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The immunoregulatory protein CD200 as a potentially lucrative 
yet elusive target for cancer therapy
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ABSTRACT
CD200 is an immunoregulatory cell surface ligand with proven pro-tumorigenic 

credentials via its ability to suppress CD200 receptor (CD200R)-expressing anti-tumor 
immune function. This definitive role for the CD200-CD200R axis in regulating an 
immunosuppressive tumor microenvironment has garnered increasing interest in 
CD200 as a candidate target for immune checkpoint inhibition therapy. However, 
while the CD200 blocking antibody samalizumab is still in the early stages of clinical 
testing, alternative mechanisms for the pro-tumorigenic role of CD200 have recently 
emerged that extend beyond direct suppression of anti-tumor T cell responses 
and, as such, may not be susceptible to CD200 antibody blockade. Herein, we will 
summarize the current understanding of CD200 expression and function in the tumor 
microenvironment as well as alternative strategies for potential neutralization of 
multiple CD200 mechanisms in human cancers.

INTRODUCTION

CD200 is a type I membrane-associated glycoprotein 
and a member of the immunoglobin superfamily [1–3]. 
While initially reported in the rat thymus in 1979 as 
the antigen of the MRC OX2 antibody [4], CD200 
expression has since been detected on a variety of cells 
of hematopoietic, such as macrophages, dendritic cells, B 
cells, and activated T cells, and non-hematopoietic origin, 
including neurons, endothelial cells, trophoblasts, and 
epithelial keratinocytes [4–10]. The receptor for CD200, 
CD200R, is expressed mainly in myeloid cells, but is also 
detected on lymphoid lineage cells, such as natural killer 
(NK) and T cells [11–14] and contains a cytoplasmic tail 
capable of initiating downstream signaling cascades [3]. 
As CD200 ligand contains a short cytoplasmic tail of 19 
amino acid residues that lacks a consensus signaling motif 
[1, 3, 15], CD200 function is primarily mediated via cell-
cell interaction-dependent engagement of the CD200-
CD200R axis.

The CD200-CD200R axis primarily functions as 
an immunoregulatory signaling pathway. Mice lacking 
Cd200 exhibit elevated numbers of activated Cd200r+ 
macrophages and granulocytes [11] but exhibit normal 
myelopoiesis [16]. Phenotypically, Cd200 loss and 
concomitant increased activated macrophage levels 
manifest in chronic nervous system inflammation, early 
onset of experimental autoimmune encephalomyelitis and 
susceptibility to experimental autoimmune uveoretinitis 
[11, 17]. These observations underscore an essential 
role of Cd200 in maintaining tissue homeostasis by 
tempering the level of activated myeloid cells. Under 
pathological conditions, Cd200 also plays a key role  
in directly suppressing Th1-mediated inflammation  
[18–20], thereby orchestrating a balance between effective 
pathogen clearance and preventing immunopathology. 
Collectively, these observations confer a primary 
immunosuppressive function for CD200 in maintaining 
tissue homeostasis that is facilitated via engagement with 
CD200R.
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CD200 expression is reported across most cancer 
types including hematologic malignancies such as acute 
myeloid leukemia (AML) [21], multiple myeloma (MM) 
[22], chronic lymphocytic leukemia (CLL) [23], and 
B-cell lymphoma [24]; solid tumors such as rectal [25], 
breast [26–27], colon [28–29], lung [30–31], ovarian [32], 
head and neck [33–34], glioma [35], pancreatic [36–37], 
and bladder [38]; and a variety of skin cancers including 
squamous cell carcinoma [39–41], basal cell carcinoma 
[42], Merkel cell carcinoma [43] and melanoma [32, 
44–45]. 

Similar to other immune checkpoint proteins, such 
as cytotoxic T lymphocyte antigen 4 (CTLA-4) and 
program death-1 (PD-1), CD200 is thought to play a pro-
tumorigenic role, via engagement of CD200R, in many 
tumor types primarily by suppressing anti-tumor T-cell 
and natural killer cell responses [46–49] (Figure 1A). 
In melanoma cells, CD200 can inhibit Th1 cytokine 
production [32] and, in CLL, cytotoxic T cell proliferation 
[47]. CD200 overexpression in AML can directly suppress 
anti-tumor NK cell and memory T cell functions [48–49], 
and the suppression of pro-inflammatory cytokines by 
CD4+ Th1 cells and CD8+ memory T cell numbers in 
AML patients can be restored with anti-CD200 treatment 
[48–49]. Collectively, these studies illustrate a key pro-
tumorigenic role for CD200 in directly suppressing T-cell 
and NK cell anti-tumor function and that blocking the 
engagement of the CD200-CD200R axis may provide 
therapeutic benefit to patients with CD200-expressing 
tumors. Further supporting this concept, in syngeneic and 
xenograft murine tumor models, treatment with CD200 

neutralizing antibodies restored lymphocyte-mediated 
anti-tumor responses in vivo [26, 50]. 

