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ABSTRACT
Cancer therapy is limited by toxicity in normal cells and drug-resistance in 

cancer cells. Paradoxically, cancer resistance to certain therapies can be exploited 
for protection of normal cells, simultaneously enabling the selective killing of resistant 
cancer cells by using antagonistic drug combinations, which include cytotoxic and 
protective drugs. Depending on the mechanisms of drug-resistance in cancer cells, 
the protection of normal cells can be achieved with inhibitors of CDK4/6, caspases, 
Mdm2, mTOR, and mitogenic kinases. When normal cells are protected, the selectivity 
and potency of multi-drug combinations can be further enhanced by adding synergistic 
drugs, in theory, eliminating the deadliest cancer clones with minimal side effects. 
I also discuss how the recent success of Trilaciclib may foster similar approaches into 
clinical practice, how to mitigate systemic side effects of chemotherapy in patients 
with brain tumors and how to ensure that protective drugs would only protect normal 
cells (not cancer cells) in a particular patient.

INTRODUCTION

No cancer cell, no matter how resistant it is, can 
survive chemotherapy in a cell culture. In the organism, 
however, therapy of cancer is limited by killing or 
damaging normal cells. Selective protection of normal 
cells from chemotherapy would increase the therapeutic 
window, improving the therapeutic outcome. Needless to 
say, reduction of side effects and better quality of life are 
very important for a cancer patient.

The challenge is to ensure that protection of normal 
cells is selective or, in other words, that cancer cells 
are not protected. Here, we will discuss approaches to 
ensure selectivity. We will also discuss how multi-drug 
combinations could be designed to be antagonistic in 
normal cells and synergistic in cancer cells. Pre-clinical 
studies in paired cell lines and mice demonstrated that 
normal cells can be selectively protected. However, until 
recently, there was little hope of clinical application 
because this research was little known and seemed 
impracticable and obscure. The situation is radically 
changing now because, based in part on the outstanding 
work of Norman Sharpless and co-workers [1, 2], the 

CDK4/6 inhibitor Trilaciclib was successfully introduced 
for myeloprotection against chemotherapy in lung cancer. 
This success creates the opportunity for clinical translation 
of the entire concept: selective protection of normal cells 
by exploiting drug resistance of cancer cells.

To start with, some cancers are intrinsically resistant 
to anticancer drugs [3, 4]. Furthermore, apoptosis 
avoidance, mitogenic self-sufficiency and insensitivity 
to anti-proliferative stimuli are hallmarks of cancer 
[5]. Killing sensitive cancer cells, an initially effective 
cancer therapy, inevitably selects for acquired resistance. 
Resistant clones tend to be aggressive due to acquiring 
additional oncogenic mutations. This is how therapy fails. 

In 1999, it was suggested to exploit resistance 
instead of its reversal [6]. 

Solving the puzzle

Can we kill drug-resistant cells while sparing 
sensitive cells?

Consider paired cell lines: the parental (sensitive) 
cancer cell line and drug-resistant cells selected for 
resistance to doxorubicin (DOX). (In a clinical analogy, 
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the emergence of DOX-resistance cancer cells means 
therapeutic failure). DOX kills parental cells and spares 
DOX-resistant cells (Figure 1A). The task is, in contrast, 
to kill DOX-resistant cells and spare parental cells. 

To avoid killing of parental cells, we may lower 
concentrations of DOX (Low-DOX), which then causes cell-
cycle arrest in parental cells instead of cell death. However, 
Low-DOX cannot affect DOX-resistant (Figure 1B). 

DOX-resistant cells, used in the study [6], were still 
sensitive to some other drugs, including Taxol (paclitaxel, 
PTX), which kills proliferating cells in mitosis. As 
expected, PTX kills both parental and resistance cells 
(Figure 1C). But the goal is to kill DOX-resistant cells 
only. At first glance, the task is impossible.

Selective killing of resistant cells cannot be 
achieved by one single drug. It is achievable by combining 
Low-DOX and PTX (Figure 1D). Low-DOX causes cell-
cycle arrest in parental cells but not in Dox-resistant 
cells, which continue proliferation. Then, PTX kills these 
proliferating cells in mitosis, whereas parental cells are 
protected by low-DOX-induced cell-cycle arrest. Thus, a 
combination of low DOX and PTX kills DOX-resistant 
cells only [6]. 

Combination of low-Dox followed by PTX is 
semi-antagonistic: low-DOX prevents cell death by 
PTX. Secondly, the target cells are resistant to DOX and 
sensitive to PTX, whereas the protected cells are sensitive 
to both drugs [6]. 

