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ABSTRACT
TP53 mutant head and neck squamous cell carcinoma (HNSCC) patients exhibit 

poor clinical outcomes with 50–60% recurrence rates in advanced stage patients. In 
a recent phase II clinical trial, adjuvant therapy with everolimus (mTOR inhibitor) 
significantly increased 2-year progression-free survival in p53 mutated patients. TP53-
driven mTOR activation in solid malignancies causes upregulation of HIF-1α and its 
target, downstream effector VEGF, by activating STAT3 cell signaling pathway. Here, 
we investigated the effects of everolimus on the STAT3/HIF-1α/VEGF pathway in 
TP53 mutant cell lines and xenograft models. Treatment with everolimus significantly 
inhibited cell growth in vitro and effectively reduced the growth of TP53 mutant 
xenografts in a minimal residual disease (MRD) model in nude mice. Everolimus 
treatment was associated with significant downregulation of STAT3/HIF-1α/VEGF 
pathway in both models. Further, treatment with everolimus was associated with 
attenuation in tumor angiogenesis and lymphangiogenesis as indicated by decreased 
microvessel density of vascular and lymphatic vessels in HN31 and FaDu xenografts. 
Everolimus downregulated the STAT3/HIF-1α/VEGF pathway to inhibit growth and 
in vitro tube formation of HMEC-1 (endothelial) and HMEC-1A (lymphatic endothelial) 
cell lines. Our studies demonstrated that everolimus inhibits the growth of TP53 
mutant tumors by inhibiting angiogenesis and lymphangiogenesis through the 
downregulation of STAT3/HIF-1α/VEGF signaling.

INTRODUCTION

HNSCC ranks sixth amongst cancers diagnosed 
worldwide [1]. Despite recent advancements in treatment 
modalities, 50–60% of human papillomavirus (HPV) 
negative advanced stage HNSCC patients develop 
locoregional recurrence after definitive treatment  
[1, 2]. TP53 is the most frequently mutated gene in ≥80% 
of HPV-negative tumors [3–5]. This is unlike p53 wild-
type (wt) tumors seen more commonly in HPV-positive 
HNSCC which have excellent survival rates that now 

require de-escalation of treatment. In addition to losing 
tumor-suppressive functions, mutant p53 proteins acquire 
additional biological functions with transforming abilities 
that promote tumorigenesis [6, 7]. Mutant p53 causes 
sustained activation of the mTOR pathway, thereby 
contributing to cancer pathogenesis [8, 9]. Our prior 
work has shown that overexpression of eIF4E in surgical 
margins predicts recurrence and that overexpression of 
eIF4E is functionally active through activation of the 
Akt/mTOR pathway [10, 11]. Results from a window of 
opportunity clinical trial concluded that the mTOR pathway 
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was a potential therapeutic target for HNSCC [12]. In our 
recently reported phase-2 multi-institutional adjuvant trial 
with everolimus in stage IV HNSCC patients at high risk 
for recurrence, treatment with everolimus demonstrated 
significant improvement in 2-year progression-free survival 
(PFS) in patients with TP53 mutations compared to the 
placebo group [13]. Our results are even more exciting as 
this subset of patients with TP53 mutations has the highest 
risk of recurrence and therefore, the greatest need for 
adjuvant therapy [14, 15]. Hence, this study focuses on p53 
mutated tumors as it is this group of patients that requires 
adjuvant therapy to improve survival. HNSCC cells 
exhibit a significant upregulation in lymphatic endothelial 
cell invasiveness and proliferation [16, 17]. The role of 
mTOR inhibitors (mTORi) as potent growth inhibitory and 
antiangiogenic/anti-lymphangiogenic agents in HNSCC 
is well established [18]. Moreover, mTORi significantly 
suppressed baseline invasiveness of endothelial and 
HNSCC tumor cells [19]. However, the underlying 
molecular mechanisms for mutant p53 protein-mediated 
activation of the mTOR pathway which drive the oncologic 
processes in HNSCC are yet to be elucidated. Previous 
studies have shown that mutant p53 causes stabilization of 
HIF-1α to upregulate its transcriptional activity, promoting 
a variety of oncologic processes, including angiogenesis 
and lymphangiogenesis [20–22]. Moreover, mutant p53-
mediated activation of HIF-1α is both transcriptionally and 
translationally regulated through mTOR [23, 24]. HIF-1α 
target genes, such as VEGF-A and VEGF-C, are involved 

in tumor angiogenesis and lymphangiogenesis [25–27], 
leading to lymph node metastasis and recurrence [28–30]. 
Accordingly, we sought to investigate the mechanism for 
everolimus-induced inhibition of TP53 HNSCC. 

