
Oncotarget342www.oncotarget.com

www.oncotarget.com Oncotarget, 2023, Vol. 14, pp: 342-350

Research Perspective

Cancer prevention with rapamycin
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ABSTRACT
Rapamycin (sirolimus) and other rapalogs (everolimus) are anti-cancer and 

anti-aging drugs, which delay cancer by directly targeting pre-cancerous cells and, 
indirectly, by slowing down organism aging. Cancer is an age-related disease and, 
figuratively, by slowing down time (and aging), rapamycin may delay cancer. In 
several dozen murine models, rapamycin robustly and reproducibly prevents cancer. 
Rapamycin slows cell proliferation and tumor progression, thus delaying the onset 
of cancer in carcinogen-treated, genetically cancer-prone and normal mice. Data on 
the use of rapamycin and everolimus in organ-transplant patients are consistent with 
their cancer-preventive effects. Treatment with rapamycin was proposed to prevent 
lung cancer in smokers and former smokers. Clinical trials in high-risk populations 
are warranted.

INTRODUCTION

The mTOR (Target of Rapamycin) pathway is 
involved in both cancer and aging. Furthermore, common 
cancers are age-related diseases, and their incidence 
increases exponentially with age. Rapamycin (sirolimus) 
and other rapalogs (temsirolimus, everolimus) may delay 
cancer by targeting directly pre-cancerous cells and by 
slowing down organism aging. 

Rapamycin delays tobacco-related and lung 
cancer in mice

In 2007, it was demonstrated that rapamycin 
prevents lung cancer in mice caused by the tobacco-
specific carcinogen NNK [1]. Mice were treated with 
NNK at the age of 6 weeks. In one of experiments, 
treatment with rapamycin (every-other-day) was started 
one week after NNK exposure. Rapamycin decreased 
tumor multiplicity by 90%. Phenotypic progression 
of tumors was slowed, tumors were smaller in size by 
74% due to decreased cell proliferation. Granville et al. 
envisioned a clinical trial of rapamycin for smokers at high 
risk of lung cancer [1]. 

Supporting these results, Patlolla et al. showed 
that rapamycin delayed (or prevented) development 

of NNK-induced lung adenoma and progression from 
lung adenoma to adenocarcinoma in mice [2]. When 
treatment with rapamycin was started early (three weeks 
after NNK), rapamycin suppressed development of lung 
adenoma and adenocarcinoma [2]. For late intervention 
(rapamycin treatment was started 20 weeks after NNK 
exposure) rapamycin suppressed progression from lung 
adenoma to lung cancer. The authors concluded that 
rapamycin is effective even after dysplastic adenoma or 
early adenocarcinoma stages and may be useful for high-
risk lung cancer people [2].

 Yan et al. found that treatment with rapamycin for 
14 weeks, beginning 12 weeks after administration of a 
polycyclic aromatic hydrocarbon [benzo(a)pyrene] (BP), 
decreased lung tumor load by 84% [3]. 

In a model of EGFR mutant lung cancer in mice, 
rapamycin prevented or slowed down tumor development. 
Median overall survival was prolonged by more than 
three-fold [4].

In a different mouse model, 4-nitroquinoline-1 
oxide (a surrogate of tobacco exposure) caused head 
and neck squamous cell carcinoma (HNSCC). This 
tobacco-mimicking carcinogen leads to the appearance of 
preneoplastic and tumoral lesions, with 100% incidence. 
Many of these lesions progressed into highly malignant 
squamous cell carcinomas few weeks after carcinogen 
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withdrawal. The Akt-mTOR was overactivated as an early 
event in dysplastic lesions. Rapamycin delayed the onset 
and slowed progression of tumorigenesis [5]. Chronic 
administration of rapamycin prevented the malignant 
conversion of precancerous lesions [5]. It was suggested to 
use rapamycin for chemoprevention of upper aerodigestive 
tract cancers [5, 6].

Rapamycin prevents cancer and extends lifespan 
in cancer-prone mice

In transgenic HER-2/neu cancer-prone mice, 
rapamycin treatment (started 2 months after birth) 
decreased rate of aging, increased lifespan, and 
suppressed carcinogenesis. Rapamycin delayed tumor 
onset, decreased the number of tumors per animal and 
tumor size, increasing maximal lifespan by 12.4% [7]. In 
the follow-up work in these mice, some degree of cancer 
prevention can be achieved by low doses of rapamycin [8].

In highly tumor-prone p53−/− mice, rapamycin 
extended the mean lifespan by 30% and delayed tumor 
development [9].

