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ABSTRACT
While glycolysis is abundant in malignancies, mitochondrial metabolism is 

significant as well. Mitochondria harbor the enzymes relevant for cellular respiration, 
which is a critical pathway for both regeneration of reduction equivalents and 
energy production in the form of ATP. The oxidation of NADH2 and FADH2 are 
fundamental since NAD and FAD are the key components of the TCA-cycle that is 
critical to entertain biosynthesis in cancer cells. The TCA-cycle itself is predominantly 
fueled through carbons from glucose, glutamine, fatty acids and lactate. Targeting 
mitochondrial energy metabolism appears feasible through several drug compounds 
that activate the CLPP protein or interfere with NADH-dehydrogenase, pyruvate-
dehydrogenase, enzymes of the TCA-cycle and mitochondrial matrix chaperones. While 
these compounds have demonstrated anti-cancer effects in vivo, recent research 
suggests which patients most likely benefit from such treatments. Here, we provide 
a brief overview of the status quo of targeting mitochondrial energy metabolism in 
glioblastoma and highlight a novel combination therapy.

INTRODUCTION

Mitochondria are cellular organelles that drive 
biosynthesis and ATP production in tumor cells since they 
contain the enzymes necessary for cellular respiration 
and the associated process of oxidative phosphorylation, 
which is the production of ATP from ADP and inorganic 
phosphate [1, 2]. Moreover, the matrix of mitochondria 
houses the TCA-cycle, which operates in close connection 
with the respiratory chain since it produces reduction 
equivalents in the form of NADH2 and FADH2. Both 
NADH2 and FADH2 require quick regeneration or 
oxidation so that the TCA-cycle may maintain its activity. 
The TCA-cycle receives carbons from a number of 
different substrates, which includes glucose, fatty acid 
and amino acids [3]. Glucose is metabolized in the process 
of glycolysis in the cytosol and yields either pyruvate or 

lactate. While lactate is released into the microenvironment 
through the MCT4 or MCT1 transporter, pyruvate is 
shuttled to the mitochondria to be either used as an 
anaplerotic substrate for the TCA-cycle or alternatively 
be oxidized to the key node molecule, acetyl-CoA [4–6]. 
In addition to these fundamental pathways nucleotide 
and amino acid synthesis is tied to the mitochondria as 
well, e.g., pyrimidine biosynthesis. In the setting of amino 
acids glutamine carbons are introduced into the TCA-
cycle as well, which involves the glutaminase reaction 
[7]. Another potential fundamental fuel to entertain 
respiration are fatty acids, such as palmitic acid, which 
are very rich in energy since their degradation involves 
several rounds of oxidation (within beta-oxidation in the 
mitochondria) that creates substantial amounts of NADH2 
and FADH2, which in turn can provide their electrons to 
either complex I or complex II of the respiratory chain 
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and generate ATP (Figure 1). While some cancer cells tend 
to prefer a glycolytic dominant metabolization pathway 
with lactate production, others tend to oxidize glucose. 
Consistently, recent research identified that glioblastomas 
(GBMs) can be classified by their state of metabolism 
and in this regard a mitochondrial subtype was described, 
which apparently displays marked susceptibility against 
inhibitors of oxidative phosphorylation [8]. Moreover, the 
difference in fuel utilization is likely to have an impact 
on response and resistance to therapy. Treatment mediated 
reprogramming of tumor metabolism is another emerging 
critical mechanism of resistance to therapy and targeting 
such aberrations might prove effective as novel therapeutic 
approaches [9, 10].

Inhibitors of the TCA-cycle and fatty acid 
oxidation

It is notable that all major mitochondrial fuel 
sources may be inhibited by pharmacological inhibitors. 
For instance, the oxidation of pyruvate (derived from 
glycolysis) may be blocked by PDHA inhibitors, e.g., 
CPI-613, which has reached phase III clinical testing 
[11–13]. In the setting of fatty acid oxidation, there is 
etomoxir or perhexiline that have been tested in patients 

before [14, 15]. Recent research from our group provided 
evidence that CPI-613 interferes with GBM growth in 
vitro and in vivo [1]. Similarly, several combination 
therapies, involving etomoxir, have shown preclinical 
efficacy [14, 16].

Inhibitors of the NADH-dehydrogenase (complex I)

Cellular respiration and oxidative phosphorylation 
are critical drivers of ATP production even in malignant 
cells. Moreover, cellular respiration is a key event to 
regenerate NAD and FAD that in turn are necessary to 
sustain the activity of the TCA-cycle thereby driving 
fundamental biosynthetic processes, e.g., the production 
of cytosolic acetyl-CoA, the synthesis of aspartate and 
others. There are several complexes of the respiratory 
chain. In this context, NADH-dehydrogenase, complex 
I, is targeted by metformin, an anti-diabetic drug, as 
well as by a novel compound, called IACS-010759 [17], 
which appeared to suppress the levels of the amino acid 
aspartate, which is pivotal for pyrimidine synthesis. 
Moreover, aspartate supplementation appears to rescue 
from inhibition of complex I. Similarly, transfection of 
the Ndi1 yeast cDNA reverses the reduction of viability 
of cancer cells induced by metformin and IACS-010759 