Figure 1: How to kill DOX-resistant cells, sparing sensitive cells. (A) Doxorubicin (DOX) kills parental sensitive cells, sparing 
resistant cells. (B) At low doses, DOX (Low-DOX) causes cell-cycle arrest in parental (sensitive) cells only. (C) Paclitaxel (PTX) kills both 
parental and DOX-resistant cells. (D) A combination of Low-Dox and PTX kills DOX-resistant cells, sparing parental (sensitive) cells.
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Selective killing Pgp/MRP-expressing cells

The simplest combination that selectively kills 
multidrug-resistant (MDR)-cells is an antagoistic 
combination including an (a) apoptosis-inducing drug and 
(b) inhibitor of apoptosis [7]. The apoptosis-inducing drug 
should NOT be a substrate of Pgp/MRP1. For example, 
flavopiridol (Alvocidib), a pan-CDK inhibitor, induces 
apoptosis in both parental and multidrug-resistant HL60 
cells. The anti-apoptotic drug caspase inhibitor) z-DEVD-
fmk is a substrate of Pgp/MRP1 and is pumped out from 
MDR cells [7]. The combination of flavopiridol and 
z-DEVD-fmk kills MDR cells, while sparing parental cells 
(Figure 2).

Flavopiridol can be substituted by other apoptosis-
inducing drugs that also are NOT substrates of Pgp/
MRP [7]. For example, docetaxel (Taxotere) is NOT an 
MRP1 substrate and it induces apoptosis in both parental 
and MRP-expressing cells [8]. Ixabepilone, a clinically 
available analog of epothilones, is NOT a substrate 
of PgP [9, 10]. The mitosis-specific drugs Taxotere 
(and other taxanes) and Ixabepilone kill preferentially 
proliferating cells, by causing mitotic arrest, when the 
cells enter mitosis. At low (cytostatic) concentrations, 
DNA-damaging drugs (doxorubicin, actinomycin D and 
etoposide) arrest HL60 cells in G2 phase of the cell cycle 
[6, 7]. By arresting parental HL60 cells prior to mitosis, 
these drugs protect arrested cells from apoptosis caused by 
mitosis-specific drugs [6]. A combination of Low-DOX 
and epothilones kills multi-drug-resistant cells, while 
sparing parental cells [6].

Combining cytostatic and cell-cycle-specific 
cytotoxic drugs is called cyclotherapy. For cyclotherapy, 

resistant cancer cells must be resistant to cytostatic 
drugs and then they can be killed by a cell-cycle-specific 
cytotoxic drug. Generally, resistance to cell-cycle-arrest 
is due to universal dysregulation of the cancer cell cycle 
due to loss of p53, Rb and other tumor suppressors and 
overactivation of mitogenic kinases.

P53-dependent cyclotherapy

The term cyclotherapy was introduced in 2002 [11] 
to describe a strategy to selectively protect normal cells 
from cell-cycle-dependent chemotherapy by inducing 
protective cell-cycle arrest. By 2002, several studies had 
already demonstrated the feasibility of this approach in 
cell culture [6, 12–15]. 

Mutations in p53, the most common alteration 
in human cancer, renders cancer cells resistant to cell-
cycle arrest by p53-inducing drugs. For example, low 
concentrations of doxorubicin induce p53 and cause 
cell cycle arrest in parental HCT116 cells but not in 
HCT116-p53−/− cells lacking p53 [13]. Then, treatment 
with paclitaxel killed HCT116-p53−/−, whereas parental 
cells were protected by cell-cycle arrest [13].

In these studies, “parental cells” represent normal 
cell-cycles because normal cells always have wt p53. P53-
dependent cyclotherapy can be used for the protection of 
normal cells, when tumor cells lack p53 (Figure 3A). 

