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ABSTRACT
A view that guides the bulk of cancer research and oncology posits that each 

neoplastic cell in a tumor is a genetic offspring of another neoplastic cell. Yet, 
analyzing tumors from transplant patients has revealed that some normal migratory 
cells adopt the phenotype of neoplastic cells without acquiring their genome, thus 
becoming what I suggest to call adopted neoplastic cells. This commentary reviews 
the evidence for the existence of adopted neoplastic cells, outlines the consequences 
of their presence, and discusses what kind of cells can be adopted, how, and why.

Cancers, or malignant tumors, are defined and 
diagnosed as tumors whose cells migrate into normal 
tissues, while benign tumors as those whose cells fail to do 
so [1]. Why the cells of some tumors migrate and the cells 
of others do not is not entirely clear, as can be judged by 
the near absence of drugs that target cancer cell migration 
[2, 3], by expert opinions that metastasis, the process of 
migrating to distant organs, is an “almost intractable facet 
of cancer medicine” [4] in which “attempts to specifically 
target metastatic pathways have met with near-universal 
failures” [5], and by the fact that surviving a disseminated 
cancer is still less likely, and by far, than surviving a round 
of Russian roulette [5–7], a comparison that is relevant 
because a cancer patient’s survival is also predicted 
statistically, that is to say, as a matter of luck. 

This situation is not due to the want of effort, as 
attested by at least 3.3 million articles published on cancer 
(searching PubMed on March 26, 2023 with ‘cancer 
[MeSH Major Topic]’ returned 3,374,062 results) since 
a prominent researcher concluded a century ago that 
“despite an immense accumulation of data, the solution 
of the tumor problem waits upon fresh findings” [8]. That 
this conclusion is still valid reminds us that since it was 
made some intractable medical problems have been solved 
not by continuing to accumulate data, but by revisiting or 
rediscovering neglected observations and models [9–14].

One of the models that are still neglected proposes 
that tumor cells become migratory not by accumulating 
genomic aberrations, as a century-old view which 
dominates cancer research and drug development posits 
[15–21], but by acquiring this ability from normal 

migratory cells, like a company that merges with another 
business to acquire a technology needed to expand into 
new markets (Figure 1).

The original hypothesis, also a century old [22, 23], 
proposed that the ability of cancer cells to migrate is 
acquired through cell fusion, a process that combines two 
or more cells into one by merging their plasma membranes 
and then combining entire cell contents [24]. The idea was 
that if a normal cell, or a cell of a benign tumor, fuses to 
a leucocyte, a migratory cell of the immune system, the 
resulting hybrids, like cancer cells, would proliferate as one 
parent and migrate as the other. Also like cancer cells, these 
hybrids would be diverse because some would “have more 
the wanderlust of the leukocyte, others more the ability 
of the somatic cell to function in a sedentary manner,” 
with additional heterogeneity resulting from the unequal 
distribution of chromosomes following cell fusion [23].

This hypothesis had laid fallow for six decades, until 
a serendipitous discovery revealed that human cancers 
grafted into laboratory animals can become metastatic 
and evade the immune response by forming hybrids with 
the cells of the host [25, 26]. Since then, the ability of 
cell fusion to enable metastases in a variety of animal 
systems has been confirmed by many studies (reviewed 
in: [27–30]) and complemented by findings that cell fusion 
can also produce dormant tumor cells, change their drug 
sensitivity, suppress the ability to form tumors, which led 
to the concept of tumor suppressors [31], induce genomic 
and phenotypic instability [32], affect tumor cell evolution 
[33, 34], change cell metabolism, produce circulating 
tumor cells, affect immune response, and, in synergy with 
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oncogenes, produce invasive tumors that are similar to 
human cancers (reviewed in [27, 29, 35–42])

Are these observations relevant to human cancers? 
This question prompted a search for cell hybrids in human 
tumors.

How to find a hybrid?

To find a hybrid in a laboratory animal, the animal 
is made chimeric, that is, composed of two or more 
genetically distinct cell populations. For example, to 
make two populations distinct and their hybrids easier to 
detect, one population is commonly modified to carry a 
gene encoding a green fluorescent protein, while the other 
a gene encoding a red protein. Hybrids are then identified 
as cells that carry both genes. 

Chimeric animals are required for two reasons. 
First, unlike other features that may be specific to parental 
cells, nuclear genomes cannot be changed by cell fusion 
beyond recognition, are replicated during each cell cycle, 
and, consequently, can be identified unambiguously even 
after numerous cell divisions, which is why genomic 
analysis is also used in forensics to identify humans and 
their genealogical relationships. Second, most cells of 
a laboratory mouse or a human have the same genetic 
background because they are the progeny of one cell, the 

fertilized egg. As a result, cell hybrids remain “invisible” 
to genomic approaches unless the analyzed organism is 
chimeric.

