACSL4 inhibits drug accumulation 
in cells by increasing efflux. Another possible mechanism 
for ACSL4-mediated resistance to chemotherapy is 

the role it plays in the formation of lipid droplets [4], 
which have been shown to be associated with increased 
chemoresistance [72]. Thus, inhibition of ACSL4 activity 
in chemotherapy resistant tumors might be an effective 
treatment strategy, as well as serving as a biomarker of 
resistance.

ACSL4 is a mediator of ferroptosis

Ferroptosis is a newly described, iron-dependent 
mechanism of non-apoptotic cell death mediated by 
peroxidation of phosphatidylethanolamine-associated 
AA and adrenic acid [73]. Incorporation of these fatty 
acid moieties into phospholipids requires activation by 

Figure 1: Proposed pathway of ACSL4-mediated stimulation of QNBC cells. The model outlines a pathway that ultimately 
results in the increased growth and survival of breast cancer cells as the result of increased production of PGE2. ACSL4 activity is 
hypothesized to contribute to the increase in PGE2 by increasing the amount of AA stored in phospholipids and triglycerides that is 
subsequently available for conversion to PGE2 upon stimulation of phospholipase activity. Protein entities in RED are either overexpressed 
in QNBC versus receptor-positive breast cancer (RPBC), or activated as a result of ACSL4 expression, while those in GREEN are either 
underexpressed or similarly expressed in QNBC versus RPBC. Abbreviations: AA: arachidonic acid; ABCC4: ATP binding cassette 
subfamily C member 4; ACSL4: Acyl-CoA synthetase long chain family member 4; AKT: protein kinase B; DGLA: Dihomo-γ-linolenic 
acid; FABP5,7: fatty acid binding protein 5, 7; FADS1: fatty acid desaturase 1; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPIN1: 
lipin1; MGLL: monoacylglycerol lipase; mTOR: mammalian target of rapamycin; PC: phosphatidylcholine; PE: phosphatidylethanolamine; 
PGE2: prostaglandin E2; PI3K: phosphoinositide-3-kinase; PL: phospholipid; PLA2G4: phospholipase A2 group IVa; PLIN2: perilipin 2; 
PTGER4: prostaglandin E receptor 4; PTGS2: prostaglandin endoperoxide synthase 2; TAG: triacylglycerol.
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Figure 2: Comparison of the expression of Arachidonic acid metabolic genes between TNBC and RPBC. Data from 
Oncomine [68]. The Oncomine™ platform (ThermoFisher, Inc., Ann Arbor, MI) was used for analysis and visualization. (A) Samples 
derived from breast cancer cell lines [69]. Section 1: TNBC, 21 samples; section 2: RPBC, 25 samples. (B) Data from The Cancer Genome 
Atlas (TCGA). Section 1: TNBC, 46 samples; section 2: RPBC, 250 samples. Values represent log 2 median-centered intensity. Blue: least 
expressed genes; red: most expressed. Grey: not measured. Abbreviations as in Figure 1.

Table 2A: ACSL4 co-expression analysis in breast cancer samples
Correlated Gene Spearman’s Coefficient p-Value q-Value
FABP5 0.454 1.05e-51 1.71e-50
PLIN2 0.466 1.22e-54 2.21e-53
LPIN1 0.448 3.85e-50 5.87e-49
PLA2G4A 0.740 5.27e-173 7.10e-170
PTGS2 0.574 3.11e-88 2.02e-86
ABCC4 0.634 1.20e-112 1.95e-110
PTGER4 0.627 7.04e-110 1.03e-107

Data from TCGA Pan Cancer Atlas, n = 994 [67], as reported on http://www.cbioportal.org/. Samples are comprised of 
invasive breast cancers.

Table 2B: AA metabolic protein expression in basal-like and luminal B breast cancer subtypes
GENE BL LB p-Value RANK
LPL 0.03 −3.52 0.024 903
FABP5 −0.05 −6.80 0.0008 168
ACSL4 −1.51 −4.95 0.011 653
PLIN2 0.34 −3.88 0.0002 80
LPIN1 −0.20 −1.84 0.023 884
PLA2G4A −1.04 −3.93 0.013 713
PTGS2 −2.08 −4.27 0.123 1897

Data taken from Huang et al. [44] are an iTRAQ-based proteomic quantification analysis of the expression ratios of 12,794 
proteins in patient-derived xenograft samples.