RESULTS

Everolimus inhibits the growth of TP53 mutant 
HNSCC both in vitro and in vivo

To evaluate the effect of everolimus on the cell 
growth of TP53 mutant HNSCC, we utilized FaDu, 
SCC114, and HN31 cell lines. Consistent with our previous 
study, everolimus significantly reduced cell viability at 10 
nm and 100 nm concentrations (Figure 1A). Moreover, we 
also evaluated the effect of everolimus on TP53 mutant 
HNSCC tumor growth in vivo in a tumor mouse xenograft 
model. Treatment with everolimus (5 mg/kg, oral gavage 
daily) for 23 days significantly inhibited the growth of 
both HN31 (Figure 1B) and FaDu xenografts suggesting 
the inhibitory effect is not cell line specific (Figure 1C). 

Everolimus downregulates mTORC1 pathway in 
TP53 mutant HNSCC

We next evaluated the effect of everolimus on the 
oncogenic mTOR signaling pathway. Treatment of FaDu, 
SCC114, and HN31 cells with everolimus significantly 
downregulated P-mTOR S2448, P-S6 S235/236, and 

Figure 1: Everolimus downregulates mTORC1 pathway and inhibits growth of TP53 mutant HNSCC cell lines and 
xenografts. (A) The effect of everolimus on cell viability was measured using an MTS assay after six days of treatment. Cell viability 
of everolimus treated cells was measured as a percent of control (untreated cells). ****P < 0.00005 vs. control, ANOVA. Data represent 
the mean +/− SEM of three independent experiments, each experiment comprising samples in triplicate. (B) The growth curve of HN31 
xenograft showing everolimus significantly reduces tumor volume. ***P < 0.0005 vs. control, Student’s t-test. Data represent mean +/− 
SEM, N = 20 mice in each group. (C) The growth curve of FaDu xenograft showing that everolimus significantly reduces tumor volume. 
***P < 0.0005 vs. control, Student’s t-test. Data represent mean +/− SEM, N = 20 mice in each group. (D) Representative western blot for 
mTOR pathway proteins, prepared from cells treated with 100 nm everolimus for 24 hours. (E and F) Representative western blot for 
mTOR pathway proteins in HN31 and FaDu xenografts. The levels of P-mTOR, P-S6 and P-4EBP1 were reduced in everolimus treated cell 
lines and xenografts. The western blot experiment was repeated three times.



Oncotarget87www.oncotarget.com

P-4EBP1 T37/46 in these cell lines (Figure 1D). To further 
translate our in vitro studies in vivo, we investigated the 
effect of everolimus on the mTORC1 pathway in HN31 
and FaDu tumor cell xenografts. Consistent with the effect 
of everolimus in vitro, oral administration of everolimus 
was associated with a significant downregulation of 
P-mTOR S2448, P-S6 S235/236, and P-4EBP1 T37/46 in 
HN31 and FaDu xenografts (Figure 1E and 1F). 

Everolimus inhibits STAT3 phosphorylation and 
downregulates HIF-1α, VEGF-A and VEGF-C in 
TP53 mutant HNSCC

As the activity of the mTORC1 pathway is upstream 
of HIF-1α, we investigated whether everolimus can reduce 
the level of HIF-1α and its targets VEGF-A and VEGF-C 
both in cell lines and xenografts [31]. Western blot 
analysis demonstrated that everolimus reduced P-STAT3 
Y705 and P-STAT3 S727 not only in cell lines in vitro, but 
also in tumor-cell xenografts (Figure 2A–2E). The levels 
of HIF-1α, VEGF-A and VEGF-C were also decreased by 
everolimus treatment in cell lines (Figure 2A) as well as 
in xenografts (Figure 2B–2E). Moreover, mRNA levels of 
HIF-1α, VEGF-A and VEGF-C were significantly reduced 
by everolimus treatment both in vitro (Figure 3A–3C) and 

in vivo (Figure 3D and 3E). Secretion of VEGF-A was 
also reduced when cells were treated with everolimus 
(Figure 3F), as measured by ELISA.