Hence, the search for hybrids in human cancers 
turned to patients who are chimeric because prior to a cancer 
diagnosis these individuals received an organ transplant 
and, as a result, are made of two genetically distinct cell 
populations: one has the genome of the recipient, the other 
the genome of the donor. Analyzing patients who received 
an organ from the donor of the opposite sex, say a female 
who received a bone marrow transplant from a male 
(Figure 2), is particularly informative because the origin 
of individual cells (donor or recipient) in a tissue can be 
revealed by visualizing sex chromosomes and whether these 
cells are normal or neoplastic determined by histopathology. 

These so called sex-mismatch patients are rare – for 
example, only four were found among 12,000 transplant 
patients by one study [43] – and so have been studies that 
have searched for cell hybrids in human tumors. This rarity, 
and the potential to reveal what had been invisible, both 
literally and figuratively, make the obtained results precious. 

Adopted neoplastic cells

The analysis of tissues from sex-mismatch patients 
has revealed two groups of tumors (Figure 2).

Figure 1: How do tumor cells become migratory? A prevailing view (top) is that tumor cells develop the ability to migrate from 
within: by acquiring mutations, in response to external cues, or by a combination of these stimuli. An alternative explanations (bottom) is 
that the ability to migrate is acquired from normal migratory cells. The original hypothesis posited that this acquisition results from fusion 
between a normal or neoplastic sedentary cell and a normal migratory cell, such as a leukocyte. We will discuss later other modalities of 
transferring properties from one cell to another.
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In the first group, which included basal cell 
carcinomas, skin squamous cell carcinomas, and oral 
squamous cell carcinomas, all of the analyzed neoplastic 
cells in each tumor contained the sex chromosomes of 
either the donor or the recipient [44–46]. 

This result is consistent with the current view that 
all neoplastic cells in a tumor are a clone of a single cell, 
the cell of origin [21]. Indeed, this model predicts that 
in a transplant patient the cell of origin can come either 
from the recipient, in which case all neoplastic cells of the 
resulting tumor should have the genome of the recipient, 
or from the donor, in which case all neoplastic cells should 
have the genome of the donor.

However, in the second group of tumors, which 
included lung adenocarcinoma, laryngeal squamous 
cell carcinoma, glioblastoma, Kaposi sarcoma, colon 

adenomas, esophageal carcinoma, basal cell carcinoma, 
squamous cell carcinoma, and pancreatic ductal carcinoma, 
1% to 40%, or “a proportion” [47], of neoplastic cells 
identified by pathologists as “histologically malignant,” 
“as carcinoma cells,” “invasive,” “consistent with 
neoplastic colonic adenoma cells” contained the sex 
chromosomes of the donor, with the rest containing only 
the sex chromosomes of the recipient [43–45, 48–51]. 
Hence, each of these tumors was made of two genetically 
distinct populations of neoplastic cells – one derived from 
the recipient, another from the donor – and thus could not 
be a clone of one cell.

Several additional observations support this 
conclusion. First, not all tumors analyzed by the same 
approaches in the same laboratory had detectable 
neoplastic donor cells [45–47, 50], meaning that these 

Figure 2: Adopted neoplastic cells in tumors from sex-mismatched transplant patients. (A) A typical experiment to test 
if tumor cells form hybrids with bone marrow derived cells in tumors from transplant patients. A female who received a bone marrow 
transplant from a male subsequently develops a tumor. Whether the cells of this tumor come from the donor or the recipient is revealed 
by visualizing sex chromosomes (XY in males, XX in females, and XXXY in predicted hybrids) and whether these cells are neoplastic or 
normal is determined by histopathology. (B) Expected intermediates for hybridization and neoplastic adoption.
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cells are a feature of some tumors rather than an artifact of 
the methods used. Second, neoplastic donor cells were also 
detected among tumor cells found in the blood (circulating 
tumor cells, or CTC) [51], which rules out potential 
artifacts associated with analyzing solid tissues. Third, 
some of the studies verified the donor origin of neoplastic 
cells using multiple approaches, such as tracing a rare 
mutation, analyzing mitochondrial DNA, genotyping 
microdissected tumor cells, staining for HLA antigens, and 
evaluating the ploidy of donor-derived neoplastic cells by 
visualizing non-sex chromosomes [43, 47, 50]. 

The presence of donor-derived neoplastic cells could 
be explained, as the model which prompted the search for 
the hybrids had predicted, if some normal donor cells 
fused to the neoplastic cells of the recipient, yielding 
hybrids in which the neoplastic phenotype becomes 
dominant. However, genomic evidence for hybridization 
has been found only for a fraction of neoplastic donor cells 
and only in some tumors [48, 49, 52]. No such evidence 
was found [43, 45, 50] or available [44, 51] for other 
tumors, implying that at least some of the donor-derived 
neoplastic cells are not hybrids.