http://www.cbioportal.org/
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the enzyme, ACSL4. Cells lacking ACSL4 activity are 
unable to undergo classical ferroptosis. Evidence to date 
suggests that ferroptotic cell death plays a role in normal 
development as well as in a variety of pathological states 
(for review see [74]). Inhibition of ACSL4 in these 
pathological states might mitigate associated morbidities 
and mortality. On the other hand, in some instances, such 
as cancer, activation of ferroptosis might comprise a viable 
treatment option, in which case expression of ACSL4 
would be a requirement for sensitivity to ferroptosis-
inducing reagents. This has, in fact, been demonstrated to 
be the case with respect to the response of human breast 
cancer cell lines to ferroptotic reagents [75]. Only those 
cells that express ACSL4 (basal-like, receptor-negative 
cell lines) were found to be sensitive to ferroptosis. 
Similar results have been reported for cell lines derived 
from a variety of other cancers [76]. More recently, 
ACSL4 has been shown to mediate immunogenic tumor 
ferroptosis induced by cytotoxic T lymphocytes via IFNγ 
[77]. In fact, ACSL4 expression has also been suggested 
to be positively correlated with immune infiltration 
in breast cancer [34]. Thus expression of ACSL4 has 
been described as a “double-edged” sword in multiple 
myeloma since it both increases tumor progression and is 
a requirement for induction of ferroptosis [33]. Recently, 
resistance to induction of ferroptosis in a pancreatic cancer 
model has been attributed to the secretion of exosomes 
by cancer-associated fibroblasts that contain an miRNA 
(miR-3173-5p) that targets and down-regulates ACSL4 
[78]. In fact, a number of studies have demonstrated that 

ACSL4 expression is regulated by a variety of miRNA 
species in several cancers, including hepatocellular [79], 
colorectal [53] and ovarian [80].

ACSL4 is a potential target in cancer treatment

Targeting ACSL4 in cancer treatment, whether 
it involves forced expression or inhibition, will most 
likely not comprise a lone therapy but will more likely 
function as part of a combined therapy. First, it is clear 
that cells, including malignant cells, are not completely 
dependent on ACSL4 for fatty acid activation. A number 
of both normal and cancerous cell types do not express 
ACSL4 and rely on the alternate isoforms (ACSL1, 3, 5 
and/or 6) to carry out activation functions. Preclinical data 
clearly demonstrate that effects of ACSL4 on proliferation, 
migration and invasion of cancer cells are incremental 
rather than absolute [24, 25, 52]. Thus while inhibiting 
fatty acid activation has the distinct advantage of blocking 
the utilization of fatty acids from both exogenous and 
endogenous (de novo synthesis) sources, it will likely 
require inhibition of several isoforms simultaneously to be 
most effective. Preclinical studies have demonstrated the 
increased efficacy of targeting ACSL4 in combination with 
targeting other potential oncogenic factors such as mTOR 
[81] and lipoxygenases [52]. A recent report describes the 
development of a small molecule inhibitor of ACSL4, 
PRGL493 (N-(4-(3-(5-methylfuran-2-yl)-1-phenyl-1H-
pyrazol-4-yl)-3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]
triazin-2yl)acetamide) that blocks cell proliferation and 

Table 3: Effect of silencing ESR1 on expression of AA metabolic pathway genes in MCF7 cells
GENE Control ESR1-Silenced Fold Change p-Value
FABP5 1566 ± 54 4101 ± 269 2.62 8.94e-05
FABP7 NE NE
FADS1 298 ± 14 1597 ± 152 5.36 1.20e-04
ACSL4 155 ± 10 1960 ± 75 12.6 1.99e-06
PLIN2 95 ± 10 576 ± 87 6.06 3.40e-04
PLA2G4A 10 ± 0 128 ± 8 12.8 1.17e-05
PTGS2 12 ± 2 81 ± 32 6.75 0.019
ABCC4 211 ± 3 423 ± 36 2.00 5.60e-04
PTGER4 201 ± 12 403 ÷ 103 2.00 0.022
ALOX5 25 ± 1 25 ± 3 0 0.958
ALOX12 29 ± 2 25 ± 1 −1.16 0.047
ALOX15 221 ± 3 27 ÷ 3 −8.18 1.44e-07
ESR1 4779 ± 66 21 ± 1 −250 2.86e-08
PGR 382 ± 7 25 ± 3 −15.4 1.49e-07
AR 903 ± 68 36 ± 1 −25.6 2.51e-05

Data shown are mRNA expression values in arbitrary units. Abbreviations are as described for Figure 1 plus ALOX: 
arachidonate lipoxygenase; ESR1: estrogen receptor alpha; PGR: progesterone receptor; AR: androgen receptor; NE: not 
expressed. Calculations were made from array data reported by Al Saleh et al. [70]. Values shown represent the mean ± 1 SD 
of three separate data points.
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tumor growth in both breast and prostate cancer models 
as well as sensitizing tumor cells to chemotherapeutic and 
hormonal treatment [82]. This compound was shown to 
inhibit recombinant ACSL4 enzymatic activity in vitro 
as well as conversion of AA to arachidonoyl-CoA in cell 
cultures. It fails to inhibit proliferation of MCF7 cells 
lacking ACSL4 expression, suggesting specificity for 
ACSL4. 