Everolimus inhibits tumor angiogenesis and 
lymphangiogenesis in mouse xenograft model

We investigated the effect of everolimus on 
tumor angiogenesis and lymphangiogenesis. CD31 
immunohistochemistry demonstrated that everolimus 
significantly reduced microvessel density in HN31 and 
FaDu xenografts (Figure 4A). To identify tumor-associated 
lymphatic vessels, tumors were immunostained with 
mouse-specific LYVE-1. Consistent with the inhibitory 
effect of everolimus on angiogenesis, lymphatic vessel 
density was significantly reduced by everolimus treatment 
in FaDu and HN31 xenografts (Figure 4B). 

The effect of everolimus on human 
microvascular endothelial (HMEC-1) cells

Angiogenesis involves multiple processes 
of neovascularization that includes endothelial cell 
proliferation, migration, and formation of lumen 
morphogenesis on matrigel. Everolimus significantly 

Figure 2: Everolimus inhibits STAT3 phosphorylation and downregulates HIF-1α, VEGF-A and VEGF-C in TP53 
mutant HNSCC cell lines and xenografts. (A) Representative western blot of P-STAT3, HIF-1α, VEGF-A and VEGF-C in FaDu, 
SCC114, and HN31 cell lines. Proteins were prepared from cells treated with 100 nm everolimus for 24 hours. (B and C) Representative 
western blot for P-STAT3, HIF-1α, VEGF-A, and VEGF-C in HN31 and FaDu xenograft. Proteins were isolated from the xenograft after 
mice were treated with 5 mg/kg of everolimus daily for 21 days. The western blot experiment was repeated three times. Everolimus also 
downregulated HIF-1α and its target genes VEGF-A and VEGF-C in FaDu, SCC114, and HN31 cell lines. This downregulation was 
also seen in both xenograft models (B–E). Moreover, the mRNA levels of HIF-1α, VEGF-A and VEGF-C were significantly reduced by 
everolimus treatment both in vitro (Figure 3A–3C) and in vivo (Figure 3D–3E). Secretion of VEGF-A was also reduced when cells were 
treated with everolimus (Figure 3F), as measured by ELISA. 
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inhibited cell proliferation of HMEC-1 when cells were 
treated with 100 nm for 72 hours (Supplementary Figure 
1A). Next, we evaluated in vitro tube formation in cells 
treated with 100 nm everolimus for 16 hours, where 
everolimus significantly reduced tube morphology and 
network formation of HMEC-1 cells (Supplementary Figure 
1B). The evaluation of everolimus on endothelial cell 
migration, where cells were treated with 100 nm everolimus 

for 8 hours, showed a significant reduction in the number 
of migrated cells (Supplementary Figure 1C). Moreover, 
P-mTOR S2448, P-S6 S235/236, P-4EBP1 T37/46 and 
P-STAT3 were downregulated in both HMEC-1 (Figure 
5A) and HMEC-1A (Figure 5D) cell lines. Consistent with 
the HNSCC cell lines, everolimus reduced levels of HIF-1α, 
VEGF-A and VEGF-C in both HMEC-1 (Figure 5B) and 
HMEC-1A (Figure 5E) cells. Finally, the mRNA levels of 

Figure 3: Everolimus reduces mRNA levels of HIF-1α, VEGF-A and VEGF-C in TP53 mutant HNSCC cell lines and 
xenografts. qRT-PCR was employed to measure the relative amount of mRNA. (A–C) mRNA fold change for  HIF-1α, VEGF-A and 
VEGF-C in FaDu, SCC114, and HN31 cell lines, fold changes are shown relative to control.  **P < 0.005; ***P < 0.0005; ****P < 0.00005 
vs. control, ANOVA. Data represent the mean +/− SEM of three independent experiments, each comprising samples in triplicate. (D and E) 
mRNA fold change for HIF-1α, VEGF-A and VEGF-C in HN31 and FaDu xenograft. ***P < 0.0005; ****P < 0.00005 vs. control, ANOVA. 
Data represent the mean +/− SEM of three independent experiments comprising n = 3 mice. (F) Everolimus reduces the secretion of 
VEGF-A in cell culture medium. The level of VEGF-A in cell culture medium was determined using ELISA. ****P < 0.00005 vs. control, 
ANOVA. Data represent the mean +/− SEM of three independent experiments comprising triplicate samples in each experiment. 