If they are not hybrids, then what are they?
The lack of evidence for their hybrid origin, 

the observation that these cells are a minority among 
neoplastic cells, and the finding that these cells are 
detected in tumors diagnosed as early as two months 
after an organ transplant [45] can be explained if some 
normal donor cells migrate into a tumor and acquire 
the phenotype of tumor cells without acquiring their 
genome, as has indeed been suggested [43, 45, 50, 53]. 
I will refer to such cells as adopted neoplastic cells [53], 
irrespective of how they become adopted, because these 
cells are not the genetic offspring of resident neoplastic 
cells.

How are these cells adopted? Who are the “adoptive 
parents”? What types of cells can be adopted? What is 
the fate of adopted cells? What kind of tumors can adopt 
cells? Are these cells restricted to transplant patients? To 
see if these questions are worth discussing, let us first 
consider how the presence of adopted cells would affect 
tumor development.

What would the existence of adopted neoplastic 
cells imply?

Adopted neoplastic cells not only look as resident 
neoplastic cells to expert pathologists, which is by itself 
remarkable because how tumor cells look is used to 
diagnose tumors and to predict their clinical course [1], 
but at least some of them may have properties required 
to expand or seed tumors. Indeed, some donor-derived 
neoplastic cells were found in clusters or nests [43, 44, 
48, 49], as would be expected if these cells proliferate. 
Whether solitary adopted cells also proliferate is unclear 
because migratory cells can wander away from each 

other instead of forming a cluster. That at least some of 
the adopted cells are migratory, perhaps because they 
retain some features of their normal precursors, follows 
from their presence among circulating tumor cells [30, 
51, 52], an observation that also implies that adopted cells 
can retain their neoplastic phenotype for some time after 
leaving the tumor. 

The ability of adopted neoplastic cells to proliferate, 
migrate, and retain their phenotype prompts a hypothesis 
that even if the majority of the adopted cells vanish, as 
adopting a neoplastic phenotype might trigger cell suicide, 
cell cycle arrest, or an attack by the immune system, 
some hopeful monsters, to use an evolutionary term [54] 
particularly fitting cancer cells, could survive, multiply, 
and evolve. 

If so, the existence of adopted neoplastic cells would 
have consequences that might explain some outstanding 
observations.

Tumor evolution can be genetically discontinuous

A model taken by cancer research and oncology as 
a fact, despite contradicting evidence [55, 56], posits that 
all neoplastic cells of a tumor are the genetic progeny of a 
single cell, the cell of origin, which becomes neoplastic by 
acquiring genomic and epigenetic aberrations [18, 20, 21] 
(Figure 3). This model implies that new neoplastic cells 
in a tumor are produced only by the division of existing 
neoplastic cells, or, in other words, that tumor evolution is 
genetically continuous.

For example, the notion of genetic continuity 
underlies the effort to identify and target genomic 
aberrations that cause the cell of origin to become 
cancerous and thus are expected to be inherited by 
all neoplastic cells in a tumor. Hence, the hope is that 
targeting these aberrations would kill all tumor cells 
with one arrow. However, if normal cells can acquire a 
neoplastic phenotype without acquiring the tumor genome 
and thus its aberrations, targeting these aberrations is 
bound to fail, as has indeed been the case for reasons that 
are only partially understood [57–59]. 

This unfortunate implication of genetic discontinuity 
may not require many adopted cells, as a single cancer cell 
can seed a tumor [60], cancers can relapse in patients with 
undetectable residual disease [61], and metastases can 
emerge, apparently from single disseminated cells, years 
or decades after the primary tumor has been excised [62–
64]. To put these facts in perspective, a tumor in which 1% 
of neoplastic cells are adopted could have 107 of hopeful 
monsters per each 1 cm3 of the tumor [61].

Genetically discontinuous evolution can also help to 
explain some observations related to metastasis.

“Lost” aberrations

All metastases are thought to be genetically 
continuous with a primary tumor [4]. Yet, some genomic 
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aberrations found in a primary tumor, including deletions, 
can be absent in its metastases [4, 62, 65–67]. 

How are these aberrations lost?
The parallel model of metastasis [62] explains 

this paradox by positing that neoplastic cells that 
seed metastases leave the primary tumor early in its 
development, before the “lost” aberrations appear 
(Figure 4). The tumor and the “seeds” then evolve 
in parallel, with the potential of convergent genomic 
evolution characteristic to the cells of the same cell type 
[68]. This model can explain why single breast cancer 
cells found in bone marrow have few or no chromosomal 
aberrations which are abundant in primary tumors [62, 
69], and why metastases can be present with no detectable 
primary tumor [70]. 

Adopted neoplastic cells would also seed metastases 
that “lost” the aberrations of the primary tumor, but for a 
different reason – because adopted cells do not inherit the 
tumor genome. This difference also means that adopted 
cells can seed metastases with “lost” aberrations at any 
time of tumor development, not only at its early stages, as 
the parallel model suggests.

