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ABSTRACT
Gene-level associations obtained from mass-spectrometry-based cancer 

proteomics datasets represent a resource for identifying gene candidates for 
functional studies. When recently surveying proteomic correlates of tumor grade 
across multiple cancer types, we identified specific protein kinases having a functional 
impact on uterine endometrial cancer cells. This previously published study provides 
just one template for utilizing public molecular datasets to discover potential novel 
therapeutic targets and approaches for cancer patients. Proteomic profiling data 
combined with corresponding multi-omics data on human tumors and cell lines can 
be analyzed in various ways to prioritize genes of interest for interrogating biology. 
Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity 
scoring can be readily integrated with protein data to predict any gene’s functional 
impact before bench experiments are carried out. Public data portals make cancer 
proteomics data more accessible to the research community. Drug discovery platforms 
can screen hundreds of millions of small molecule inhibitors for those that target a 
gene or pathway of interest. Here, we discuss some of the available public genomic 
and proteomic resources while considering approaches to how these could be 
leveraged for molecular biology insights or drug discovery. We also demonstrate the 
inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical 
trial for the treatment of solid tumors, on uterine cancer cell line viability.

https://creativecommons.org/licenses/by/3.0/
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INTRODUCTION

Gene expression profiling of human tumors can 
provide insights into the molecular subtypes of cancer 
and the pathways underlying more versus less aggressive 
disease [1–9]. Most of the gene expression data generated 
to date has been at the transcriptome level. However, 
recent technological advancements in mass spectrometry 
(MS)-based proteomics technologies have accelerated 
its application to study more and more human tumor 
specimens [10, 11]. MS-based proteomics can profile the 
expression of tens of thousands of protein features versus 
~150–200 protein features typically involved in Reverse 
Phase Protein Arrays. Recent studies—e.g., from the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC), 
the International Cancer Proteogenome Consortium 
(ICPC), the Applied Proteogenomics OrganizationaL 
Learning and Outcomes (APOLLO) Network, and 
others—have collectively made MS-based proteomic 
profiling data combined with corresponding multi-omics 
data (or “proteogenomic” data) on thousands of human 
tumors to date [10, 12, 13]. The initial proteogenomics 
studies that generated these data respectively studied the 
protein expression landscape of individual cancer types, 
including defining molecular subtypes at the protein level, 
determining the impact of somatic mutation on protein 
expression, and noting disparities of interest between 
mRNA and protein. The data from these studies have been 
put into the public domain for other research groups to 
explore them with new questions in mind, which may 
involve combining data from multiple individual studies.

The authors of this present Research Perspective 
have collectively participated in multiple pan-cancer 
proteomics studies, which have involved collecting and 
curating public MS-based proteomics data from multiple 
studies of diverse cancer types. With these data, we have 
defined pan-cancer proteomic subtypes of cancer [4, 6], 
explored the impact of somatic mutation on protein 
expression across diverse cancer types [4], defined 
gene correlates of pediatric brain tumor recurrence or 
progression at both mRNA and protein levels [5], and 
defined protein and mRNA correlates of tumor grade or 
stage for multiple cancer types [1]. Our study involving 
tumor grade correlates [1] would serve as a starting point 
for this Research Perspective, as this study involved 
both a bioinformatics component and a wet lab or bench 
experimental component. In this study, we mined the 
proteomic grade correlations, and we identified protein 
kinases—including MAP3K2, MASTL, and TTK—that 
by experiment had a functional impact in vitro in uterine 
endometrial cancer cells. For several reasons, studies that 
mine public cancer molecular datasets to identify novel 
gene targets for functional validation can be challenging, 
as, for example, there would be no obvious “best” 
approach to carry this out. Below, we consider some 
public molecular resources, including proteomics datasets, 

that may be leveraged to help identify gene candidates for 
therapeutic targeting in cancer.