Figure 4: Everolimus reduces microvessel density (MVD) and lymphatic vessel density (LVD) in TP53 mutant 
HNSCC xenografts. (A) Representative image of CD31 immunostaining and quantification of MVD in HN31 and FaDU xenografts. 
(B) Representative image of LYVE-1 immunostaining and quantification of LVD in HN31 and FaDU xenografts. Prior to tumor harvesting, 
mice were treated with 5 mg/kg of everolimus daily for 21 days.  *P < 0.05 vs. control, ANOVA. Data represent the mean +/− SEM, N = 
20 mice in each group. 
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HIF-1α, VEGF-A and VEGF-C were significantly reduced 
by everolimus treatment in both HMEC-1 (Figure 5C) and 
HMEC-1A (Figure 5F).

DISCUSSION

TP53 mutations are associated with treatment 
resistance and shorter survival [32, 33]. Therefore, patients 
with TP53 mutations often exhibit persistent disease or 
MRD and potentially could benefit from adjuvant therapy. 
A multi-institutional phase-2 clinical trial subset analysis 
determined that HNSCC patients with TP53 mutations 
benefited when everolimus was administered as adjuvant 
therapy [13]. Everolimus inhibits STAT3/HIF-1α/VEGF 
pathways in wt TP53 cell lines as well (data not shown). 
However, our goal was not to compare p53 mutated 

tumors to p53 wt tumors, as patients with p53 wt respond 
so well and do not require adjuvant therapy. Most trials 
are aimed at de-escalation of treatment for p53 wt tumor 
patients to decrease side effects. However, we sought 
specifically to determine the mechanism of why patients 
with p53 mutated tumors benefited from mTORi.

We employed TP53 mutant cell lines and tumor-cell 
xenografts to investigate the underlying mechanisms of 
the anti-tumorigenic effects of everolimus. To recapitulate 
the clinical trial design, we utilized the minimum residual 
disease (MRD) model using HN31 and FaDu xenografts 
[34]. MRD is closely associated with disease persistence/
recurrence. Therefore, a better understanding of the 
underlying mechanism and targets related to the MRD 
mouse model will be essential to effectively preventing 
the progression of upper aerodigestive tract cancers. Our 

Figure 5: Everolimus inhibits mTORC1/STAT3 pathway and downregulates HIF-1α, VEGF-A and VEGF-C in HMEC-1 
and HMEC-1A cells. (A) Proteins were prepared from HMEC-1 treated with 100 nm of everolimus for 24 hours. Representative western 
blot showing inhibition of mTORC1 pathway proteins and STAT3 phosphorylation. (B) Representative western blot of HIF-1α, VEGF-A 
and VEGF-C in HMEC-1 showing downregulation by everolimus treatment. (C) Quantification of qRT-PCR data showing mRNA fold 
change for HIF-1α, VEGF-A and VEGF-C in HMEC-1. ****P < 0.00005 vs. control, ANOVA. Data represent the mean +/− SEM of three 
independent experiments, each comprising samples in triplicate. mRNA levels of all were significantly reduced by everolimus treatment. 
(D) Proteins were prepared from HMEC-1A cells treated with 100 nm of everolimus for 24 hours. Representative western blot showing 
inhibition of mTORC1 and STAT3 phosphorylation in HMEC-1A. (E) Representative western blot of HIF-1α, VEGF-A and VEGF-C 
in HMEC-1A showing downregulation by everolimus treatment. (F) Quantification of qRT-PCR data showing mRNA fold change for  
HIF-1α, VEGF-A and VEGF-C in HMEC-1A. ****P < 0.00005 vs. control, ANOVA. Data represent the mean +/− SEM of three independent 
experiments, each comprising samples in triplicate. mRNA levels of all were significantly reduced by everolimus treatment.
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prior published studies established mTOR inhibitors as 
possible adjuvant therapy for microscopic residual disease 
in HNSCC [34]. However, the underlying mechanism 
for mTORi growth inhibitory effects in MRD model is 
largely unknown. Treatment with everolimus significantly 
inhibited the growth of TP53 mutant cell lines and 
attenuated the growth kinetics of tumor-cell xenografts. 
In accordance with our previous studies [35], everolimus 
inhibited mTORC1 activity by downregulating P-mTOR 
S2448, P-S6 S235/236, and  4EBP1 T70. Moreover, both 
in cell lines and xenografts, P-STAT3, HIF-1α, VEGF-A 
and VEGF-C were downregulated with everolimus 
treatment. Interestingly, some studies suggest that mTORi 
do not affect the stability of HIF-1α and act independently 
of the Von Hippel-Lindau (VHL) protein [36, 37]. 
Instead, mTORi inhibits the translation of HIF-1α through 
downregulation of P-4EBP1 and represses transcription 
of HIF-1α through reduction of P-STAT3 [24]. Our study 
showed similar results in TP53 mutant HNSCC cell lines 
and xenografts. Everolimus downregulated HIF-1α, 
accompanied by the decrease in P-4EBP1 and P-STAT3. 
Therefore, in line with other studies we postulate that 
everolimus-mediated downregulation of HIF-1α involves 
inhibition of its translation (through downregulation of 
P-4EBP1) and repression of its transcription (through 
downregulation of P-STAT3). Since the HIF-1α 
targets, VEGF-A and VEGF-C, are involved in tumor 
angiogenesis and lymphangiogenesis, we further assessed 
the effects of everolimus on potential crosstalk between 
tumor and vascular endothelial and lymphatic cells. Our 
results revealed that everolimus significantly inhibited 
tumor angiogenesis and lymphangiogenesis in HN31 
and FaDu xenografts, potentially via a paracrine effect. 
Tumor cells secrete VEGF-A and VEGF-C in the tumor 
microenvironment which promotes tumor angiogenesis 
and lymphangiogenesis. VEGF-A mediated angiogenesis 
plays a pivotal role in tumor recurrence and growth [25–
27], whereas VEGF-C mediated lymphangiogenesis is 
crucial for invasion and metastasis [28–30]. Therefore, 
we postulate that the inhibition of tumor angiogenesis 
and lymphangiogenesis by everolimus prevents the 
recurrence of TP53 mutant HNSCC tumors. Finally, we 
have shown that everolimus substantially reduces cell 
proliferation, in vitro network formation, and migration 
of the endothelial cell line HMEC-1 with concomitant 
downregulation of the STAT3/HIF-1α/VEGF pathway. 