Figure 1: Inhibitors of mitochondrial respiration. The figure shows the respiratory chain with all its complexes. Electrons are 
received at the level of complex I (NADH2) and complex II (FADH2), respectively. They are then transferred to complex IV, which mediates 
the reduction of molecular oxygen to water. An electrochemical gradient is produced by complexes I, III and IV that in turn is utilized 
by complex V to produce ATP. Several inhibitors are highlighted that target complex I (metformin and IACS-010759), predominantly 
complex II (gamitrinib) and several complexes (imipridones, CLPP activators).



Oncotarget421www.oncotarget.com

[17], which demonstrated efficacy in preclinical models 
of leukemia and GBM [17]. A recent intriguing finding 
relates to the ability of metformin to suppress PD-L1 
levels by its ability to interfere with energy metabolism, 
linking the respiratory chain with the immune system and 
microenvironment [18, 19]. While these findings were 
seen in a limited number of model systems it remains to 
be determined how broad the impact of metformin on PD-
L1 is in other tumor models, including GBM. 

BH3-mimetics as indirect inhibitors of cellular 
respiration

While the fundamental pathways of metabolism 
are critical for cancer cell survival, tumor mitochondria 
orchestrate another important aspect, which is intrinsic 
apoptosis [20]. Ironically, cytochrome-c, which is part 
of the respiratory chain, has a main role in facilitating 
intrinsic apoptosis by activation of the apoptosome 
in the cytosol. The release of cytochrome-c from the 
mitochondria to the cytosol is strictly controlled by the 
Bcl-2 family of proteins, BAX and BAK. In turn, these 
proteins are sequestered by anti-apoptotic Bcl-2 family 
proteins, Bcl-2, Bcl-xL and Mcl-1. 

In this regard, a drug class, called BH3-mimetics, 
was developed to facilitate the release of BAX and BAK 
from either Bcl-2 and Bcl-xL [21, 22]. More recently, 
Mcl-1 targeting BH3-mimetics has been described as well, 
establishing the unique and potent opportunity to combine 
two different classes of BH3-mimetic that in turn exert a 
durable release effect on BAK [23]. The first engineered 
BH3-mimetic was ABT-737 published in 2005, which had 
suboptimal pharmacokinetics (e.g., no feasibility of oral 
administration). While at the first glance these compounds 
appear to exert no direct effect on metabolism it seems 
likely that they regulate it through their effects on anti-
apoptotic Bcl-2 family members, which modulate cellular 
respiration [24]. 

Gamitrinib is a TRAP1 inhibitor that blocks the 
function of complex II of the respiratory chain

Aside from BH3-mimetics, mitochondrial Hsp90 
antagonists induce cell death as well [25, 26]. These 
compounds target both TRAP1 and mitochondrial 
Hsp90 and thereby preferentially disrupt mitochondrial 
respiration in cancer cells. The name of these reagents 
is gamitrinib (geldanamycin (GA)-mitochondrial 
matrix inhibitors). Conceptionally, the first mitochondrial 
Hsp90 inhibitor was a peptidomimetic, called shepherdin, 
which was discovered based on the interaction between 
Hsp90 and the inhibitor of apoptosis protein, survivin 
[27]. Shepherdin caused substantial cell death in a variety 
of cancer cells, including both leukemia and solid tumor 
lines [28]. While certain off-target effects might not be 
entirely excluded, it appears that succinate dehydrogenase 

is one of the key targets affected by gamitrinib [29, 30]. 
Consistently, several studies have shown that gamitrinib 
potently suppresses the oxygen consumption rate of 
various tumor cells, including GBM [16, 31]. Due to 
its profound effect on metabolism, gamitrinib elicited a 
mitochondrial unfolded stress response with up-regulation 
of CEBP/beta and CHOP that in turn suppressed NF-κB 
activity in GBM cells. In turn, loss of NF-kb function 
sensitized GBM cells to death-receptor mediated apoptosis 
(extrinsic) [25]. Several preclinical studies have shown 
efficacy in GBM model systems [16, 31]. It should be 
noted that gamitrinib synergized with BH3-mimetic to kill 
GBM cells in vitro and in an orthotopic patient-derived 
xenograft model of GBM in mice [23]. While this study 
focused predominantly on glioma model systems it is 
important to highlight the fact that other tumor entities 
were affected as well, involving other solid malignancies 
and leukemias. Currently, gamitrinib is being assessed 
in a clinical phase I trial in patients with advanced 
malignancies [32]. 