Proteomic grade correlations in tumors

Molecular signatures associated with clinical 
measures of advanced disease could provide molecular 
clues as to the drivers of more aggressive cancers [9]. 
Patient survival or time to adverse event would be one 
measure of aggressive disease. Time to cancer-specific 
death would perhaps be the preferable measure of patient 
survival, as it should be unambiguous. However, cancer-
specific data requires a deliberate effort to follow up on 
the patient’s cause of death over time. Overall survival 
is much more commonly used in cancer studies and 
would serve as an adequate surrogate for cancer-specific 
death for most cancer types, though exceptions would 
include types of cancer such as prostate that tend to be 
more indolent [14]. Historically, tumors in big science 
multi-omics projects such as The Cancer Genome Atlas 
(TCGA) and CPTAC have involved less complete patient 
follow-up data [15], as the priority here was more for 
obtaining tumors with sufficient material for carrying out 
multiple assays on the same sample, even if the eventual 
disease course after initial surgery was unknown. This 
issue of lack of extensive patient follow-up involving the 
CPTAC datasets was something we faced in our study to 
identify proteomic correlates of aggressive cancer [1]. 
We, therefore, relied upon other surrogates for aggressive 
cancer, including tumor grade and stage. Cancer grade is a 
histologic parameter assigning the degree of differentiation 
of the cancer cells, where high-grade cancers look poorly 
differentiated and tend to grow and spread more quickly 
than low-grade cancers that look well-differentiated. 
Cancer stage is a clinical parameter indicating how 
extensively the tumor has spread outside of its site of 
origin. One might expect that high-grade versus high-stage 
tumors would tend to overlap, though the two represent 
different measures.

In our study, we sought to define differentially 
expressed proteins and mRNAs associated with higher 
grade or stage. We examined each of seven cancer types 
with MS-based proteomic data from CPTAC (breast, 
colon, lung adenocarcinoma, clear cell renal, ovarian, 
uterine, and pediatric glioma), representing 794 patients in 
total. For most cancer types, we found hundreds of protein 
features to be differentially expressed with higher grade 
or with higher stage. However, notably more statistically 
significant proteins were associated with higher grade 
than higher stage. For each cancer type, there was 
significant gene set overlap between the proteins and the 
corresponding mRNAs respectively associated with higher 
grade or higher stage. However, many genes significant 
at the protein level were not significant at the mRNA 
level and vice versa, indicative of widespread decoupling 
between the proteome and transcriptome. We could 
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identify 1056 genes for which the total protein associated 
with grade in the same direction for two or more cancer 
types. At the same time, each cancer type showed a 
proteomic signature of tumor grade that was distinctive 
from the other cancer types. In surveying somatic copy 
number alterations associated with tumor grade, we found 
that proteins having lower expression with higher grade 
often involved genes more frequently lost at the copy 
number level with higher grade. Pathways of interest 
were enriched within the grade-associated proteins across 
multiple cancer types, including pathways of altered 
metabolism, Warburg-like effects, and translation factors.

The above results represent a useful exercise in 
bioinformatics and integrative analysis, providing some 
interesting insights along with a catalog of molecular 
correlates of aggressive disease. Still, we wanted to take 
these results a step further, to see if they might also drive 
experimental studies to identify gene targets in cancer. 
We hypothesized that protein correlates of higher tumor 
grade would include proteins having a functional impact 
beyond merely a correlative association. We examined the 
uterine data for potential targets for functional studies in 
uterine endometrial cell lines. We focused here on kinases, 
which tend to be more druggable [16, 17]. Taking a set of 
347 protein kinases with available uterine tumor data, we 
found 37 associated with higher grade in uterine cancer, 
and 20 of these proteins were associated with grade in 
three or more cancer types studied (including uterine). 
From these 20 kinases, we selected four for functional 
studies: MAP3K2, MASTL, SCYL1, and TTK. We 
transfected Ishikawa and HEC-1-A cell lines with non-
targeting siRNA or siRNA targeting each of these four 
kinase genes. Inhibition of TTK and MASTL resulted in 
decreased cell viability and migration in vitro. Inhibition 
of MAP3K2 decreased migration but not cell viability. 
In contrast, Ishikawa cells with SCYL1 knockdown 
demonstrated increased viability. 