Low concentrations of DNA-damaging drugs such 
as doxorubicin, etoposide and actinomycin D induce 
p53-dependent G1 and G2 arrest in normal and cancer 
cells with wild type p53, protecting them from cell death 
caused by S-phase or M-phase specific chemotherapy 
[13, 16, 17]. Inducers of p53 protected cells with wtp53 

Figure 2: Caspase inhibitors (CI) selectively protect normal cells from chemotherapy-induced apoptosis, without 
protection multidrug-resistant cancer cells. Flavopiridol (shown in red, as a cytotoxic/lethal drug) can induce apoptosis. The 
caspase inhibitor Z-DEVD-fmk (green) can block apoptosis but multidrug-resistant cancer cells pump it out.
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from both S-phase specific and M-specific chemotherapy, 
without protecting p53-deficient cancer cells [18–20]. 
However, even at low concentrations, DNA-damaging 
drugs can cause p53-independent arrest in some cell lines. 
For example, HL60 leukemia cell line lacking p53 is still 
arrested in G2 phase by doxorubicin via Chk1-dependent 
checkpoint [21]. UCN-01, an inhibitor of multiple kinases 
including Chk1, overrode DOX-induced G2 arrest, thus 
propelling these p53-deficient cells from G2 to mitosis. 
Once they entered mitosis, cells were killed by PTX [21]. 

The p53-dependent cyclotherapy was developed 
using different inducers of p53 that protected normal cells 
from S-phase and mitosis-specific chemotherapeutics 
[18–31]. Unfortunately, p53-inducing DNA-damaging 
protective drugs have a narrow protective window. For 
example, doxorubicin is protective at 20–100 ng/ml and 
becomes cytotoxic above 100 ng/ml in cell culture [32].

In contrast, inhibitors of Mdm-2, such as nutlin-3a, 
are not genotoxic. Activation of p53 by Nutlin-3 leads to 
G1 and G2 arrest and protects proliferating normal cells 
from mitotic inhibitors such as paclitaxel [33]. Nutlin-3 
did not protect cancer cells with mutant p53 from 
paclitaxel-induced apoptosis [33]. Selective protection of 
normal cells with Nutlin-3 from cytotoxicity of mitotic 
inhibitors such as paclitaxel and nocodazole, as well as 
PLK1 and aurora kinase inhibitors, has been confirmed 
and further extended in numerous studies [16, 19, 34–36].

Importantly, nutlin-3 can protect normal bone 
marrow cells in vivo, without protecting cancer cells, 
in mice treated with mitosis-specific chemotherapy 
[34]. Thus, mice treated with BI-2536 (PLK1 inhibitor) 
developed neutropenia. Oral administration of Nutlin-3 
efficiently protected the mice from this neutropenia [34].

Recombinant human IL-1 receptor antagonist 
(IL-1Ra) causes protective arrest of hematopoietic cells 
through a p53-dependent cyclotherapy mechanism [22, 
29, 37]. IL-1Ra reduces lethality and bone marrow toxicity 
of 5-fluouracil in mice [37] and selectively protects 
intestinal crypt epithelial cells from chemotoxicity, but 
not tumor cells [22]. IL-1Ra reduces thymus toxicity of 
5-azacytidine in mice [38]. 

P53-independent cyclotherapy

As an example of p53-independent cyclotherapy, 
kinase inhibitor staurosporine [15] and its analog UCN-
01, kinase selectively protects normal cells in Rb-
dependent manner [39]. Normal mammary epithelial cells 
and breast cancer cells were treated with low (cytostatic) 
concentrations of staurosporine, arresting normal cells in 
G1 without affecting cancer cells. This arrest protected 
normal cells from doxorubicin and camptothecin [15]. 
UCN-01 reversibly arrested normal gut epithelial cells, 
protecting them from cytotoxicity of 5-FU, decreased side 
effects and enhanced therapeutic efficacy, decreased tumor 
size and increased survival [40].

Low doses of AG1478, an inhibitor of EGF receptor 
kinases, arrested proliferation of immortalized breast cells 
but not EGF-independent cancer cells. Pretreatment with 
AG1478 selectively protected non-cancerous cells from 
paclitaxel [14]. 

Flavopiridol, a pan-CDK inhibitor, is highly cytotoxic 
at high concentrations. At low concentrations, flavopiridol 
protects p21-sensitive cells from paclitaxel [41].

Cyclotherapy with CDK4/6 inhibitors

Selective protection of normal cells with CDK4/6 
inhibitors is a clear-cut example of cyclotherapy (Figure 
3B). In 2010, Johnson et al. showed that treatment of 
mice with PD0332991 (palbociclib), a CDK4/6 inhibitor, 
caused reversible quiescence of early hematopoietic stem/
progenitor cells (HSPCs) but not most other cycling cells 
in the bone marrow or other tissues [42]. Pharmacological 
quiescence decreased the hematopoietic toxicity of total 
body irradiation [42, 43]. Palbociclib (PD0332991) also 
protected bone marrow from carboplatin, improving 
blood cell counts in carboplatin treated mice. As expected, 
it decreased antitumor activity of carboplatin against  
Rb-competent tumors but did not protect Rb-deficient 
tumors, which were resistant to palbociclib [1]. Thus, 
palbociclib protected bone marrow without protecting 
Rb-negative tumors. The authors concluded that “CDK4/6 
inhibitors should not be combined with DNA-damaging 
therapies, such as carboplatin, to treat tumors that require 
CDK4/6 activity for proliferation” [1]. It was also shown 
that palbociclib prevented radiation-induced lethal 
intestinal injury in mice [44].