A leap

The failure to find mutations that cause metastasis 
prompted a search for a “discrete step in tumor evolution 
that may be independent of specific oncogene pathways or 
mutations and instead co-opts cellular traits that mitigate 
immunologic, genotoxic and therapeutic stressors accreted 

Figure 3: Neoplastic adoption enables genetic discontinuity in tumor development. A current view (top left) is that all 
neoplastic cells in a tumor are the progeny of the cell of origin, which implies genetic continuity of tumor development. This continuity 
holds even if tumor cells form hybrids with normal cells (bottom left). This continuity breaks, however, when a normal cell acquires the 
neoplastic phenotype of resident neoplastic cells without acquiring their genome (right).
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during tumorigenesis.“ [5]. In evolutionary biology such 
steps are known as saltational (from the Latin for leap), 
as they suddenly (on the evolutionary time scale) enable 
“profound phenotypic novelties or species” [54]. 

For example, the metastasis seed preselection model 
proposes that neoplastic cells become “bone marrow-
like” under the influence of bone marrow-derived cells, 
which are abundant in tumors, and thus can prosper and 
proliferate once they reach the bone marrow, a common 
site for metastasis [71, 72]. The existence of adopted cells 
derived from bone marrow transplants [43, 45, 51] implies 
that the influence can flow in the opposite direction as 
well, to make some bone marrow-derived cells neoplastic. 

Several properties of neoplastic adoption make 
it a suitable candidate for the sought after “leap”. First, 

this phenotypic switch is a discrete step and it happens 
suddenly on the time scale of tumor development. Second, 
adopted cells do not inherit the burden of genomic 
aberrations, and the consequent aberrant antigens targeted 
by the immune system [73], because they do not inherit 
the tumor genome. Finally, retaining some properties of 
normal migratory cells [51] enables safe passage to distant 
organs and helps to settle there. 

Puzzling circulating tumor cells

Circulating tumor cells (CTC), discovered a century 
and a half ago [74], are neoplastic cells present in the 
blood of patients with solid tumors and are thought to 
include the precursors of metastases [75]. 

Figure 4: Neoplastic adoption as a pathway of metastasis. The prevailing linear model, posits that tumor cells become able to 
seed new tumors by accumulating additional mutations late in tumor development. The parallel model posits that tumor cells disseminate 
early in tumor development and then continue to evolve in parallel with the primary tumor. The hybridization model argues that metastases 
are formed by hybrids between tumor cells and normal migratory cells. The neoplastic adoption model suggests that metastases can be 
seeded by normal migratory cells that acquire a neoplastic phenotype of tumor cells without acquiring their genome. Both hybridization 
and neoplastic adoption models suggest that metastatic cells can be formed at any stage of tumor development. Note that these four models 
are not mutually exclusive.
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Paradoxically, a fraction or, in some cases, most of 
CTC released by some non-hematological tumors, such 
as melanoma, breast, ovarian, and pancreatic cancers, 
were found to carry CD45, a protein whose expression is 
normally restricted to bone-marrow derived cells [30, 51, 
76–78]. Hence, these cells (CTC-CD45) were viewed as 
a persistent artifact until an appeal to give them a closer 
look [77] revealed that they indeed exist [79] and that 
their concentration inversely correlates with the survival 
of patients with pancreatic cancer [30, 51]. 

The presence of a lymphocyte protein on the cells 
of non-hematological tumors prompted a hypothesis 
that CTC-CD45 are hybrids between tumor cells and 
leukocytes [79]. As a result, these cells have been reported 
as macrophage-tumor cell fusions [80], circulating hybrid 
cells [30], or simply hybrids [78]. However, genomic 
evidence for the hybrid origin of these cells is still 
unavailable, leaving open other explanations: that CD45 is 
present due to aberrant gene expression, which is common 
in cancer, or that cancer cells acquire this protein through 
trogocytosis [81], a process that enables the intercellular 
exchange of membrane proteins [82], or by a similar 
phenomenon termed vampirization [83]. 

The existence of adopted cells suggests another 
potential explanations: that some CTC-CD45 are bone 
marrow derived cells that adopted a neoplastic phenotype. 
This explanation is consistent with a report that only a 
fraction of CTC-CD45 recovered from a pancreatic cancer 
patient have a mutation characteristic to this cancer [52]. 
Given that only one of 10,000 CTC is estimated to seed a 
metastasis [74], adopted cells may be a candidate for this 
subpopulation.

What kind of cells can be adopted?

The fact that various normal cells are commonly 
present in tumors means that only some of these cells can 
be adopted. What type of cells could they be?

Adoptable cells should be migratory to enter a 
tumor, able to adopt the phenotype of surrounding cells, 
and capable of residing in more than one organ, as adopted 
cells were detected in patients transplanted with all 
transplanted organs that were analyzed: bone marrow [43, 
45, 49, 51], mobilized peripheral blood stem cells [45], 
and kidney [44, 47, 50]. 

This profile matches that of mesenchymal stem 
cells (MSCs), a group of migratory cell types that are 
found in bone marrow and some other organs, are capable 
of assuming a variety of phenotypes, and are prone to 
home to damaged tissues and tumors [84–87]. Since 
MSCs transplantation, including genetically modified and 
allogeneic cells, has been used in more than 1,000 clinical 
trials [87], the treated patients can be used to test whether 
MSCs contribute to the neoplastic population of tumor cells. 