mTOR is well established as a positive regulator 
of HIF-1α expression and its transcriptional activity 
[36–39]. The downregulation of HIF-1α target genes by 
mTORi prevented the growth of renal cell carcinoma [36]. 
However, the underlying mechanisms for everolimus-
induced inhibitory effect on tumor growth have not been 
elucidated in TP53 mutant HNSCC. Considering the 
molecular context of TP53 mutant HNSCC, mutant 53 
protein causes sustained activation of the mTOR pathway 
to upregulate HIF-1α, which has been implicated in the 

expansion of residual cancer stem cells in colorectal 
cancer [40]. This residual cancer stem cell that survives 
definitive therapy leads to tumor recurrence [41–44]. 
Therefore, we postulate that the inhibition of HIF-1α-
mediated angiogenesis by everolimus plays a pivotal role 
in preventing tumor recurrence of TP53 mutant HNSCC. 
However, HIF-1α target genes are also involved in other 
critical aspects of cancer biology, including cell survival, 
chemotherapy and radiation resistance, immortalization, 
immune evasion, metastasis, and metabolism. The 
intervention of these oncological processes might also halt 
the progression of TP53 mutant HNSCC, which has not 
been explored in this current study. Previous work from 
our lab has shown that everolimus induces autophagy-
dependent cell death (ADCD) in TP53 mutant HNSCC 
through tumor cell-intrinsic mechanisms [35]. This study 
demonstrated that everolimus inhibits tumor angiogenesis 
and lymphangiogenesis through the downregulation of 
HIF-1α within the tumor microenvironment. Therefore, 
we conclude that prevention of TP53 mutant HNSCC 
tumor growth by everolimus consists of multifaceted 
mechanisms that involve modulation of both tumor cells 
and the tumor microenvironment. Further studies are 
required to elucidate the underlying detailed mechanisms.