In heterozygous p53+/− mice, rapamycin also 
extended the mean lifespan when treatment started early 
in life and decreased the incidence of tumors [10].

In Rb1+/− mice, rapamycin extended lifespan and 
delayed the onset and/or progression of neuroendocrine 
tumors [11].

In cancer-prone germline PTEN mutant mice, long-
term treatment (started at the age of 6 week) with low 
doses of rapamycin extended lifespan and delayed tumor 
development [12].

In male mice with prostate epithelium-specific Pten-
knockout mouse prostate cancer model, low dose of 
rapamycin (formulated as Rapatar) was effective in 
suppressing proliferation of prostate epithelial cells and 
prevention of prostate cancer. A higher dose activated 
feedback circuits that decreased the drug’s tumor 
preventive efficacy [13].

Deletions of transforming growth factor-β receptor 
I and PTEN in oral mucosa resulted in spontaneous 
development of HNSCC with 100% penetrance. 
Rapamycin treatment delayed progression of papilloma 
and the onset of squamous cell carcinoma in the head and 
neck region as well as the oral cavity and increased life 
span and median survival almost two-fold [14].

Apc(Min/+) mice exhibit multiple intestinal 
neoplasia (MIN), which causes death by 6 months. Short-
term treatment with everolimus and rapamycin reduced 
the number of polyps and their size [15, 16]. Importantly, 
chronic rapamycin improved survival of Apc(Min/+) 
mice in a dose-dependent manner [17]. A high dose of 
enterically targeted rapamycin (eRapa) extended the 
median lifespan beyond normal median lifespan of 
wild-type syngeneic mice. Based on these results it was 
suggested that rapamycin may be effective for cancer 

prevention in people with familial adenomatous polyposis 
[17, 18].

Everolimus (RAD001) delays tumor onset and 
progression in a transgenic mouse model of ovarian cancer 
[19]. Tumor burden was decreased by 84%. Approximately 
30% of everolimus-treated mice developed early ovarian 
carcinoma confined within the ovary, whereas all placebo-
treated mice developed advanced ovarian carcinoma [19]. 
The authors suggested rapamycin for women at high 
familial risk of ovarian cancer [19].

Rapamycin delays cancer in normal mice

In numerous studies, rapamycin extended lifespan 
in normal strains and genetically heterogeneous mice 
and wild mice (see for references [20]). Cancers are 
the leading cause of death in most mouse strains used 
for these studies [21, 22]. Presumably, when death was 
delayed, then the cause of death (mostly cancer) was 
delayed too. Some studies investigated this assumption 
specifically.

In genetically heterogeneous mice, administration of 
rapamycin started at the age of 9 and 20 months extended 
lifespan and delayed cancer [21, 22]. It was even 
speculated that “longevity extension in these mice 
might reflect inhibition of multiple forms of neoplastic 
disease” [23]. Alternatively, it was suggested that, by 
slowing and delaying aging, rapamycin delayed cancer 
[23, 24]. Similarly, lifelong administration of rapamycin 
(starting from age of 2 months) increased lifespan 
and delayed spontaneous cancer in mice [24]. Neff 
et al. detected several cancers in aged mice, including 
lymphoma, hepatocellular carcinoma, histiocytic 
sarcoma, and bronchoalveolar adenocarcinoma, as well 
as precancerous lesions in male C57BL/6J mice [25]. 
Rapamycin significantly reduced the proportion of aged 
mice presenting with cancers and/or precancerous lesions 
in the 16-month cohort (control, 4 of 10; rapamycin, 0 of 
15), but not at the older ages of 25-month and 34-month. 
The authors concluded that rapamycin delayed cancer and 
cancer-caused death in male C57BL/6J mice [25].

Cancer prevention in humans 

Solid organ (kidney, liver, lung, heart) transplantation 
is associated with increased risk of cancer and especially of 
non-melanoma skin cancer.

Starting from 2004, numerous studies demonstrated 
that rapamycin and everolimus reduced the incidence of 
various cancers in organ transplant patients [26–34].

For example, Mathew et al. showed that Sirolimus 
(rapamycin) protected renal transplant patients from skin 
cancer even when given in combination with CsA (CsA 
increases incidence of skin cancer) [26].

Kauffman et al. also demonstrated that sirolimus 
and everolimus treatment is associated with a significantly 
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decreased risk of any de novo malignancy and non-skin 
solid malignancy [27].