While MSCs are a suitable candidate for a cell type 
susceptible to adoption, the spectrum of cell types that 

can be adopted will need to be determined. These studies 
can be informed by considering potential mechanisms of 
adoption. 

How can a normal cell adopt a neoplastic 
phenotype? 

The lack of genetic evidence for hybridization 
prompted a hypothesis that cells derived from bone 
marrow can adopt the phenotype of resident tumor cells 
by “subjection to locally released growth factors and cell-
cell contact,” a mechanism named developmental mimicry 
[45] (Figure 5, left panel). However, this hypothesis poses 
a conundrum: How can a normal cell mimic a neoplastic 
phenotype by responding to external signals if, as the 
prevailing view of cancer posits, this phenotype results 
from genomic aberrations which a normal cell lacks 
by definition? This puzzle suggests two, not mutually 
exclusive, solutions.

One, that at least some neoplastic phenotypes are 
caused not by genomic aberrations. For example, they 
may be caused by aberrations in molecular and electric 
processes that organize cells into a tissue and determine 
their phenotypes [88–90]. If so, then some normal cells 
entering a tumor could be made neoplastic by the same 
forces and mechanisms that created resident neoplastic 
cells in the first place. 

Another explanation is that a neoplastic phenotype, 
whatever its origin, can be transmitted from a tumor cell 
to a normal cell, or, in other words, that a cancer cell can 
make a normal cell cancerous. This century-old concept 
[91] was rediscovered four decades ago as horizontal 
oncogenesis to explain how a human adenocarcinoma 
transplanted into a mouse could induce a mouse sarcoma, 
a tumor which arises from a different cell type, in the 
adjacent connective tissue [92, 93]. Two mechanisms 
of transmission were initially considered: an oncogenic 
infectious agent and fusion between the transplanted and 
host cells that results in neoplastic hybrids. As we have 
discussed, such hybrids have indeed been documented, but 
so have been grafted human cancers that induced mouse 
tumors of the same or different type without any evidence 
for hybridization [94, 95]. 

In the absence of an infectious agent, these 
observations and neoplastic adoption can be explained if 
transcription factors and other molecules that determine 
a neoplastic phenotype are transmitted between cells 
without forming cell hybrids. Several mechanisms can do 
that (Figure 5, right panel). 

Extracellular vesicles are membrane-enclosed cell 
fragments of various origin, content, and size that are 
released by cells and can deliver their content to a target 
cell by fusing to its plasma membrane [96–98]. This 
transfer has been implicated in various aspects of cancer 
development [98–100] and in the transfer of neoplastic 
properties to normal cells in particular.
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For example, vesicles isolated from human 
colorectal cancers induced “tumor-like morphological 
changes and marked growth rate increase” in human 
mesenchymal stromal cells isolated from normal colon 
[101]. Likewise, vesicles derived from human prostate 
cancer cell lines enabled normal adipose stem cells 
isolated from prostate cancer patients to form neoplastic 
lesions “that were grossly and histologically comparable 
with those developed by [prostate cancer] cells” [102], 
while vesicles from a breast cancer cell line enabled an 
immortalized breast epithelial cell line to form tumors 
[103]. These findings are consistent with earlier results 
obtained by using cytoplasts, cell fragments made by 
enucleating cells and similar in size to some naturally 
occurring extracellular vesicles [96]. Fusing cytoplasts 
from tumorigenic cells with normal human lymphocytes 
produced immortalized cell lines which “exhibited 
morphological diversity ranging from adherent cells to 
free floating round cells” [104], while fusing cytoplasts 
from a tumorigenic breast epithelial line to its non-
tumorigenic predecessor yielded tumorigenic cells [105]. 
In essence, extracellular vesicles and cytoplasts produced 
adopted neoplastic cells in the dish. 

However, the oncogenic effects of extracellular 
vesicles have been questioned, in part because the 
resulting phenotypes were transient in an experimental 
system [106] and their persistence “would violate several 
tenets of the existing cancer progression paradigm” 
[107], as if some of these tenets were not contradicted 
by facts, logic, and clinical outcomes [108–113]. Hence, 
“the possibility that horizontal transfer of oncogenic 
material [by vesicles] can lead to tumor formation is the 
subject of considerable debate” [99]. The evidence for 
the presence of adopted neoplastic cells in human cancers 
suggests that this debate is no longer only academic, 
especially because extracellular vesicles are not the only 
mechanism for transferring cellular components nor is it 
most efficient.

While extracellular vesicles transfer cell content in 
small packets, cell anastomosis (Figure 5) bridges cells 
directly through pores (anastomoses) made by merging 
the plasma membranes of adjacent cells [114–118]. 
These pores, which range from 100 nm to a few microns 
[115], can bridge adjacent cell bodies, in which case the 
connection has been called partial [115] or transient [119] 
cell fusion, or form anastomosis tubes by anastomosing 

Figure 5: Potential mechanisms of neoplastic adoption.
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a protrusion of one cell with the body of another, or two 
protrusions to each other. 