In 2015, palbociclib was approved by the FDA, 
not for protection of normal cells but for the treatment 
of estrogen receptor (ER)-positive, HER2-negative 
advanced breast cancer as initial endocrine-based therapy 
in postmenopausal women.

To protect normal cells, the new CDK4/6 inhibitor 
G1T28 (trilaciclib) has been developed [2, 45]. Like 
palbociclib, trilaciclib reversibly decreases proliferation 
of bone marrow hematopoietic stem/progenitor cells. 
Trilaciclib does not decrease the efficacy of cytotoxic 
chemotherapy on Rb1-deficient tumors, whose 
proliferation is CDK4/6-independent [2, 45].

In a randomized, double-blind, placebo-controlled 
Phase II study in patients with small cell lung cancer 
treated with carboplatin, etoposide and atezolizumab 
(E/P/A), trilaciclib decreased the occurrence and duration 
of severe neutropenia and improved red blood cell counts, 
platelet counts and quality of life. Trilaciclib did not 
affect antitumor activity of chemotherapy [46]. Other 
clinical trials also demonstrated myeloprotection [47–50]. 
Trilaciclib reduced topotecan-induced myelosuppression 
and improved safety profile and quality of life without 
detrimental effects on antitumor efficacy [48]. Trilaciclib 
decreased the need in supportive care interventions for 
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chemotherapy-induced myelosuppression in patients with 
small cell lung cancer [51].

In February 2021, trilaciclib was approved by the 
FDA to decrease the incidence of chemotherapy-induced 
myelosuppression in adult patients when administered 
prior to a platinum/etoposide-containing regimen or 
topotecan-containing regimen for extensive-stage small 
cell lung cancer (ES-SCLC). Clinical studies in breast 
cancer, colorectal cancer and small cell lung cancer are 
underway in several countries [52].

CDK4/6 inhibitors for myeloprotection in cancers 
treatable with CDK4/6 inhibitors (proposal)

The use of trilaciclib for myeloprotection is a 
success story for the cyclotherapy concept. There are some 
limitations. While palbociclib (and several other CDK4/6 
inhibitors) is approved for cancer therapy but not for 
myeloprotection, trilaciclib is approved for myeloprotection 
but not for cancer therapy. This may unnecessarily 
complicate the use of CDK4/6 inhibitors as protectors. The 
use of the same drug for two purposes may have several 
advantages. First, we would know the difference between 

therapeutic (anti-cancer) and myeloprotective doses. In 
theory, myeloprotective doses must be lower than anti-
cancer doses. Anti-cancer doses cause myelosuppression, 
whereas protective doses cause reversible G1 arrest. 
Second, if a drug is already used for the treatment, it may 
not require government (FDA) approval to be used in the 
same patient at lower doses (for myeloprotection). This 
extends its use from lung cancer to other cancers. (Later, 
we will specifically discuss breast cancer).

As an additional advantage, oral administration 
palbociclib is more convenient than intravenous 
administration of trilaciclib.

How to introduce palbociclib for myeloprotection 
and ensure that it does not protect tumors 
(proposal)

CDK4/6 inhibitors are usually initially effective for 
HR+/HER2- metastatic breast cancer. However, resistance 
is developed. This “therapeutic failure” is an opportunity 
(Figure 4). If a tumor grows at anti-cancer doses of 
palbociclib, it means palbociclib does not cause cell cycle 
arrest. Even more certainly, a lower dose would not cause 

Figure 3: p53-dependent and Rb-dependent cyclotherapy. (A) p53-dependent cyclotherapy. Normal cell and cancer cells, lacking 
wild type p53 (p53−/−), are treated by low dose p53-inducing drugs (e.g., nutlin-3, DOX, ActD) and then treated byTaxol (PTX), which 
kills cells in mitosis. Protective drugs (green), lethal drugs (red). Induction of p53 causes G1 arrest and protects cells from mitosis-specific 
lethality of PTX. (B) Rb-dependent cyclotherapy. Cancer cells lack. Normal cells and cancer cells, lacking Rb (Rb−/−), are treated by a 
combination of low dose CDK4/6 inhibitor (e.g., trilaciclib, palbociclib) and DNA-damaging chemotherapy (5-FU, carboplatin, etoposide), 
which kill cells in S-phase. Protective drug (green), lethal drug (red). CDK4/6 inhibitor causes G1-arrest in normal cells, protecting cells 
from S-specific lethality of chemotherapy.
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arrest. This ensures protection of normal cells selectively, 
without affecting cancer cells. (Note: normal cells do not 
develop resistance).