Imipridones target mitochondrial energy 
metabolism through activation of CLPP

The imipridone ONC201 (also known as TRAIL-
inducing-compound 10, TIC10) was discovered in an 
attempt to identify drugs that are capable of inducing 
TRAIL, which was once considered as a potential “holy 
grail” of anti-cancer therapy [33]. While normal cells are 
not affected by TRAIL, a significant number of cancer 
cells display some or full susceptibility to this endogenous 
death ligand. The susceptibility of tumor cells towards 
TRAIL is determined by the expression levels of death 
receptors, c-FLIP, the inhibitors of apoptosis proteins, 
the Bcl-2 family members of proteins and the activity of 
NF-κB signaling. Thus, it is not surprising that numerous 
combination therapies, involving TRAIL that interfere 
with these pathways/targets were proposed over the last 
two decades. Early experiments from 1999 indicate that 
TRAIL was capable of prolonging overall survival in the 
U87 GBM model system in vivo [34]. While TRAIL had 
an impact on survival in this model system the benefit 
was not durable. To this end, a couple of years later 
TRAIL was combined with SMAC (second mitochondrial 
activator of caspases)-peptides, which are compounds that 
mimic the function of SMAC/DIABLO [35]. At the time 
it was assumed that this protein predominantly interferes 
with the so-called inhibitor of apoptosis proteins, such 
as XIAP and others, which interfere with the activity of 
caspases and thereby function as another fundamental 
regulator of apoptosis aside from the Bcl-2 family of 
proteins. In these experiments, the combination treatment 
led to long-haul survival of the animals [35]. Despite the 
promise there appear to be challenges in the translation of 
these findings to patients. As mentioned, imipridones were 
expected to address this issue. Recent studies suggested 
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that imipridones induced cell death in a variety of cancer 
cells, including GBM, which involved in vitro but more 
relevantly in vivo experiments, including an orthotopic 
model of GBM. Mechanistically, the upregulation of 
TRAIL in cancer cells was mediated in part via the 
transcription factor, FOXO3, through a cascade of 
phosphorylation reactions, involving the kinases AKT 
and ERK. Akin to the death ligand itself imipridones 
synergized with a number of drugs as anticipated. For 
instance, the earlier concept that combined activation of 
both extrinsic and intrinsic apoptosis leads to substantial 
GBM cell killing was confirmed as well. In this regard, in 
utilizing the BH3-mimetic, ABT263, our group was able 
to demonstrate that loss of function of Bcl-xL combined 
with imipridones elicited synergistic reduction of cellular 
viability in a number of different GBM cells as well as in a 
proneural mouse model in vivo [36].  Initially, imipridones 
were thought to primarily interfere with AKT and ERK, 
but it was found later that they seem to primarily target a 
mitochondrial protease, called CLPP. Knockdown of CLPP 
in both acute myeloid leukemia and GBM cells rescued 
from the loss of viability induced by imipridones [37, 38]. 
Moreover, treatment resistance towards imipridones was 
in part mediated by the emergence of a CLPP mutation 
(D190A). The activation of CLPP by imipridones caused 
a depletion of enzymes involved in cellular respiration 
and potentially other mitochondrial proteins [39]. While 
many compounds exert effects on metabolism there is 
one important aspect with regards to imipridones, which 
relates to the fact that indeed imipridones kill cancer 
cells dependent on the loss of function of cellular energy 
metabolism, indicating that their impact on metabolism 
is not merely a passenger effect [40]. Consequently, 
low glucose conditions which favor oxidative energy 
metabolism rendered GBM cells more sensitive to the 
cytotoxic actions of ONC201 [40].

A novel synergistic combination therapy, involving 
imipridones and HDAC inhibitors in GBM

Our group has recently found that FDA-approved 
HDAC-inhibitors may have a profound impact on energy 
metabolism in solid tumor cells, including GBM. While 
HDAC-inhibitors suppressed glycolysis in part through 
interference with enhancers they activated cellular 
respiration, which was fueled by fatty acid oxidation 
and was mediated by transcription factors related to 
either oxidative metabolism or fatty acid oxidation, e.g., 
PGC1A and PPARD [14]. This metabolic reprogramming 
appeared to become more prominent over time since 
GBM cells chronically exposed to HDAC blockers 
increased their oxygen consumption rate stronger than 
cells treated only short-term [14]. Because of the impact 
of HDAC-inhibitors on metabolism we hypothesized 
that imipridones, which suppress cellular respiration, 
might synergize with these compounds to significantly 

enhance killing of GBM cells [38]. Indeed, we found that 
imipridones reversed HDAC-inhibitor induced activation 
of cellular respiration and in turn the combination 
treatment facilitated induction of intrinsic apoptosis in 
a manner that was partially reliant on the anti-apoptotic 
Bcl-2 family members. In an orthotopic GBM xenograft 
model the combination treatment of imipridones and 
HDAC-inhibitors resulted in an increased survival as 
well, suggesting potential translational relevance [38]. In 
summary, targeting tumor cell metabolism is relevant and 
future research needs to identify patient populations that 
particularly benefit from such treatments. Moreover, while 
most studies related to metabolism still rest predominantly 
on the tumor cells it is critical to extend such observations 
to the microenvironment of the tumors, especially with 
regards to the immune system [41, 42]. 
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