Proteomics data portals

Additional proteins of interest remain to be 
uncovered and explored from the public proteomic 
datasets. Molecular biologists and physician-scientists 
need the tools to search these datasets independently 
without needing a bioinformatics expert. We have made 
a concerted effort to provide cancer proteomics datasets 
to the wider research community, in a way that facilitates 
a search for any gene of interest. Originally developed 
at the laboratory of Dr. Sooryanarayana Varambally, 
UALCAN (which stands for the University of ALabama 
at Birmingham CANcer data analysis portal) is a 
comprehensive, user-friendly, and interactive web resource 
for analyzing cancer -omics data [18, 19]. UALCAN 
(http://ualcan.path.uab.edu) allows users to analyze the 
relative expression of a query gene or genes across tumor 
and normal samples for a given cancer type, as well as 

in tumor sub-groups based on individual cancer stages, 
tumor grade, race, body weight, molecular and histologic 
subtypes, or other clinicopathologic features. The graphics 
provided by UALCAN, e.g., box plots comparing 
expression across tumor groups, can be output to a format 
amenable to incorporating into figures for publication or 
presentation (PNG, JPEG, SVG, or PDF).

Initially, UALCAN housed transcriptomics data 
from TCGA, involving RNA-seq and clinical data from 
31 cancer types [18]. Subsequently, we have incorporated 
MS-based proteomics data [1, 4, 6], primarily from 
CPTAC but including other sources [20–22]. We have 
also incorporated proteomic and transcriptomic data 
on pediatric brain tumors from the Children’s Brain 
Tumor Network (CBTN) into UALCAN [5, 23]. The 
user may input one or more genes of interest, then select 
clinicopathologic variables for group comparisons. 
Figure 1 shows box plots generated using UALCAN, 
representing the association of proteins MAP3K2, 
MASTL, and TTK with higher tumor grade in human 
endometrial tumors based on CPTAC data [24]. MASTL 
and TTK, associated with cell viability in vitro, have 
higher expression on average in cancer versus non-cancer 
tissues. In contrast, MAP3K2, which was not associated 
with cell viability, has lower expression in cancer versus 
non-cancer. Whether including a cancer versus normal 
comparison filter in addition to a tumor grade filter would 
help better refine a list of candidate gene targets would be 
an open question. 

Data portals such as UALCAN would enable users 
to look up genes of interest to see if they show relevant 
differential or survival-associated expression patterns 
in human tumors. UALCAN results may complement 
results from experimental studies, providing evidence 
of the relevance of genes in the setting of human disease 
in addition to established relevance in model systems. 
Since 2017, UALCAN has been visited over one million 
times by cancer researchers from over 100 countries. 
Other commonly used data portals that house protein 
expression data along with other cancer -omics data 
include cBioPortal [25, 26]. However, there are notable 
differences between UALCAN and cBioPortal. cBioPortal 
mainly focuses on gene mutations and copy number 
alterations (CNA) data in cancer, with visualization 
capabilities mostly revolving around highlighting 
mutation and CNA patterns along with expression outliers 
for specific genes. Unlike UALCAN, with cBioPortal 
no global comparisons can be accomplished for tumor 
subgroups. While user-friendly data portals allow some 
level of access to molecular data from a wide audience of 
researchers who may not write code but can use “point-
and-click” interfaces, there are limitations on the types of 
questions such tools can answer. There would remain a 
clear need for bioinformatics experts who can carry out 
high-level analyses and data integration to answer more 
sophisticated questions [27].