In contrast, the current way of use for trilaciclib 
in lung cancer is partly a lottery. It is assumed that, in 
each and every patient, cancer is trilaciclib-resistant and 
will not be protected from chemotherapy. Trilaciclib does 
not decrease the efficiency of chemotherapy. Anti-cancer 
efficiency of therapy was the same in groups of patients 
with and without trilaciclib [46]. However, it is possible 
that trilaciclib potentiates therapy in some patients and 
antagonizes it in others. (No decrease in efficacy can be 
then detected in clinical trials). The latter sub-group should 
not be treated with trilaciclib. Unfortunately, exactly who 
belongs in this sub-group cannot be known.

This undesirable scenario can be avoided in a “role 
reversal” proposal discussed in this section. In patients 
who failed therapy with palbociclib (used as anti-cancer 
drugs), lower (protective) doses of palbociclib cannot 
cause protective arrest in palbociclib-resistant cancer.

Prevention of cell senescence

The protective arrest must be reversible 
(quiescence). Palbociclib induces reversible arrest in bone 
marrow in vivo [42]. In cells with overactivated mTOR, 
palbociclib (PD0332991) induces irreversible senescence 
[53, 54], because mTOR drives geroconversion from 

quiescence to senescence. By inhibiting mTOR, rapamycin 
and everolimus ensure quiescence in palbociclib-treated 
cells [53]. Similarly, nutlin-3a (Mdm-2-Inhibitor) causes 
quiescence and senescence depending on the mTOR 
activity [55]. A combination of mTOR inhibitors with 
nutlin-3a [56] and CDK4/6 inhibitors [53] may be 
considered for quiescence in normal cells.

Proposal: a combination of mTOR and 
CDK4/6 inhibitors to mitigate side effects of 
chemotherapy

Everolimus, a rapamycin analog, is approved for 
treatment of advanced HR+, HER2- breast cancer. This 
is exactly the same type of cancer that is also treated with 
palbociclib. In some studies, therapies with everolimus 
and palbociclib were used in sequence: when one of them 
failed, the other one was used in sequences [57–59]. In one 
trial, palbociclib was given first, followed by everolimus 
[57]. In another study, the sequence was the opposite: 
everolimus was followed by palbociclib [58].

Proposal: A combination of low doses of both 
everolimus plus palbociclib for selective protection 
of normal cells against chemotherapy with taxanes in 
patients who failed everolimus/palbociclib as a prior 
therapy. Palbociclib-resistant cells are sensitive to taxanes 
(paclitaxel and docetaxel) [60]. Taxanes are widely used 
for the treatment of breast cancer [61, 62]. Notably, 

Figure 4: From tumor relapse to selective protection of normal cells (proposal). (A) At therapeutic doses, palbociclib causes 
therapeutic response by eliminating palbociclib-sensitive (S) cancer cells. Selection for resistant cancer cells (R) leads to relapse and tumor 
progression. (B) Relapsed palbociclib-resistance is treated with Taxol (PTX). Palbociclib is used to protect normal cells from PTX. The 
cancer cells will not be protected because they are palbociclib-resistant.
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CDK4/6 inhibition mitigates stem cell damage in an  
in vitro model for taxane-induced alopecia [63]. 
Prevention of hair loss is easily observable by the patient.

Failed therapy, repurposing, selection for drug 
sensitivity

If a targeted drug fails (and a resistant tumor 
grows despite the treatment), then the failed drug can be 
considered (at lower doses) for selective protection of 
normal cells from cell-cycle-dependent chemotherapy.

Probably, side effects of targeted therapy, when it is 
used to treat cancer, may predict which normal cells will 
be protected, when it is used as a protector. For example, 
more myelotoxicity is observed with palbociclib, but more 
gastrointestinal toxicity is observed with abemaciclib [64]. 
As a protector, palbociclib mainly protects bone marrow 
cells [1]. In theory, abemaciclib may protect epithelial 
cells from cell-cycle-specific chemotherapy. Similar, 
EGF-R inhibitors display skin, hair and gastrointestinal 
toxicity, and may be predicted (at lower doses) to mitigate 
these side effects caused by chemotherapy. 