DISCUSSION

Breast cancers comprise a heterogeneous disease 
that has routinely been categorized by receptor status 
with respect to estrogen, progesterone, HER2 and 
more recently androgen. Cancers lacking the first three 
receptors are classified as triple negative breast cancer 
(TNBC), while those lacking all four, quadruple negative 
breast cancer (QNBC). Treatments have been developed 
which specifically target these receptors; however, 
receptor-negative breast cancers are more aggressive 
and, to date, lack targeted therapies. Recently, TNBC 
has been subcategorized into four subtypes based on 
gene expression data: luminal androgen receptor (LAR), 
mesenchymal (MES), basal-like immune-suppressed 
(BLIS) and basal-like immune-activated (BLIA) [38]. 
The data summarized in this review suggest that a lipid 
metabolic enzyme, ACSL4, responsible for the activation 
of long-chain polyunsaturated fatty acids as a prerequisite 
to both incorporation into complex lipids as well as 
oxidation, functions as a biomarker for receptor negative 
status (QNBC) as well as for resistance to hormone-
based therapies in receptor positive cancers. As such, we 
postulate that measurement of ACSL4 protein expression 
in breast cancer tissue would differentiate between 
receptor-positive and receptor-negative cancers, as well 
as predict which receptor-positive cancers might be 
resistant to hormonal therapies. Thus a single assay might 
identify a class of cancers, namely QNBC, that would 
ordinarily require four separate assays. This hypothesis 
has been tested in breast cancer cell lines where positive 
ACSL4 protein expression predicted QNBC status with a 
sensitivity of 78% and a specificity of 86% [24]. Similar 
studies have yet to be undertaken in tumor samples.

Additional data indicate that ACSL4 expression 
is associated with increased proliferation, migration and 
invasion of breast cancer cells both in vitro and in vivo. As 
such, ACSL4 presents a possible target for treatment, and 
indeed the search for specific inhibitors is underway, with 
one promising candidate recently reported. Furthermore, 
it is possible that successful inhibition of ACSL4 in breast 
cancer cells might render these cells more sensitive to 
other treatments, both hormone-based as well as non-
specific chemotherapeutic regimens. 

Many cancers, including breast, are dependent 
on de novo fatty acid synthesis and as a result there has 
been a concerted effort to capitalize on this dependence 

by developing inhibitors of fatty acid synthetase (FASN). 
However, these attempts have yet to translate to the clinic 
due to issues involving lack of specificity and unacceptable 
toxicity [83]. Interference with lipid metabolism via 
blockade of ACSL4 might have advantages over a more 
general inhibition of de novo fatty acid synthesis in 
that there are four other long-chain fatty acid activating 
enzymes that would continue to function. 

Since ACSL4 has been demonstrated to play 
a role in augmenting synthesis of the inflammatory 
prostaglandin, PGE2, it may be possible to ameliorate its 
effects on proliferation, migration and invasion in QNBC 
by blocking the action of PGE2 at the level of its receptor, 
PTGER4. Such inhibitors already exist and it has been 
suggested that they might be effective in treating colon 
cancer [84]. It is conceivable that those breast cancers 
expressing high levels of ACSL4 might be particularly 
sensitive to such inhibition.

Due to the role of ACSL4 in supporting sex steroid 
biosynthesis in adrenal and gonadal tissue, inhibition of 
ACSL4 activity may enhance the effects of treatments 
aimed at lowering endogenous levels/activity of these 
hormones. 

Finally, the central role of ACSL4 activity in 
mediating ferroptosis offers an additional, compelling 
rationale for determining the status of its expression in 
breast as well as other cancers, since only those cancers 
positive for its expression are sensitive to induction of 
classical ferroptosis as a possible treatment modality. It 
is conceivable that in the future many different types of 
malignancies will routinely be assessed for expression of 
ACSL4 as a prerequisite to treatment with ferroptosis-
inducing reagents. 

To date, initiatives aimed at the development of 
ACSL4 as a biomarker for classification of molecular 
subtype or as the basis for treatment have been lacking. 
While gene expression data are available, protein 
expression data are limited. It will be mandatory to 
generate such data to verify the utility of ACSL4 
measurement as both a biomarker and treatment target. 
With respect to breast cancer, expression of ACSL4 
protein would strongly suggest insensitivity to receptor-
targeted treatment while indicating potential sensitivity 
to induced ferroptosis. Inhibitors of ACSL4 activity 
could prove useful in slowing proliferation of ACSL4-
positive cancers. While the use of receptor biomarkers in 
the diagnosis and treatment of breast cancer has proved 
extraordinarily useful, perhaps it is time to consider adding 
routine measurement of ACSL4 protein as a predictive 
indicator in the management of breast cancer.

CONCLUSIONS

ACSL4 has been demonstrated to play a pivotal 
role in both normal physiology as well as in a variety 
of disease states, including breast and other cancers. 
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Data support a potential role for this protein as a single 
biomarker for classification of breast cancer subtypes, 
since its expression is indicative of a negative receptor 
status/resistance to receptor-dependent treatments with 
respect to ER, PR, AR and HER2 in breast cancer. 
ACSL4 status has also been demonstrated to predict 
response to a variety of chemotherapeutic reagents as 
well as to ferroptotic reagents. The ability of ACSL4 to 
induce a more aggressive phenotype suggests it might be 
a potential target for inhibition in the treatment of breast 
cancer. Additional studies are needed to demonstrate the 
utility of this protein as both a biomarker and target in the 
classification and treatment of breast cancer. In particular, 
an assessment of ACSL4 protein expression in breast 
tumor samples is needed to ascertain the utility of this 
protein as a predictive and prognostic biomarker.
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