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ABSTRACT
Stromal myo-/fibroblasts (MFs) account for up to 30% of lamina propria cells 

in the normal human colon and their number is dramatically increased in colon 
cancer (CRC). Fibroblasts from cancers, also known as cancer-associated fibroblasts 
(CAFs), differ from normal colonic MF (N-MFs) and support tumor-promoting 
inflammation, in part due to increased IL-6 secretion. In this research perspective, 
we highlight recent data obtained regarding IL-6 regulation in colorectal cancer 
CAFs through vitamin A (retinol) metabolism, discuss current limitations in our 
understanding of the mechanisms leading to the CAF pro-inflammatory phenotype, 
and discuss potential approaches to target CAF retinoid metabolism during CRC 
treatment.

INTRODUCTION

Colon cancer is one of the most common 
malignancies and is a leading cause of cancer-related 
deaths worldwide [1]. While the tumor microenvironment 
(TME) supports tumor growth and immune escape through 
tumor-promoting inflammation [2], the mechanisms by 
which TME promotes CRC are far from being elucidated. 
Cancer-associated fibroblasts (CAFs) are very abundant in 
the TME and are among the major cells involved in tumor 
inflammation and progression.

We and others have previously demonstrated that 
CAFs are major producers of tumor-promoting cytokine 
IL-6 at T2-3 stage tumor in colon cancer [3–5]. IL-6 has 
been demonstrated to promote tumor cell proliferation, 
cancer stem cells, and metastasis in colon cancer 
[3, 4, 6]. While targeting IL-6 in the treatment of GI 

cancers is a promising strategy, the mechanisms involved 
in the increased expression of this cytokine are unknown. 
In a recent study [7], we reported that a profound 
decrease of alcohol dehydrogenase 1B (ADH1B) 
occurs in colonic stromal cells (known as fibroblasts or 
myofibroblasts) during the adenoma-carcinoma sequence 
and that ADH1B downregulation in CAFs contributes 
to the disruption of the retinol-mediated suppression 
of tumor-promoting IL-6 in neoplastic tissue. In this 
research perspective, we discuss our findings and those 
from recent studies, with the aim of highlighting possible 
new translational research targets in CAFs involving 
vitamin A metabolism for CRC therapies deserving 
further investigation. We also discuss unpublished data 
that could provide perspectives in deciphering new 
mechanisms involved in vitamin A metabolic pathway 
and IL-6 production in CAFs.
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Decrease of retinol metabolizing enzyme ADH1B 
in colon cancer-associated fibroblasts promotes 
IL-6 production

In contrast to fibroblasts from normal tissues 
(N-MFs), CAFs promote tumor development and 
progression by providing cancer cells with cytokines and 
growth factors that support tumor growth [8]. Targeting 
CAFs has been recently suggested as a potentially 
novel therapeutic approach. In order to identify new 
CAF specific targets, the mechanisms behind the 
induction of a tumor-promoting activity in these cells 
must be understood. We pursued this strategy in our 
study [7] by isolating CAFs and N-MFs from patient 
tissues and assess their transcriptome. Cultured CAFs 
demonstrated significant changes in the network of 
genes involved in the immune responses, angiogenesis, 
regulation of cytokine signaling network and metabolism 
when compared to cultured N-MFs. Among the genes 
dysregulated in CAFs, change in IL-6 gene network was 
prominent leading to the increase in IL-6. Our data also 
suggested that alcohol dehydrogenase 1B (ADH1B), 

a class I alcohol dehydrogenase, was involved in the 
regulation of basal and inducible IL-6 in N-MF. This 
regulation was lost in colon cancer due to a dramatic 
decrease in the expression of ADH1B [7]. While the 
origin of the ADH1B abrogation in CAFs is still under 
investigation, Nadauld et al. reported that mutations of 
the human adenomatous polyposis coli (APC) gene could 
repress retinol dehydrogenases genes [9].

Retinoids are known to inhibit tumor-promoting 
IL-6 production [10, 11]. ADH1B is among the enzymes 
involved in the metabolism of retinoids, converting 
retinol (RO) to retinaldehyde (RA), which is then further 
metabolized to all-trans retinoic acid (atRA). Further, a 
therapeutic anti-tumor effect of atRA has been proposed as 
a novel therapeutic approach for several cancers including 
colon cancer [12], but studies yielded controversial 
results [13]. We hypothesized that ADH1B may convert 
retinol to retinaldehydes which in turn could negatively 
regulate IL-6 production. Therefore, we next evaluated 
the consequences of the low levels of ADH1B in CAFs 
on IL-6 production after retinoid treatment and compared 
this to IL-6 production in N-MFs that exhibit high 

Figure 1: Retinol-mediated suppression of tumor-promoting IL-6 is disrupted in colon cancer-associated fibroblasts. 
CAFs have been reported as major cellular producers of tumor-promoting IL-6 in colorectal cancer. ADH1B, a key enzyme involved in the 
metabolism of retinoids and expressed in normal colonic fibroblasts, is expressed at low levels in CAFs. The critical suppression of ADH1B 
expression in LPS-stimulated CAFs could inhibit the conversion of RO into active atRA, which in turn contributes to IL-6 production 
in neoplastic tissues. Abbreviations: CAFs: cancer-associated fibroblasts; IL-6: interleukin 6; ADH1B: alcohol dehydrogenase1B; RO: 
retinol; atRA: all-trans retinoic acid; RBP: retinol binding protein.
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levels of ADH1B. In N-MFs, lipopolysaccharide (LPS) 
induced IL-6 production was inhibited by either RO or 
its byproduct atRA. However, although atRA effectively 
inhibited IL-6 production in CAFs, RO administration 
did not, confirming the inability of CAFs to utilize 
RO to suppress IL-6 production [7]. These results are 
summarized in Figure 1.