Protrusions that transmit “dyestuff, mitochondria 
and granules from one cell to another” [120] had been 
reported a century ago [120, 121] and were rediscovered 
more recently [122, 123] as a family of intercellular tubes 
with diverse properties, functions, and names that enable 
cells change the properties of other cells by transferring 
cellular components [122–127]. 

Unlike cell fusion, which combines the entirety 
of two cells into one morphologically and functionally 
distinct unit, a syncytium, which can then produce hybrids, 
cell anastomosis enables the transient, localized, and 
regulated sharing and exchange of cellular components, 
including whole nuclei [128–130], while preserving the 
morphology of the bridged cells. As a result, anastomosis 
can be overlooked even in experimental systems by 
approaches that focus on detecting cell hybrids, as 
no hybrids or syncytia are formed. Anastomoses can 
be visualized by electron microscopy [114–118] and 
their presence detected by methods that register the 
consequences of transient cell bridging, such as DNA 
modifications made by the Cre/loxP system [119, 131] 
or mitochondria transfer. For example the finding that a 
transmissible canine cancer has acquired mitochondrial 
but not nuclear genomes from several of its hosts [132] 
can be explained by anastomosis.

Cell anastomosis is a candidate for processes that 
enable neoplastic adoption because mesenchymal stromal 
cells are prone to anastomose with other cells [133, 134] 
and because anastomoses, along with other intercellular 
bridges, tie neoplastic and normal cells of human cancers 
into a network, a process whose significance has been 
increasingly appreciated [125, 129, 130, 135–139]. 
Adopted neoplastic cells might emerge as a part of this 
process.

Cell fusion may also be involved in neoplastic 
adoption if syncytia it forms undergo cellularization, 
an enigmatic but well documented process by which 
multinucleated cells split into mononuclear cells without 
entering mitosis. Cellularization is common in protists 
[140], is a required part of Drosophila development 
[141], is involved in tissue regeneration in the newt [142], 
and also happens in mouse osteoclasts [143], myotubes 
[144, 145], and, under the name of neosis, in transformed 
multinucleated mouse cells [146]. Some small molecules 
that induce cellularization in the newt also do so in mouse 
cells [142] implying that the mechanisms of cellularization 
are conserved among species. 

While extracellular vesicles, anastomosis, and 
cell fusion use membrane fusion to transfer cellular 
components, gap junctional channels enable this 
transfer by piercing the membranes of adjacent cells. 
These transmembrane protein complexes can transmit 
metabolites smaller than 1.5 kDa, of which a cell has 
about forty thousand [147], regulatory RNAs, and some 

proteins [148–151]. The role of this transfer in cancer 
has been studied for half a century to implicate it in 
nearly all aspects of this disease [147]. However, these 
channels might contribute to neoplastic adoption not 
only by transferring molecules but also by functioning 
as “biological transistors” [152, 153] which enable 
bioelectrical signaling between non-neuronal cells, a 
process implicated in cancer [90, 154–156]. 

Overall, several mechanisms, including infectious 
agents, “classic” signaling between autonomous cells, 
tissue organization fields, and intercellular component 
transfer can potentially explain how a normal cell can 
acquire the neoplastic phenotype of surrounding cells. I 
find component transfer intellectually attractive because 
transferring activities and structures that determine a 
phenotype can readily explain how this phenotype, 
normal or abnormal, can be imposed on another cell. 
This mechanism can also explain how the imposed and 
suppressed phenotypes can blend at various ratios, and 
how this blending can produce emergent properties 
[32, 157]. 

What components need to be transferred to 
induce a neoplastic phenotype?

This question is difficult to answer definitively 
because how a cell becomes neoplastic and how its 
phenotype is maintained is still a matter of debate. 
However, the bridging mechanisms that we have 
discussed (Figure 5) can transfer practically any 
component mentioned in this debate, from oncogenes to 
oncometabolites [158, 159]. 

For example, the activity responsible for the ability 
of cytoplasts from tumorigenic cells to immortalize human 
lymphocytes [104] was identified as two short species of 
endogenous cytoplasmic DNA [160]. Cytoplasmic DNA 
includes retrotransposons, linear and circular chromatin 
fragments of various size, mitochondrial DNA, and 
micronuclei [161], all of which are transferrable by 
anastomosis [162] or by extracellular vesicles [163–165]. 

Micronuclei are of particular interest because 
they encapsulate chromosomes and their fragments and 
can rearrange them by a process called chromothripsis, 
which breaks chromatin into fragments and then 
stitches them in apparently random order [166]. Besides 
other consequences, this process can yield circular 
extrachromosomal DNA (ecDNA) [167], which was 
found in nearly half of human cancers, “almost never 
found in normal cells,” and affects tumor evolution 
and drug resistance presumably by harboring amplified 
oncogenes [168–170]. 