MATERIALS AND METHODS

Cell culture

Three HPV-negative HNSCC cell lines with TP53 
mutations were used in this study: 1) HN31 (C176F and 
A161S), kindly provided by Dr. Jeffrey Myers at The 
University of Texas M.D. Anderson Cancer Center, 2) 
FaDu (R248L) procured from American Type Culture 
Collection, and 3) UPCI-SCC114 (SCC114) (R248Q), 
kindly provided by Dr. Susanne Gollin at the University 
of Pittsburgh. Information on TP53 mutational status and 
disease background of cell lines are described previously 
[35]. These cell lines have Evolutionary Action (EA) 
scores of more than 75, therefore considered as high risk 
TP53 mutations [45]. All cell lines were maintained in 
Dulbecco-modified Eagle medium (Corning, Corning, 
NY, USA), 10% fetal bovine serum (R&D Systems, 
Minneapolis, MN, USA), antibiotic/antimycotic 
(Hyclone, Logan, UT, USA), glutamine (Sigma-Aldrich, 
St. Louis, MO, USA), sodium pyruvate (Sigma-Aldrich, 
St. Louis, MO)  and non-essential amino acids (Sigma-
Aldrich, St. Louis, MO, USA). HMEC-1 and HMEC-
1A, human endothelial and lymphatic endothelial cell 
lines, respectively, were kindly provided by Dr. J. Steven 
Alexander at LSU Health Sciences Center-Shreveport and 
maintained in MCDB 131 medium (Sigma-Aldrich, St. 
Louis, MO, USA), supplemented with 20 mM HEPES, 1 
ug/ml hydrocortisone, 10 ng/ml EGF and 10% fetal bovine 
serum. Cells were grown in monolayers and maintained in 
humidified 5% CO2 atmosphere at 37°C. 
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Western blot

Cells were grown in their respective medium 
and treated with 100 nm of everolimus (Selleckchem, 
Houston, TX) for 24 hours. The cells were lysed using 1X 
cell lysis buffer (Cell Signaling Technology, Danvers, MA, 
USA) containing a Protease Inhibitor Cocktail (Roche 
Molecular Biochemicals, Germany) and phosphatase 
inhibitors (Sigma-Aldrich, St. Louis, MO, USA) [46]. 
Briefly, protein lysates (30–50 μg) were denatured using 
Laemmli Sample Buffer then loaded, run in precast 
gels, and transferred to PVDF membranes using the 
Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, 
CA, USA). After blocking with either BSA (3%) or 
milk (5%), membranes were incubated with primary 
antibody overnight at 4°C. The primary antibodies used 
were HIF-1α, P-mTOR S2448, mTOR, P-S6 S235/236, 
P-STAT3 Y705, P-STAT3 S727, GAPDH (Cell Signaling 
Technology, Danvers, MA, USA), VEGF-A, and VEGF-C 
(Abcam, Cambridge, UK). The membranes were next 
incubated with either an anti-rabbit HRP-conjugated 
secondary antibody (R&D Systems, Minneapolis, MN, 
USA), or an anti-mouse HRP-conjugated secondary 
antibody (Cell Signaling Technology, Danvers, MA, USA) 
for one hour. The chemiluminescent signal was developed 
using SuperSignal Chemiluminescent Substrates (Thermo 
Fisher Scientific, Waltham, MA, USA), and captured 
with a ChemiDoc XRS+ System (Bio-Rad, Hercules, CA, 
USA). Acquired images were analyzed and quantified 
using Image J software. 

Cell viability assay

HNSCC cell lines were seeded in 96-well tissue 
culture plates at a density of 1000–2000 cells/well for 24 
hours. Cells were then treated with everolimus (10 and 
100 nm) for 72 hours. For HMEC cell lines, 8000 cells/
well were seeded in a 96-well plate for 24 hours, followed 
by 72 hours of treatment with everolimus. After respective 
treatments, cell viability was measured using the CellTiter 
96® Aqueous cell proliferation assay according to the 
manufacturer’s instructions (Promega Corporation, 
Madison, WI, USA). Cell viability was quantified and 
expressed as percent control. 

HNSCC xenograft model

The mouse xenograft experiment was conducted 
in compliance with the Louisiana State University 
Health Sciences Center Institutional Animal Care and 
Use Committee guidelines under the U.S. Public Health 
Service Policy on Humane Care and Use of Laboratory 
Animals. 1 × 106 FaDu cells or 2 × 106 HN31 cells were 
injected subcutaneously into both flanks of 6-8 weeks old 
female athymic nude mice (Charles River Laboratories, 
Shrewsbury, MA, USA). Tumors were measured using a 

digital caliper and volume calculated using the formula 
[(length × width2)/2]. Mice were randomized to two 
groups of 20 mice each. To mimic minimal residual 
disease in patients, treatment started on day five before 
the appearance of tumors. The experimental group 
received 5 mg/kg of everolimus dissolved in 1% CMC-
Na (Sigma-Aldrich, St. Louis, MO, USA) by oral gavage 
daily, whereas control mice received 1% CMC-Na. Tumor 
volume and body weight were measured three times per 
week. After three weeks, mice were sacrificed, the tumors 
excised, and tumor lysates were prepared using RIPA 
buffer (Cell Signaling Technology, Danvers, MA, USA). 
Tumor lysates were then analyzed by Western blot. 