For example, CDK4/6 inhibitors cause 
myelosuppression in anti-cancer doses but prevent 
chemotherapy-induced myelosuppression in protective 
doses.

Targeted therapeutics that failed clinical trials can 
be repurposed for protection of normal cells [65]. For 
example, UCN-01 failed clinical trials as monotherapy 
[66]. UCN-01 showed no efficacy in combinations with 
DNA-damaging chemotherapy in many clinical trials [67]. 
In mice, UCN-01 protected gut epithelial cells from DNA-
damaging drug 5-FU [40]. 

Mdm-2 inhibitors unsuccessfully struggle to be 
approved as an anti-cancer therapy for almost two decades 
[68, 69]. Besides, Mdm-2 inhibitors inevitably select for 
mt p53 by suppressing growth of cancer cells with wt p53 
[70, 71]. As it was asked, “can we overcome resistance 
to mdm-2 inhibitors?” [69]. Maybe yes or maybe not. 
But why should we make the task of cancer therapy 
so difficult? It’s already difficult to treat cancer even 
without resistance to therapy. When resistance develops, 
why not to switch to a different kind of therapy (and 
simultaneously exploit resistance to mdm-2 inhibitors for 
selective protection of normal cells from this therapy)?

Consider a scenario. By inducing wt p53, an mdm-2 
inhibitor (for example, nutlin-3) can kill or arrest cancer 
cells with wt p53. This must select for resistant cells, 
harboring mutant p53, as an example [72, 73]. Then, lower 
doses of nutlin-3 can be used to selectively protect normal 
cells (for example, bone marrow cells) from chemotherapy 
[34]. This combination may selectively kill cancer cells 
resistant to nutlin-3, selecting for cancer cells sensitive to 
nutlin-3 (Figure 5). When therapy with the combo fails, 
the tumor is nutlin-3-sensitive again and the cycle can be 
repeated (Figure 5).

Therapeutic engineering 

We may design therapeutic multi-drug combinations 
with effects distinct from the effects of each drug alone 
[56]. For example, in fibrosarcoma cell line with IPTG-
inducible p21, (a) IPTG causes irreversible senescence, (b) 
mitosis-specific drugs (nocodazole, paclitaxel) cause cell 
death in mitosis and (c) rapamycin inhibits cell growth [56]. 
A combination of these three drugs, in the right sequence, 
cancel some effects of each other and the cells emerge 
healthy and proliferating (when the drugs are washed out). 

Added together with IPTG, rapamycin prevents 
senescence, preserving reversible quiescence instead. This 
pharmacological quiescence prevents mitotic arrest and 
cell death otherwise caused by Nocodazole. When all three 
drugs are removed, the cells restart proliferation. This 
amazing outcome depends on the exact drug sequence. For 
example, addition of IPTG after nocodozole (not before) 
does not prevent cell death [56].

In therapeutic engineering, the same drug can play 
roles of either cytotoxic or protective drugs depending 
on doses, sequences and cancer cell genetic profile. For 
example, by inducing G1-cell-cycle arrest, UCN-01 plays 
a protective role in normal cells against S-phase-specific 
chemotherapy [40]. On the other hand, by abrogating p53-
independent G2-checkpoint, UCN-01 prevents protection 
of cancer cells with mutant-p53 from mitosis-specific 
combination [21]. This combination includes three drugs: 
low concentrations of DNA-damaging drugs (doxorubicin, 
etoposide), followed by UCN-01 to propel cells from G2 
to mitosis and then, exposing them to paclitaxel [21].

Different protectors (and their combinations) will 
be needed to protect different kinds of normal cells, in 
different cancers and different types of cytotoxic therapy. 
For example, CDK4/6 inhibitors were initially envisioned 
to (a) protect bone marrow cells (not necessarily all types 
of normal cells) (b) from chemotherapy with S-phase-
specific drugs such as 5-fluorouracil and carboplatin (c) in 
patients with Rb1-negative cancers (resistant to CDK4/6 
inhibitors) [1, 2, 45].

Synergistic/antagonistic combinations

When normal cells are protected, we can add an 
enhancing drug that potentiates cytotoxic therapy against 
cancer cells [74, 75]. This may improve the efficacy of 
cancer therapy (Figure 6).