http://ualcan.path.uab.edu
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Figure 1: Association of selected proteins with higher grade in uterine tumors. MAP3K2, MASTL, and TTK were found in 
our recent study [1] to have functional impact in vitro in uterine endometrial cancer cells. The three genes were originally selected for study 
based on their protein expression association with higher tumor grade. Here, box plots of protein expression of these three genes illustrate 
the respective associations with tumor grade in human endometrial tumors, based on CPTAC data [24]. These box plots here were generated 
directly using the UALCAN data portal [18, 19], which provides publication-quality figures of gene-level views of expression datasets. 
Box plots represent 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). For each group, 
the actual number of samples with expression data for a particular protein may be fewer than the total number of samples in the dataset.
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Cancer cell line data

Notwithstanding their limitations, cell line model 
systems remain extremely useful for basic cancer research 
and drug discovery. While issues such as serial passaging 
and artificial growth conditions likely modify cancer cells 
grown in vitro over time to some degree, authenticated 
cancer cell lines retain most of the genetic properties of 
the cancer of origin [28, 29]. Cell lines can provide the 
preliminary data for many projects to justify further 
exploration using more sophisticated experimental models, 
including organoids and patient-derived xenografts 
(PDXs). For hundreds of cancer cell lines, there are 
extensive molecular and perturbation data available in 
the public domain from major endeavors, including the 
Cancer Cell Line Encyclopedia (CCLE) [30, 31] and 
the Genomics of Drug Sensitivity in Cancer (GDSC) 
[32, 33]. For PDX tumors, concerted efforts involving the 
NIH-NCI PDX Development and Trial Centers Research 
Network (PDXNet) and the NIH-NCI Patient-Derived 
Models Repository (PDMR) repositories have recently 
generated multi-omic data on over 1500 PDX tumors 
to date representing over 500 patients [2, 34]. However, 
proteomics data on these tumors is currently limited, 
and perturbation data (e.g., gene knockdowns or drug 
treatments) remain to be systematically generated [35].

Multilevel data on cancer cell lines can be brought 
together from different sources and studies for integrative 
analyses. CCLE datasets comprise extensive multi-
omics data on over 1000 cancer cell lines, with data 
platforms including whole-exome sequencing, whole-
genome sequencing, DNA methylation data by reduced 
representation bisulfite sequencing, metabolomics, and 
proteomics by Reverse Phase Protein Array [30]. On the 
other hand, GDSC involves much more extensive drug 
response data than CCLE, where GDSC includes half 
maximal inhibitory concentration (IC50) data across 
hundreds of cancer cell lines for 523 drug compounds. 
In contrast, CCLE includes IC50 data for some two 
dozen compounds. MS-based proteomics data have been 
generated for both CCLE and GDSC cell lines, involving 
378 cell lines of the former [36] and 949 cell lines of 
the latter [37]. The Cancer Dependency Map project, 
or DepMap, has carried out large-scale CRISPR loss of 
function screens on over 1,000 cancer cell lines. DepMap 
data allow for inferring gene knockout fitness effects 
for any given gene in each cell line, based on an explicit 
model of cell proliferation dynamics after CRISPR gene 
knockout [38, 39]. Figure 2 shows the numbers of cell 
lines respectively represented in the MS-based proteomics, 
CRISPR assays, and drug sensitivity datasets, as well as 
cell lines shared between datasets. As hundreds of cell 