Immunohistochemistry and microvascular 
density quantification

The xenograft tissue was fixed in zinc-formalin 
and paraffin embedded. 4 μm FFPE tissue sections 
were deparaffinized, dehydrated, processed with antigen 
retrieval buffer, and incubated with primary antibodies. 
For CD31 staining, citrate buffer (pH 6.0), and LYVE-1, 
EDTA buffer (pH 9.0) was used for antigen retrieval 
following the manufacturer’s protocol using a pressure 
cooker. The slides were then incubated with either anti-
CD31 (Cell Signaling Technology, Danvers, MA, USA), 
or anti-LYVE1 (R&D Systems, Minneapolis, MN, USA) 
antibody for 24 hours at 4°C. After incubation with 
biotinylated secondary antibody (Vector Lab, Burlingame, 
CA, USA for 30 min, slides were incubated with 
streptavidin-biotin-peroxidase (Vector Lab, Burlingame, 
CA, USA). DAB substrate was used to visualize positive 
staining. Images were acquired with the Olympus VS200 
Research Slide Scanner under 40× magnification. 
Microvascular density was measured using the Aperio 
Microvessel Analysis Algorithm (Aperio, Vista, CA, 
USA).

ELISA

The amount of VEGF-A secreted in the cell culture 
medium was measured using VEGFA Human ELISA Kit 
(Abcam, Cambridge, UK) according to the manufacturer’s 
protocol. Briefly, FaDu, SCC114 and HN31 cell lines were 
seeded overnight in a 6-well plate and treated with 100nM 
of everolimus for 24 hours. Cell medium was collected 
and centrifuged at 500 RCF. 50 ul of supernatant was used 
to determine VEGF-A levels secreted in the medium. 

Endothelial cell proliferation assay 

Exponentially growing HMEC-1 cells were plated 
at a density of 8 × 103 cells per well in 96-well plates and 
grown in a complete MCDB131 medium (Sigma-Aldrich, 
St. Louis, MO, USA) containing 10% FBS for 24 hours. 
After 24 hours, cells were treated with either 100 nm 
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of everolimus or 100 ng/mL of VEGF (R&D Systems, 
Minneapolis, MN, USA) or a combination of everolimus 
and VEGF for 72 hours. Cell viability was measured 
using the CellTiter 96® Aqueous cell proliferation assay 
according to the manufacturer’s instructions (Promega, 
Madison, WI, USA). The cell viability was quantified and 
expressed as percent control. 

In vitro angiogenesis (tube morphology) assay

2.5 × 103 cells in 200 μl of MCDB 131 medium 
supplemented with 0.5% FBS and either everolimus, 
VEGF, or both were added to the wells of 96 well plates 
pre-coated with growth factor–depleted matrigel (7 μg/
mL; Becton Dickinson, Bedford, MA, USA). After 
16 hours, the medium was removed gently without 
disturbing newly formed tubules. Images were captured 
at 40× magnification on a Leica microscope. The image 
was analyzed using angioanalyzer plugins to measure the 
number of branch points and segments. Five random 40× 
images were used for each well. Each experiment was 
done in triplicate and repeated twice. 

Endothelial cell migration assay

Migration assays were done in transwell tissue 
culture plates (6.5 mm and 4-μm pore size, Becton 
Dickinson and Co., Franklin Lakes, NJ, USA). The bottom 
of the transwell chamber was coated with 10 mg/mL of 
collagen I (Sigma-Aldrich, St. Louis, MO, USA) for 30 
minutes. 50 × 103 cells were seeded into each well and 
allowed to migrate for 6 hours. The cells were then fixed 
with methanol and stained with crystal violet. Migrated 
cells were counted in five random 10× fields. Each 
experiment was done in triplicate and repeated twice. The 
results are expressed as mean number and number of cells 
+/− SE. 

Abbreviations

HNSCC: Head and Neck Squamous Cell Carcinoma; 
MRD: Minimal Residual Disease Model; mTORi: mTOR 
Inhibitor; HMEC: Human Microvascular Endothelial 
Cells; ELISA: Enzyme Linked Immunosorbent Assay; 
FFPE: Formalin-Fixed, Paraffin-Embedded.
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