For the last 60 years, thousands of synergistic 
chemotherapeutic drug combinations have been described. 
Medline search on key words “synergistic+chemotherapy
+cancer” retrieved 25,000 publications.

https://pubmed.ncbi.nlm.nih.gov/?term=synergistic
+chemotherapy+cancer

This is just a fraction of all publications on the topic. 
However, synergistic combinations can be synergistically 
toxic to the patient [76].

https://pubmed.ncbi.nlm.nih.gov/?term=synergistic+chemotherapy+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=synergistic+chemotherapy+cancer
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In theory, selective protection of normal cells from 
one of the two synergistic drugs may be sufficient in 
protection from the synergistic combination. For example, 
G1-arrest protects against cytotoxicity of mitotic inhibitors 
such as paclitaxel and therefore against paclitaxel-based 
synergistic combinations. Such three-drug combinations 
are antagonistic-synergistic (Figure 6).

It is also possible to design two-drug antagonistic-
synergistic combinations.

In such combinations, a targeted drug antagonizes 
the cytotoxic drug in normal cells and potentiates it in 
cancer cells. For example, geldanamycin (GA), a drug 
which destabilizes Hsp90-associated proteins, depletes 
cells of Bcr-Abl and some other oncogenic kinases. These 
kinases render cancer cells resistant to chemotherapeutics 
such as paclitaxel and doxorubicin. GA sensitized Bcr-
Abl-expressing cells to doxorubicin and paclitaxel. In 
contrast, parental cells lacking oncogenic Bcr-Abl were 
sensitive to chemotherapeutics. GA rendered these cells 
resistant to chemotherapeutics by inducing hsp-70, an anti-
apoptotic protein [77, 78]. 

Restrictive targeting of specific clone

Given tumor heterogeneity, drug combinations 
should be aimed at the deadliest cancer clone. For 

example, in a tumor with wt p53 and mutant p53 clones, 
a combination of nutlin-3 and paclitaxel (PTX) is aimed 
at mutant p53 clones, in order to spare normal cells (all 
normal cells have wt p53). One of the characteristics of 
the deadliest clone is proliferation, because, if cancer cells 
cannot proliferate, they are not immediately dangerous 
[79]. In theory, it is sufficient to target cycling cells to 
control cancer.

Protection beyond cyclotherapy: Inhibitors of 
apoptosis

Pifithrin-alpha, inhibitor of wt p53, protects mice 
from side effects of genotoxic chemotherapy [80, 81]. 

The most important group is inhibitors of caspases. 
Unfortunately, none of caspase inhibitors or other 
inhibitors of cell death are clinically approved. Caspase 
inhibitors struggle to be approved for treatment of non-
oncologic diseases and have failed so far. For example, 
Emricasan (IDN-6556, PF-03491390) is a caspase inhibitor 
invented in 1998 by Idun Pharmaceuticals. It has been 
granted fast track designation by the FDA for the treatment 
of non-alcoholic steatohepatitis cirrhosis [82, 83]. In two 
clinical trials, emricasan did not demonstrate a beneficial 
effect of non-alcoholic steatohepatitis-related cirrhosis and 
fibrosis [82, 83]. In contrast, we need caspase inhibitors 

Figure 5: Exploiting selection for resistance for (and against) nutlin-3 (proposal). (A) Nultin-3 causes response in wt p53-
expressing tumors. By killing cells with wt p53, it selects for loss of wt p53 (nutlin-3-resistance). (B) Relapsed nutlin-3-resistance tumors is 
treated with Taxol. Low doses of nutlin-3 are used to protect normal cells from Taxol (PTX). The cancer cells will not be protected because 
they are nutlin-3-resistant. A combination nutlin-3 plus PTX may selected for clones with wt p53. Then (A) repeat.
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for selective protection of normal cells from apoptosis-
inducing chemotherapy, without protecting MDR cancer 
cells, for example [7].