Figure 2: Compiled multilevel data on cancer cell lines. Venn diagram shows the number of cell lines with data involving protein 
expression (by mass spectrometry), CRISPR assays, and drug sensitivity. Gene effect scores, based on Cancer Dependency Map (DepMap) 
CRISPR assays, were taken from the dataset as analyzed using the Chronos algorithm from Dempster et al. [38]. We compiled the mass 
spectrometry-based proteomics data on 949 cell lines in total from Gonçalves et al. [37] and on 375 cell lines in total from Nusinow et al. 
[36]. For any proteomic values not represented in the Gonçalves dataset (e.g., missing values or cell lines not represented), we used the 
values from Nusinow. We then z-normalized protein expression values to standard deviations across cell lines in the combined dataset. 
We downloaded Genomics of Drug Sensitivity in Cancer (GDSC) drug compound half maximal inhibitory concentration (IC50) data in 
February 2020 (GDSC1-dataset) and in October 2022 (GDSC2-dataset) [32, 33, 37]. We merged the two GDSC IC50 datasets into one. If 
a drug treatment and cell line were represented in both datasets, we averaged the two values; otherwise, we used whichever IC50 dataset 
had available data. GDSC IC50 data represented 623 drug treatments involving 544 compounds.



Oncotarget404www.oncotarget.com

lines would be represented between any two datasets, 
this should provide robust statistical power for integrative 
analyses, e.g., between protein expression and gene 
knockout fitness or drug responses across cell lines.

CRISPR screens in cell lines

In our recent study [1], in which we selected four 
kinases for functional studies based on tumor proteomics 
data, we did not incorporate perturbation data from cell 
lines into our selection of gene targets. Here, in Figure 3, 
we consider how gene dependency data by CRISPR in 
cell lines might be integrated with gene expression in 
human tumors. For each of four different cancer types 
(uterine, lung, ovarian, pancreatic), we plotted protein 
kinase abundance correlates with tumor grade against 
corresponding mRNA expression correlates. In addition, 

the data points in each of the four scatterplots are sized 
according to the number of cell lines of the given cancer 
type with a dependency by CRISPR assay, according 
to DepMap. Gene dependency indicates that the given 
cell line is vulnerable to knockdown of that gene. The 
methodology by Dempster et al. [38] effectively corrects 
for several biases and artifacts that can confound the raw 
DepMap results.

From Figure 3, we see that, between different 
cancer types, different sets of genes may be significantly 
correlated with tumor grade at the protein or mRNA 
levels. Genes significantly correlated with tumor grade at 
the protein level may not be significant at the mRNA level 
and vice versa, which warrants our integrative approach 
to incorporating both levels of data. The Figure 3 uterine 
cancer scatterplot highlights the four kinase genes we 
explored in downstream functional experiments [1]. 

Figure 3: Combined analysis of kinase expression in tumors with cell line dependency to identify new gene targets. For 
each of four different cancer types (uterine, lung, ovarian, pancreatic), protein kinase abundance correlates with tumor grade are plotted 
against corresponding mRNA expression correlates. T-statistics either greater than 2 (higher with high grade) or less than −2 (lower with 
low grad) would be statistically significant (p < 0.05, Pearson’s correlation). Points are sized according to the number of cell lines of the 
given cancer type with a dependency by CRISPR assay, according to DepMap [38, 39]. DepMap scores of <−0.75 were called as denoting 
sensitivity of the given cell line for the given gene. The uterine cancer panel highlights the four genes explored in downstream functional 
experiments in our recent study [1].
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Three of these four kinases had a corresponding mRNA 
association with grade, while MAP3K2 did not. In 
addition, we see that for each cancer type, most of the 
kinase genes examined had few or no cell lines dependent 
on that gene, though kinase genes significantly correlated 
with higher grade tended to be dependent for a high 
percentage of cell lines. Notably, MAP3K2 and SCYL1, 
which kinases did not yield optimal results in vitro for 
representing gene targets [1], have almost no uterine cell 
lines with corresponding DepMap dependency. For other 
genes, however, most cell lines in the DepMap dataset 
show a dependency. In this case, the question would arise 
as to whether the gene would represent a dependency 
only for cancer but not normal cells. In contrast, genes 
dependent for only a subset of cell lines (e.g., TTK) might 
represent better therapeutic targets, as these could involve 
uniquely targetable dependencies for a subset of cancers, 
e.g., genes involved in “oncogene addiction” [40–42].