Transferring tumor mitochondria to a normal 
cell by anastomoses or extracellular vesicles would 
transmit mutations in mitochondria DNA that have been 
considered oncogenic [171], and also has the potential 
to make the target cell neoplastic by reprograming its 
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metabolism [172], with the concomitant production of 
oncometabolites, which are metabolites that deregulate 
gene expression if present at an increased concentration 
[158, 159]. Given their size, oncometabolites can also be 
transferred by gap junctional channels.

Likewise, merging plasma membranes by 
anastomosis or transferring membrane fragments by 
extracellular vesicles enables the migration of membrane-
associated molecules, including growth factor and 
cytokine receptors implicated in causing and maintaining 
cancer phenotypes [58].

Overall, multiple components that are known to 
be transferred between cells can contribute to neoplastic 
transformation. Learning which of these components 
enable neoplastic adoption and whether this process 
involves component transfer at all may be helped by 
knowing the reasons for neoplastic adoption. 

Why are normal cells converted into neoplastic? 

One possibility is that neoplastic adoption illustrate 
the notion that no good deed goes unpunished (Figure 6). 

Figure 6: Neoplastic adoption as a side effect of cell repair. (A) An injured cell whose mitochondria and other cytoplasmic 
components are damaged can receive them from an intact “healer” cell. The transfer is unidirectional to make sure the damaged components 
are not transferred from the “patient”. (B) If the injured cell is neoplastic, the transfer may become bidirectional because multiple functions 
of the neoplastic cells are deregulated. As a result, regulatory molecules that maintain a neoplastic phenotype are transferred to the healer 
and change its phenotype into neoplastic. Note that the repaired neoplastic cell may also change its properties by acquiring the content of 
the healer.
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Tissue injury, such as irradiation or chronic 
inflammation, prompts circulating bone marrow-derived 
cells to fuse to damaged cells [173, 174] or to repair 
them by delivering molecules and organelles through 
anastomoses [123, 124, 134, 175–177]. These observations 
pointed to the existence of a cell repair mechanism that 
heals injured cells by providing intact components, and 
mitochondria in particular [123]. This mechanism has 
been already explored as a therapeutic approach using 
MSCs as “healer” cells, even though the underlying 
molecular mechanisms and possible side effects are yet to 
be understood [87, 134, 178].

For example, what would happen if the damaged cell 
is neoplastic? Can the “healer” cell contract the neoplastic 
“disease” through the same anastomosis tubes that deliver 
the “cure,” perhaps because some abnormalities of the 
neoplastic cell affect how the two cells are bridged, what 
components are transferred, and in which direction? For 
example, cytoskeleton, which is deregulated in cancer [179], 
is involved in forming intercellular bridges [180], determines 
what these bridges transmit [181], and regulates the size of 
pores formed by the fusion of plasma membranes [182]. 

The possibility of contracting a neoplastic phenotype 
as a side effect of repairing a neoplastic cell can explain 
why adopted cells were detected not in all tumors, as a cell 
would be adopted nor merely because it wanders among 
neoplastic cells but because it attempts to repair them. If 
so, the incidence of neoplastic adoption in a tumor would 
depend on the extent of genomic and other aberrations, 
hypoxia, inflammation, infection, or other internal and 
(micro) environmental factors that can result in cell damage. 

The model that neoplastic adoption is a side effect 
of cell repair, and the observation that adopted cells are 
present in colon adenomas [45], which are benign tumors 
that can progress to cancers, suggest that non-cancerous 
neoplastic lesions can progress to cancerous by adopting 
migratory cells. This hypothesis can explain why cancers 
can arise without a detectable precursor lesion, as happens 
with the majority of melanomas [183] and some types of 
lung cancer [184]. For example, this phenomenon would 
be expected if some cells are adopted by a microscopic 
neoplastic lesion, which are by far more abundant than 
cancers [185, 186], and then evolve on their own, locally 
or elsewhere, even if the adopting lesion vanishes. 

This model would also be consistent with the 
exponential increase of cancer incidence with aging, a 
process associated with accumulating cellular damage of 
various kind [187], and the fact that chronic inflammation, 
which is associated with the recruitment of bone marrow 
derived cells to abnormal tissues, increases the incidence 
of cancer [188, 189]. 

Finally, the model that neoplastic adoption is 
a consequence of repair implies that a treatment that 
damages cancer cells without killing them can create 
adopted neoplastic cells. These cells may take revenge 
even if the “adopting parents” eventually die, reminding 

us, to rephrase a quote, that if you strike at an emperor, 
you must kill him [190, 191].

Another possibility is that neoplastic adoption is not 
a side effect of cell repair but results from the propensity of 
neoplastic cells to bridge neoplastic and normal cells into 
the networks using anastomosis tubes and gap junctional 
channels, as has been documented in glioblastoma [129, 
130, 139, 192, 193]. 