Brain tumors (proposal)

As we discussed, a combination of a cytotoxic 
chemotherapy that is not a substrate of PgP and a 
protective drug that is a substrate of PgP can selectively 
kill Pgp-expressing cells, while other cells are protected 
[7]. A similar approach can be suggested to eliminate 
systemic side effects of chemotherapy in patients 
with brain tumors. In simple terms, brain tumors are 
separated from the rest of the body by blood brain tumor 
barrier (BBB), which involves ABC transporters such 
as Pgp, MRP and BCRP [84, 85]. An antagonistic drug 
combination can be used to target brain tumors, while 
sparing cells elsewhere. For example, temozolomide, an 
apoptosis-inducing drug [86], crosses the blood-brain 
barrier and is widely used for treatment of brain tumors 
[87]. By killing proliferating normal cells, temozolomide 

causes systemic side effects such as myelosuppression, 
hair loss and mucositis. Caspase inhibitors that cannot 
cross the blood-brain barrier can be used to protect normal 
cells from temozolomide-induced side effects. Brain-
impermeable caspase inhibitor plus temozolomide.

More generally, antagonistic combinations include a 
brain-permeable cytotoxic drug and the brain-impermeable 
antagonist. This antagonistic drug combination is expected 
to mitigate the systemic effects of chemotherapy but 
retains the efficacy of chemotherapy in brain cancer.

Any protectors that do not cross the blood brain 
tumor barrier can be used to mitigate systemic side effects 
of chemotherapy. In the case of temozomide, the use of 
a brain-impermeable inhibitor of alkylation would be the 
best option.

Systemic side effects of temozomide (and other 
chemotherapy for brain tumors) may be mitigated based 
on the cyclotherapy approach. CDK4/6 inhibitors such as 
palbociclib do not cross the blood brain barrier [88–90]. 
Palbociclib and trilaciclib, CDK4/6 inhibitors, cause G1 
cell-cycle arrest in bone marrow cells, thus protecting 

Figure 6: Synergistic/antagonistic combinations. (A) Normal cell. Protecting drug antagonizes cytotoxic 1 drug. (B) Protector-
resistant cancer cell. Cytotoxic drugs 1 and 2 drugs are synergistic.
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them from chemotherapy. Given that they are already 
clinically available, it will be easy to design a study to 
evaluate side effects caused by temozomide, given with or 
without CDK4/6 inhibitors to the same patient.

Furthermore, protective combinations may include 
inhibitors of CDK4/6, mTOR, mdm-2, and caspase, all 
together. Such protective cocktails may eliminate most 
systemic side effects: from myelosuppression to hair loss.

What would happen when resistance to telosmoside 
(or other chemotherapy) develops? Enormous research 
efforts have been focused on overcoming such a resistance 
and this is not the topic of this article. Alternatively, 
resistance can be exploited. Also, in theory, resistance 
may not develop at all, because temozomide may be used 
at higher doses and, most importantly, in a synergistic-
antagonistic combination to start with. However, until 
protection of normal cells is implemented, a detailed 
discussion of further strategies is too preliminary.

CONCLUSION AND FURTHER 
SUGGESTIONS

Selective protection of normal cells may transform 
therapy of cancer. Especially when targeted therapy 
fails, patients can be treated with therapy that exploits 
this resistance. Some targeted drugs, at low doses, can 
be repurposed as protectors. When normal cells are 
protected, more potent synergistic drug combinations 
could be designed, and potentially higher doses or treatment 
duration could be used. Standard therapies that select for 
drug resistance can be applied in sequence. Repeating such 
cycles may extend the life of a cancer patient (see Figure 5). 

Potential opportunities are enormous, but they 
cannot be implemented in one step. The first step should 
be mitigating chemotherapy side effects in a variety 
of cancers. This article focuses on a few examples that 
may be implemented now. The approval of the CDK4/6 
inhibitor trilaciclib for myeloprotection in patients with 
lung cancer shows that it is possible. One approach is 
to repurpose targeted drugs such as CDK4/6 inhibitors 
(palbociclib, abemaciclib) and everolimus/sirolimus, 
when therapy with these drugs fail. This will ensure that 
the tumor will not be protected because the resistance 
is proven by therapeutic failure in the same patient. 
Another approach is using caspase inhibitors and Mdm-2 
inhibitors for selective protection of normal cells, based 
on the lessons of clinical development of trilaciclib. At 
low doses, Mdm-2 and caspase inhibitors in combination 
with everolimus may be especially useful to mitigate side 
effects of mitosis-specific chemotherapy, such as Vinca 
drugs and Taxanes, in patients with mutant p53 tumors. 
As a special approach, any brain-impermeable protective 
drugs, including trilaciclib, can in theory be used to 
mitigate systemic side effects of brain-permeable cytotoxic 
drugs such as temozolomide in the treatment of brain 
tumors. These are most obvious examples of immediate 

clinical implementation of the concept of “exploiting drug 
resistance.” A variety of other clinical implementations 
can be suggested by readers of this article.
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