Piselli et al. also found that use of mTOR inhibitors 
significantly reduced the risk (by 46%) of all cancers 
combined [30].

mTOR inhibition was associated with a reduced 
risk of basal cell carcinoma of the skin after kidney 
transplantation [31]. Rapamycin (sirolimus) treatment was 
associated with decreased incidence of lymphoproliferative 
disorder after heart transplantation [34].

Rapamycin and its analogs for cancer therapy

Rapamycin analogs (temsirolimus and everolimus) 
are approved for various cancers: renal, breast, lung and 
others.

On May 30, 2007, temsirolimus (Torisel) 
was approved for the treatment of advanced renal 
cell carcinoma (RCC) [35, 36]. In comparison with 
treatment with interferon-a (the best treatment in 2007), 
temsirolimus further increased overall survival in patients 
with metastatic renal-cell carcinoma. Median overall 
survival in the interferon group, the temsirolimus group, 
and the combination-therapy group were 7.3, 10.9, and 
8.4 months, respectively. There was also a statistically 
significant longer progression-free survival (PFS) time for 
the temsirolimus arm than for the IFN-alpha: 5.5 months 
versus 3.1 months [36].

On Mar 30, 2009, everolimus (rapamycin analog) 
was approved by the FDA as a first treatment for 
patients with advanced kidney cancer after failure of 
either sunitinib or sorafenib. Treatment with everolimus 
prolonged progression-free survival relative to placebo 
in patients with metastatic renal cell carcinoma that 
had progressed on other targeted therapies. Median 
progression-free survival was 4.0 vs. 1.9 months [37].

On July 20, 2012, everolimus was approved by 
the FDA for use in combination with exemestane to treat 
women with advanced hormone receptor-positive, HER2-
negative breast cancer [38]. At the interim analysis, 
median progression-free survival was 6.9 months with 
everolimus plus exemestane and 2.8 months with placebo 
plus exemestane. Median progression-free survival was 
10.6 months and 4.1 months, respectively, according 
to central assessment. Everolimus combined with an 
aromatase inhibitor improved progression-free survival in 
patients with hormone receptor-positive advanced breast 
cancer previously treated with nonsteroidal aromatase 
inhibitors [38].

On February 26, 2016, the FDA approved 
everolimus (Afinitor) for the treatment of adult patients 
with progressive, well-differentiated, non-functional 
neuroendocrine tumors (NET) of gastrointestinal or lung 
origin with unresectable, locally advanced or metastatic 
disease. Median PFS were 11 months and 3.9 months in 
the everolimus and placebo arms [39].

Delaying (prevention) vs. treating cancer

To be a highly effective cancer-preventive drug, 
rapamycin does not need to cure cancer or even be 
effective in treating advanced, heterogeneous and 
metastatic tumors, harboring numerous oncogenic 
mutations and failed previous therapy. To prevent cancer, 
rapamycin does not need to kill cancer cells (rapamycin 
does not kill cells) or stop tumor progression (it merely 
slows it down).

As we discussed earlier, rapamycin slows cell 
proliferation and tumor progression, thus delaying the 
onset of cancer in tobacco-carcinogen-treated mice, in 
both genetically cancer-prone and normal mice (Figure 1). 
(In cell culture, rapamycin slows cell proliferation 

Figure 1: Rapamycin slows tumorigenesis, tumor progression and growth. Rapamycin is more potent at early stage of 
tumorigenesis (green color) than in advanced and pre-treated cancer (red color).
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2–10 fold and slows geroconversion to cell senescence 
3-fold [40]). Rapamycin figuratively slows down time [41].

For cancer prevention, treatment with rapamycin 
should last many years (in humans). In numerous studies, 
mice were treated for almost a lifetime. It was not only 
well-tolerated but also improved healthspan and lifespan 
(see for references [42, 43]).

If, hypothetically, in humans, a low dose of 
rapamycin would slow pre-cancer cell proliferation and 
tumor progression just 2-fold, and a person would be 
treated for 40 years, then the onset of cancer would be 
delayed for 20 years. Then this person may die later in 
life from another age-related disease, for example CVD. 
Such a significant cancer delay can be viewed as cancer 
prevention (Figure 2).

In humans, lung cancer may take 20 years to 
develop, with smoking driving mutations, even 20 years 
after quitting [44].

In tobacco-carcinogen-induced lung tumorigenesis 
in mice, rapamycin delays tumors by slowing down 
tumor progression and cell proliferation. When treatment 
is started early, rapamycin decreases not only the size of 
tumors and tumor burden, but also the number of tumors 
per animal. When treatment is started later (after tumors 
develop), rapamycin does not decrease tumor multiplicity 
but slows tumor progression and growth, making them 
smaller [1–3]. 