Drug targeting of genes

Cancer cell lines that have been extensively 
characterized and assayed for their sensitivity to a large 
collection of pre-clinical and clinical therapeutic agents 
might enable therapeutic biomarker discovery [29]. Gene 
expression data can be integrated with drug IC50 data to 
identify markers of drug response [2, 37, 43]. Using a 
dataset of combined protein expression with drug IC50s 
involving 544 compounds and 621 treatments (Figure 2), 
we looked for associations of protein expression with 
drug responses across cancer cell lines, involving the 
three kinase genes—MAP3K2, MASTL, and TTK—
that we studied in vitro in uterine cancer cell lines [1]. 
A negative correlation between IC50 values and protein 
expression indicates that cell lines with higher expression 
tend to be most sensitive to the drug. With 544 compounds 
considered, we might expect about five and less than 
one to have nominally significant p-values of <0.01 
and <0.001, respectively, due to multiple testing [44]. 
Interestingly, MASTL, which had fewer cell lines with 
protein data (n = 255), had no significant IC50 associations 
exceeding chance expected. However, both TTK and 
MASTL each had numerous drug response associations 
exceeding chance expected, as highlighted in Figure 4. 
For example, TTK expression correlates with increased 
sensitivity to several kinase inhibitors, while MASTL 
expression correlates with increased sensitivity to several 
drugs targeting chromatin histone acetylation. These 
results would provide additional information as to which 
existing drugs might target cancers that over-express a 
particular marker, perhaps even using a combinatorial 
treatment strategy.

Here, to validate the biological relevance of the 
overlap between gene dependency, drug response, and 
mass spectrometry proteomics data, we tested the effect of 
BAY1217389, a TTK inhibitor recently tested in a Phase I 

clinical trial for the treatment of solid tumors [45, 46], on 
uterine cancer cell line viability in vitro. In these assays, 
AN3CA and Ishikawa uterine cancer cells were plated in 
a 96-well plate (1,000 cells/well). The following day, the 
cells were treated in triplicate with various concentrations 
of BAY1217389. After 72 hours, cell viability was 
assessed by quantifying cellular ATP via luminescence 
using CellTiter Glo. The IC50 values of BAY1217389 in 
AN3CA and Ishikawa cells were 3.276 nM and 5.166 nM, 
respectively (Figure 5). The potency of this TTK inhibitor 
suggests that targeting TTK is biologically relevant in 
uterine cancer cells and provides rationale for further 
testing in patient-derived organoid systems or animal 
models of endometrial cancer. 

In addition to using existing drugs to target gene 
function in cancer, there is the potential to discover new 
drugs to target genes of interest. In recent studies [47–50], 
the Drug Discovery Center at Baylor College of Medicine 
has identified novel active and specific inhibitors using 
DNA-Encoded Chemistry Technology (DEC-Tec), 
including, more recently, potent and selective molecules 
that inhibit the kinase activity of BMPR2 [50]. DEC-Tec 
allows the exploration of chemical space at a greater level 
than traditional high-throughput screening methods [51]. 
Drug discovery programs with DEC-Tec operate on the 
premise of encoding small organic molecule compounds 
(~108 per library) with individual and unique DNA tags, 
to identify novel small-molecule inhibitors [52]. In DEC-
Tec selections, the affinity-tagged recombinant protein 
targets are incubated with DNA-encoded molecules in 
the presence or absence of a competitive ligand. Target 
binders are captured using antigen-coated magnetic 
beads with affinity to the recombinant protein tag. Bound 
molecules are eluted by denaturing the protein, and the 
DNA barcodes of recovered library material are then PCR 
amplified and submitted for Next Generation Sequencing. 
Library members with a high affinity for the target will 
be retained at a higher rate during the screen and will 
consequently be present at enriched concentrations 
in the sequenced DNA pool. Candidate hit molecules 
are identified by decoding the DNA tags. Candidates 
with favorable physiochemical properties can then be 
synthesized without the DNA tag and tested in vitro. Using 
DEC-Tec or other drug discovery platform, one might 
identify novel small-molecule inhibitors of kinase genes in 
uterine cancer, including TTK and MASTL, representing 
future work from our previous study [1]. 