While the overall mechanisms responsible for the 
IL-6 increase within the CRC tumor stroma remain to 
be elucidated, our study highlights the crucial role of 
stromal vitamin A pathway in IL-6 regulation. However, 

a deficiency of atRA in CAFs may be not only due to 
Adh1b downregulation, but to alterations in several 
retinol metabolic enzymes, including retinol converting 
enzymes, retinaldehyde converting enzymes and atRA 
catabolic enzymes. These processes could result in lower 
retinol uptake/intracellular levels, with less conversion of 
retinol to atRA, and an increased catabolic rate of atRA 
[14–16]. Finally, the role of cancer associated microbiota 
should be considered as well in the disruption of retinol 
metabolism and the increase in tumor-promoting 
IL-6. Members of the alcohol dehydrogenase family 

Figure 2: Cyp26b1 mRNA expression is higher in CAFs and is upregulated by RO and atRA. Cultured colonic fibroblasts 
have been isolated from normal mucosa or matched adenocarcinoma from two human biopsies and treated for 18 h with RO or atRA 
(2.5 µM). Effect of RO or atRA addition on Cyp26b1 mRNA expression was measured by RT-qPCR and normalized to β-actin in N-MFs 
and matched CAFs (two matched pair of fibroblast isolates were analyzed, 3 experimental repeats).

Figure 3: Preliminary data suggest that Cyp26b1 over-expression in CAFs could decrease colonic atRA levels. Deactivation 
of atRA could participate to reduce its regulatory activity on IL-6 production.



Oncotarget380www.oncotarget.com

metabolize a wide variety of substrates such as ethanol, 
retinol, and other aliphatic alcohols including, perhaps, 
those produced by the colonic microbiota. Additionally, 
Bhattacharya et al. has shown that microbiota-induced 
intestinal inflammation alters atRA metabolism, leading 
to a colonic atRA deficit and exacerbation of colonic 
carcinogenesis [17].

A possible role of CYP26B1 in IL-6 regulation by 
retinoids

Only a partial inhibition of IL-6 production 
in CAFs by exogenous atRA was observed in our 
experiments [7], suggesting that other pathways of IL-6 
production exist in CAFs. One possibility is that levels 
of atRA may be altered by enzymes that affect atRA 
activity itself. Certain member of the P450 cytochrome 
family (CYP26A1, B1, and C1 enzymes) known to be 
induced by atRA itself are involved in deactivation of 
atRA [18, 19]. Brown et al. [15] have shown that these 
atRA metabolizing enzymes CYP26A1 and CYP26B1 
are significantly overexpressed in colon cancer. Further, 
CYP26B1 is associated with poor prognosis in colon 
cancer [15]. We analyzed gene expression of Cyp26a1, 
Cyp26b1 and Cyp26c1 in N-MFs and CAFs isolated 
colon cancer patients. Cyp26b1 was the predominantly 
expressed CYP26 enzyme in human N-MFs, while 
Cyp26a1 and Cyp26c1 were poorly detected (data not 
shown). Our unpublished data are in agreement with 
those from previous study showing that CAFs express 
higher basal level of Cyp26b1 when compared to N-MFs 
isolated from a cancer-free area of colon (Figure 2) 
High Cyp26b1 expression likely limits the inhibitory 
effect of atRA on IL-6 expression by reducing atRa 
levels in stromal cells. Indeed, our unpublished results 
demonstrate that 18 h of treatment with retinol or atRA 
results in a positive feed-back expression of Cyp26b1 
in MFs. The retinoid-induced level of Cyp26b1 was 
higher in CAFs when compared to N-MFs (Figure 2), 
emphasizing the negative feed-back loop in which atRA 
induces its own metabolism in CAFs. This suggest 
that Adh1blow/Cyp26b1high phenotype in CAFs could 
contribute to their resistance to retinoid treatment in 
order to decrease IL-6 expression (Figure 3). It has been 
previously reported that therapeutic use of atRA isomers 
is limited due to resistance to treatment emerging mainly 
from autoinduction of atRA metabolism [20]. Other 
investigators have used the combination of atRA and 
inhibitors of CYP26 enzymes (particularly CEP26A1) 
in order to improve efficacy of atRA treatment in 
some cancers. [21]. While an anti-inflammatory effect 
of CYP26 inhibitors has been reported for the topical 
treatment of skin inflammations [22], to date, the 
specificity of the inhibitors and their beneficial effects 
in cancer-associated inflammation have not been fully 
characterized. Thus, further investigation is warranted 

of a combination of atRA and a CYP26 inhibitor as a 
potential therapeutic approach for colon cancer.

Taken together, our data identified ADH1B as 
a novel mesenchymal suppressor of tumor-promoting 
IL-6 overexpression. Decrease/loss of ADH1B in MFs 
during the adenoma-carcinoma sequence contributes to 
disruption of the retinol-mediated suppression of tumor-
promoting inflammation in CRC and to the increase of 
IL-6 in neoplastic tissue. To date, deeper investigations of 
IL-6 regulation by retinol metabolic pathways in CAFs are 
required to understand whether these pathways represent 
new CAF-directed targets for CRC treatment.
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