A recently completed Phase I trial assessed treatment 
responses of CLL and MM patients to samalizumab, a 
humanized anti-CD200 monoclonal antibody designed 
to block CD200-CD200R binding while minimizing 
cytotoxicity to CD200-expressing immune cell subsets 
(by using an IgG region with limited effector function) 
[51]. Decreases in overall tumor burden were observed 
in approximately 65% of CLL patients; however, a 
durable response was only observed in one out of twenty-
three patients (4%). MM patients were refractory to 
samalizumab and a range of mild to moderate adverse 
outcomes were reported in the majority of CLL and 
MM patients, including skin rashes, joint stiffness/pain, 
headaches, and blood disorders. These adverse outcomes 
are consistent with the autoimmune phenotype reported 
in Cd200 null mice [11] and those observed in patients 
treated with PD-1 and/or CTLA-4 antibody therapy 
[52]. In 2017, a previous samalizumab Phase I trial was 
completed in patients with solid malignancies; however, 
to our knowledge the results of this study have yet to 
be disclosed. While the initial Phase I trial findings for 
samalizumab in CLL patients [51] certainly warrant 
further clinical investigation of different dosing regiments 
and its efficacy in additional blood cancers, shortcomings 
related to partial responses, lack of a durable response 
and the high incidence of mild to moderate toxicities raise 
concerns over the potential impact of CD200 antibody 
blockade therapy may hold for certain blood cancers other 
than CLL and solid malignancies. 

Figure 1: Multiple mechanisms underly the pro-tumorigenic role of CD200. (A, B) Tumor cell-extrinsic mechanisms for 
CD200 direct suppression of CD200R+ Th1 anti-tumor responses including pro-inflammatory cytokine production and proliferation 
(A) or CD200R-dependent activation of tumor-infiltrating myeloid lineages including MDSC and TAM (B). (C, D) Tumor cell-intrinsic 
mechanisms for CD200 include γ-secretase cleavage of the short CD200 cytoplasmic tail that translocates to the nucleus and regulates the 
expression of pro-tumorigenic target genes (C) or ADAM or MMP cleavage of CD200 to generate a soluble CD200 ectodomain (D), which 
has been shown to circulate systemically and in the tumor microenvironment. Abbreviations: MDSC: myeloid-derived suppressor cell; 
TAM: tumor-associated macrophage; ADAM: a disintegrin and metalloprotease domain; MMP: matrix metalloproteinase.
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A plausible explanation for the observed 
shortcomings in the samalizumab Phase I trial may 
be the alternative mechanisms for the CD200 pro-
tumorigenic role that have recently emerged. Some 
of these alternative mechanisms extend beyond direct 
suppression of anti-tumor T cell responses and, as such, 
may not be susceptible to CD200 antibody blockade. 
First, in addition to targeting T-cell and NK cell numbers 
and/or activity, the recruitment and function of myeloid 
derived suppressor cells (MDSCs) and tumor-associated 
macrophages (TAMs) are known to be regulated by the 
CD200-CD200R axis in human cancer [37, 39, 43, 53] 
(Figure 1B). Initial work from our laboratory demonstrated 
MDSCs and TAMs constitute greater than 90% of the 
CD200R+ cells in the microenvironment of cutaneous 
squamous cell carcinoma (cSCC) and that production of 
critical microenvironment cues by these tumor-infiltrating 
myeloid lineages, including GM-CSF and G-CSF, was 
dependent on engagement of the Cd200-Cd200r axis [39]. 
More recently, using a Cd200 conditional null mouse 
model, we identified the collagen peptidase Cathepsin 
K (Ctsk) as a crucial target gene of the Cd200-Cd200r 
signaling axis in Cd200r+ tumor-infiltrating myeloid 
lineages, which was required for tumor cell invasion and 
metastasis [54] (Figure 1B). Interestingly, CTSK is a 
known biomarker for a variety of cancer types [55] and its 
expression is associated with metastasis of human solid 
malignancies [56–57] suggesting a broader functional role 
for CTSK in human tumor metastasis.