Multiple approaches for selecting targets

Our above study examining proteomic correlates of 
tumor grade [1] represents just one approach in utilizing 
public molecular datasets to select gene targets. There 
would be no single integrative analysis approach to 
identifying gene targets of interest. Numerous datasets 
and gene selection criteria may be utilized, including 
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associations with parameters of more aggressive disease, 
cancer versus “normal” comparisons (though there may 
be issues in finding a suitable normal [53, 54]), DNA 
mutation or CNA patterns, and molecular patterns in 
experimental model systems such as cell lines or mice. 

Molecular datasets considered may involve a single 
cancer type or multiple cancer types. Selecting genes 
for further study often involves close collaboration 
between a bioinformatician and an experimentalist. 
Ideally, the experimentalist would be actively involved 

Figure 4: Associations of TTK and MASTL protein expression with drug responses across cancer cell lines. (A) From 
the GDSC [32, 33] cell lines with combined protein and drug response data, top compounds with decreases in IC50 associated with TTK 
protein expression (p < 0.001, one-sided Pearson’s correlations using natural log transformed IC50 values). Drug compound names are 
colored by drug class. (B) Similar to part A, but for top compounds with decreases in IC50 associated with MASTL protein expression  
(p < 0.01, one-sided Pearson’s correlations).
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in the selection process. In practice, it often helps for 
the bioinformatician to provide the experimentalist a 
top set of genes meeting one or more selection criteria, 
from which the experimentalist can pick a few genes for 
preliminary studies (e.g., in vitro experiments). Domain 
knowledge of molecular biology should factor into the 
decision process over merely relying on statistical cutoffs 

alone. Below, we provide additional examples from 
previous studies, with one component analyzing molecular 
profiling data on human tumors and another component 
of bench experimental follow-up based on the analysis 
results. However, we cannot provide a comprehensive 
overview here of all cancer-related studies using this broad 
approach.

Figure 5: Efficacy of TTK inhibitor, BAY1217389, in AN3CA and Ishikawa uterine cancer cell lines. (A, B) The effect of 
TTK inhibitor, BAY1217389, on the viability of endometrial cancer cell lines, AN3CA (A) and Ishikawa (B), was evaluated by quantifying 
intracellular ATP concentrations using a luminescence-based assay (CellTiter GLO, Promega). 72 hours after incubation with various 
concentrations of the TTK inhibitor, BAY1217389, the IC50 values of this compound were found to be 3.276 nM in AN3CA and 5.166 nM 
in Ishikawa cells. This graph represents data from three repeated trials, analyzed by a non-linear regression model with a four-parameter 
variable slope (Y = Bottom + (Top-Bottom)/(1+10^((LogIC50-X) × HillSlope)) (GraphPad Prism, version 9).
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In ovarian cancer, we have been involved 
in studies of microRNAs (miRNAs) [53, 55, 56]. 
miRNAs are ~22 nt noncoding RNAs which target 
complementary gene transcripts for translational 
repression or mRNA cleavage [57]. In comparing both 
mRNA and miRNAs for serous ovarian tumors and cell 
lines with normal cells, we identified miR-31 as an 
under-expressed miRNA deleted at the copy number 
level in an appreciable number of serous ovarian tumors 
represented in TCGA. In subsequent experiments, miR-
31 over-expression in vitro inhibited proliferation and 
induced apoptosis in a number of cell lines [53]. mRNA 
and miRNA expression profiling of clear cell ovarian 
cell lines identified miRNAs of interest, including 
miR-100, which we found in follow-up experiments 
to inhibit mTOR signaling and enhance sensitivity to 
mTOR inhibitor everolimus [56]. In another study 
that surveyed correlations between miRNAs and their 
predicted mRNA targets across over 400 serous ovarian 
cancers in TCGA database, the miR-29 family and 
predicted targets were among the top results. Subsequent 
experiments showed that over-expression of miR-29a in 
vitro repressed several anti-correlated genes, including 
DNMT3A and DNMT3B, and decreased cancer cell 
viability [55].