Both the side effect model and the network model 
imply that neoplastic adoption may affects the “adoptive 
parents,” for example if the unidirectional transfer of 
components from the “healer” to the “patient” turns into 
intercellular exchange. If so, then neoplastic adoption 
not only would produce adopted neoplastic cells but 
would also modify resident neoplastic cells. For example, 
resident cells can become migratory or “invisible” to the 
immune system. If so, neoplastic adoption would further 
increase the diversity of cell types in a tumor and thus its 
ability to preempt our assassination attempts when they are 
still on the drawing boards of pharmaceutical companies. 

Are adopted neoplastic cells present in non-
transplant patients and how can these cells be 
detected?

Adopted cells have been revealed by analyzing 
tumors from transplant patients. Because these individuals 
have a medical history that differs from that of most 
cancer patients, it is reasonable to ask if adopted cells are 
also present in the tumors of non-transplant patients and 
how these cells can be detected.

A hint that neoplastic adoption is not limited to 
transplant patients comes from the studies of fetomaternal 
microchimerism, a condition in which cells exchanged 
between a woman and her child during pregnancy persist 
in their bodies, sometimes for decades [194–196]. If 
the fetus is a male, fetal cells can be identified in the 
mother’s tissues by visualizing the Y chromosome, the 
same approach that was used to look for cell hybrids in 
transplant patients.

This approach has revealed that some fetal 
cells have properties of migratory progenitors with 
multilineage differentiation capacity [197, 198]. Like 
mesenchymal stromal cells, these progenitors home to 
damaged organs and tumors, become morphologically 
“undistinguishable from the surrounding cells in terms 
of size and nuclear shape“ [199], and begin to express 
antigens specific to the host tissues, whether normal or 
neoplastic [196, 199–202]. 

Yet, fetal cells that have the features of surrounding 
tumor cells have not been considered neoplastic 
because these cells were not found in clusters “even 
if they expressed antigens that can be found within the 
adenocarcinoma“ [199]. However, some fetal cells in 
cervical cancers were found in clusters [200], and one 
can argue that some proliferating cells would not be 
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expected to form clusters if these cells are migratory. 
Hence, a suggestion that fetal cells can “adapt a malignant 
phenotype and potentially fuel tumorigenesis” [196].

The similarities between fetal progenitors and 
mesenchymal stromal cells in their ability to home to 
damaged tissues and adopt the phenotype of the resident 
cells suggests that fetal cells could be “tracers” of adult 
cell populations that have similar properties, including the 
ability to adopt a neoplastic phenotype.

The uncertainty about whether fetal cells can be 
neoplastic, as well as about some of their other properties, 
stems from their rarity – a few to a hundred are found per 
million of maternal cells analyzed [199] – although this 
incidence may be underestimated [196]. However, given 
the increasing sophistication of automatic tissue analysis 
[203] this rarity may be compensated by the abundance of 
microchimeric cancer patients, as the majority of women 
have fetal cells even if their pregnancy was incomplete or 
went unnoticed [198, 204].

Pregnancy provides another, yet to be explored, 
opportunity – to detect adopted neoplastic cells 
and cell hybrids by analyzing gestational tumors. 
Gestational tumors, which include moles and gestational 
choriocarcinoma, arise from the cells of the conceptus 
and thus are genetically distinct from the cells of the 
mother [205]. Hence, adopted cells, as well as hybrids 
between neoplastic and normal cells, can be detected 
by the approaches applied to transplant patients [53], 
especially because some gestational tumors have only 
a male genome, which facilitates the analysis. Another 
advantage of analyzing gestational tumors is the ability 
to trace normal cells derived from all organs of the patient 
rather than only from a transplanted organ.

To look beyond chimeric tumors, the concept of 
neoplastic adoption predicts that some histologically 
neoplastic cells of genomically aberrant tumors should 
have a normal genome, and that the offspring of these cells 
evolves in parallel with the resident cells of the tumor. This 
prediction can be tested by comparing the genomes and 
histopathology of single cells from non-chimeric tumors. 
Given precedents with cell types, such as CTC-CD45, 
that were neglected because they were not supposed to 
exist [79], it might well be that adopted cells have been 
put aside as outliers that are too unusual to consider while 
searching for something anticipated. 

Finally, as experiments with humans can go only 
that far, and fortunately so, testing the hypotheses we 
have discussed will require experimental systems, such as 
human tumor explants which have been explored to reveal 
intercellular bridging [129, 130] and chimeric animals 
designed to monitor cell fate, cell fusion, and component 
transfer [206]. Keeping in mind that this transfer can 
be mediated by more than one mechanism and that 
intercellular signaling that does not involve component 
transfer may also be involved can help to use these 
systems to their full potential. The information obtained 

from existing and new experimental systems may suggest 
new approaches for detecting adopted cells in human 
tumors and how to use these cells for clinical needs.

Meanwhile, I hope that considering and testing the 
concept of adopted neoplastic cells will prove to be useful 
in explaining puzzling observations related to neoplasia 
and would lead to ideas, discoveries, and technologies 
beneficial to future cancer patients.
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