Using a two-stage skin carcinogenesis protocol 
with DMBA (carcinogen) and TPA (tumor promoter), 
rapamycin (given topically 30 minutes prior to TPA) 
exerted a powerful anti-promoting effect, reducing 
both tumor incidence and tumor multiplicity [45]. 
Furthermore, rapamycin abolished tumor development 
when administered prior to both DMBA and TPA [46].

Rapamycin protects HPV-E6/E7 expressing tissues 
from developing of squamous cell carcinoma [46].

Figure 2: Rapamycin prevents cancer by slowing tumor progression (hypothetical schema). (A) Rapamycin slows tumor 
progression and delays cancer and death from cancer. (B) Rapamycin slows tumor progression and delays cancer. A person dies from 
another cause (e.g., cardiovascular disease, CVD) before cancer developed.
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It was concluded that rapamycin is a potent 
chemopreventive agent [47, 48]. “Rapamycin 
suspends progression of low-grade cancers, preventing 
invasive conversion of in situ malignancy, or delaying 
malignant transformation of established pre-malignant  
conditions” [48].

Rapamycin slows aging, thus delaying cancer 
further 

Rapamycin can delay cancer not only by targeting 
precancerous/cancerous cells directly, but also by slowing 
down organismal aging [49]. It is theoretically predictable 
that rapamycin delays age-related diseases in part by 
slowing aging [50]. Certainly, rapamycin extends lifespan 
in other ways beyond preventing cancer.

1. Rapamycin delays numerous age-related diseases 
other than cancer. For example, rapamycin (sirolimus) or 
its analog (everolimus) attenuate atherosclerosis in rabbits 
[51], mice [52] and humans [53]. Thus, a prospective 
randomized trial showed that rapamycin (sirolimus) 
decreased carotid atherosclerosis in organ-transplant 
patients [53].

2. Rapamycin extends lifespan in species that do 
not have cancer: the C. elegans worm [54], the freshwater 
cnidarian Hydra [55], and Daphnia magna [56]. 
Rapamycin also extends the lifespan of yeast [57].

3. A brief treatment with rapamycin very early 
in life extends lifespan in mice [56, 58, 59]. There are 
no pre-cancer cells so early in life, and the treatment 
with rapamycin is brief. One explanation is that by re-
programming development-driven aging, rapamycin 
retards aging and therefore delays cancer [20].

4. Rapamycin slows geroconversion (acquisition 
of the senescent phenotype) in mammalian cells. First, 

geroconversion may be linked to organism aging [60]. 
Second, senescent stroma stimulates tumor growth 
[61–63]. Reversing the aging stromal phenotype with 
rapamycin prevents carcinoma initiation [61], and 
rapamycin suppressed the ability of senescent fibroblasts 
to stimulate tumor growth in mice [64, 65].

CONCLUSION

In several dozen murine models, rapamycin 
robustly and reproducibly delays cancer and, in some 
cases, prevents cancer over a lifetime. It was repeatably 
proposed that clinical trials in high-risk populations are 
warranted. A decade-long treatment with rapamycin may 
be employed to prevent lung cancer in smokers and former 
smokers. However, decades-long trails are unlikely to be 
started in the near future. Accidental data on the use of 
rapamycin (Sirolimus) and everolimus in organ-transplant 
patients is consistent with their cancer-preventive effects. 
However, in these patients, their use in combination with 
other immunosuppressants makes interpretations difficult.

The experience of treatment of cancer patients with 
mTOR inhibitors is also in agreement with their cancer-
preventive effects. Although rapalogs do not cure cancer 
and infrequently cause remission, they can slow down 
progression even in advanced tumors, and this activity is 
sufficient for cancer prevention. Also, long-term treatment 
with rapamycin slows down aging, a major risk factor for 
cancer (Figure 3). Notably, delaying cancer is form of 
cancer prevention. Consider a scenario: rapamycin delays 
cancer for 2 years, during which this person dies from 
myocardial infarction (Figure 2). In this case postponing 
cancer is cancer prevention.

Currently, an increasing number of healthy people 
use rapamycin off-label to slow down aging. Perhaps 

Figure 3: Rapamycin prevents cancer by direct (suppressing pre-cancerous/cancer cell) and indirect mechanisms 
(suppressing aging and angiogenesis).
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in ten or twenty years from now, data will accumulate 
for retrospective analysis of cancer-prevention with 
rapamycin in humans. 
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