The senior author of this Research Perspective has 
participated with others in lung cancer studies, where 
we successfully utilized molecular profiling data of 
experimental models to identify gene targets [58–62]. 
In a seminal study of epithelial-mesenchymal transition 
(EMT) [61], analysis of molecular data from tumor 
cell lines derived from mice that develop metastatic 
lung adenocarcinoma identified the miR-200 family as 
differentially expressed. Subsequently, forced expression 
of miR-200 abrogated the capacity of these tumor cells 
to undergo EMT, invade, and metastasize, and conferred 
transcriptional features of metastasis-incompetent tumor 
cells. In another series of studies [58–60], bioinformatics 
analysis of molecular profiling data, involving cross-
species comparison of the genes overexpressed in 
autochthonous genetically engineered metastatic murine 
lung tumors and syngeneic lung cancer models, intersected 
with human copy number amplifications by TCGA, 
identified a set of 217 putative driver genes in lung 
cancer [58]. Subsequent experiments have demonstrated 
functional roles for several of these genes, including 
GATAD2B [58], TMEM106B [59], IMPAD1 [60], and 
KDELR2 [60]. In another study, from analysis of TCGA 
CNA datasets, we identified a chromosome 1q region 
frequently amplified in diverse cancer types and encoding 
multiple regulators of secretory vesicle biogenesis 
and trafficking, including the Golgi-dedicated enzyme 
phosphatidylinositol (PI)-4-kinase IIIβ (PI4KIIIβ). 
Extensive follow-up experiments demonstrated PI4KIIIβ 
as a therapeutic target in chromosome 1q-amplified lung 
adenocarcinoma [62].

As evidenced by the thousands of literature citations 
to date of the seminal paper originally introducing 
the UALCAN data portal to the research community 
[18], UALCAN has facilitated the selection of genes 
for experimental validation for perhaps hundreds or 
even thousands of independent studies. The UALCAN 
creators themselves have utilized the data portal in several 
experimental studies of individual genes—including 
PAICS [63–66], MTHFD1L [67], PAK4 [68], P4HA1 
[69], and FZD8 [70]. In these studies, the relevance of the 
gene in human disease is first demonstrated by UALCAN 
analysis of a particular cancer type (e.g., showing higher 
expression in cancer versus normal, or specific cancer 
sub-class pattern such as ERG gene fusion specific over-
expression of FZD8 in prostate cancer [70]), followed by 
validation and a demonstration of the functional role of 
that gene in cancer cell models.

CONCLUSIONS

As bench experiments can represent a great deal of 
effort, the ability of molecular profiling data to drive the 
selection of genes and the design of bench experiments 
could save much time and result in less trial-and-error. 
MS-based proteomic data can capture gene expression 
information at the protein level that would not be captured 
at the mRNA level [4, 10, 71]. UALCAN and other 
data portals can facilitate access to proteomic and other 
molecular datasets, providing gene-level results to guide 
future studies. UALCAN currently houses human tumor 
data, though the extensive molecular datasets on cancer 
cell lines might eventually be incorporated into UALCAN 
as well. At the same time, point-and-click interfaces are 
limited in terms of what questions they can answer [27]. 
Skilled bioinformaticians could integrate molecular data 
from multiple sources and at multiple -omics levels, 
including proteomics. Creative analytical approaches to 
the public cancer molecular datasets could yield new gene 
sets representing new therapeutic targets and new insights 
into cancer.
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