Adding to this complexity, non-canonical 
mechanisms for CD200 in tumorigenesis have also 
recently emerged. The intracellular tail of CD200, 
previously thought to be signaling inert, is a target for 
cleavage by γ-secretase, resulting in release of a CD200 tail 
fragment that is capable of nuclear translocation and DNA 
binding [58]. DNA binding by the CD200 cytoplasmic 
tail leads to increased expression of transcription factors 
associated with leukemic cell growth [58] (Figure 1C). 
In the extracellular space, ADAM28-mediated CD200 
ectodomain shedding leads to increased serum levels 
of a biologically-active, soluble CD200 ectodomain 
fragment in B-cell CLL patients [59] (Figure 1D). 
Recently, MMP-mediated CD200 ectodomain shedding 
in basal cell carcinoma was shown to regulate NK cell 
dysfunction and apoptosis in the microenvironment [60] 
(Figure 1D). It remains an open question as to whether 
antibody therapies designed to block membrane-tethered 
CD200-CD200R binding may be effective against soluble 
CD200 ectodomain fragments of variable sizes that may 
be generated by different protease families. Collectively, 
these observations underscore i) a broader pro-tumorigenic 
role for CD200 in the tumor microenvironment and ii) 
potential pleiotropic mechanisms adopted by CD200 
to mediate tumor cell survival, invasion and metastasis 
that may be difficult to block via a monoclonal antibody 
treatment modality targeting a specific ectodomain region.

Overall, the inconsistent response rates across 
different tumor types, low incidence of durable responses 
and observed undesirable cytotoxicity outcomes to 
samalizumab therapy together with newly emerging non-
canonical roles for CD200 in cancer provides rationale 
for alternative strategies designed to efficaciously target 
this protein. An underexplored aspect of the role of 
CD200 in cancer is the identification of tumor-specific 
mechanisms for the regulation of CD200 expression. A 
better understanding of CD200 regulatory mechanisms 
may be relevant for multiple CD200 pro-tumorigenic 
functions including engagement of the CD200-CD200R 
axis, transcriptional mechanisms related to the cleaved 
cytoplasmic tail and ectodomain shedding. Clouding our 
understanding of this issue is that, in normal and neoplastic 
cells, the induction or suppression of CD200 expression is 
reported to be associated with a wide variety of signaling 
pathways and CD200 expression can be regulated by both 
constitutive and inducible pathways. Genomic analysis 
of the human CD200 promoter identified C/EBPβ as a 
key regulator of constitutive CD200 expression [61]; 
while upstream enhancer regions harbor binding sites for  
IFNγ- and TNFα-induced signaling pathway effectors 
that are proposed to be necessary for inducible CD200 
expression [62]. 

In the central nervous system (CNS), the CD200-
CD200R axis is a fundamental facilitator of neuron-
microglia cell-cell interactions that maintain physiological 
levels of inflammation. Multiple pathways are reported to 
regulate CD200 expression in the CNS. In both astrocytes 
[63] and neurons [64], CD200 expression is regulated 
by FGFR1 activation, which is critical for suppression 
of neuroinflammation. In addition to FGFR signaling, 
treatment with PPARγ ligands can suppress CD200 
induction in activated glial cells [65], which is thought to 
play a functional role in PPARγ-mediated neuroprotection. 
Under pathological conditions, CD200 expression in 
microglia can be inhibited by IFNγ derived from a leaky 
blood brain barrier [66]. In other tissues, the molecules 
involved in the regulation of CD200 expression appear to 
be unique to each cell lineage. CD200 is a downstream 
target of p53 during caspase-dependent dendritic cell 
apoptosis [67]. In a mouse model of meningococcal 
infection, CD200 induction in macrophages is dependent 
on TLR4 and downstream NF-κB signaling [68]. In bone 
marrow mesenchymal stem cells, CD200 expression can 
be induced by osteogenic and pro-inflammatory cytokines 
also in a NF-κB-dependent manner [69]. In the skeletal 
system, CD200 expression in osteoblasts is dependent on 
IL15RA signaling [70]. In the lung, both airway epithelial 
cell and capillary endothelial cell expression of CD200 
is shown to be regulated by corticosteroids [71–72]. In 
hair follicle epithelial progenitors, CD200 expression is 
reported to be dependent on β1 integrin activation [73].

In human cancers, deeper knowledge gaps exist in 
our understanding of the regulation of CD200 expression. 
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First, relative to normal tissue, there is a paucity of 
information regarding CD200 expression regulation in 
human cancers. Second, CD200 expression may be present 
at early stages of development for certain tumors, whereas, 
in other lesions, CD200 expression is induced during late-
stage progression and only in a sub-set of tumor cells. 
Third, there appears to be little to no overlap in the putative 
molecular regulators of CD200 expression across different 
tumor types. Currently, these bottlenecks preclude our 
ability to effectively pinpoint potential regulatory targets 
to block CD200 expression. In metastatic melanoma, 
CD200 is regulated by ERK activation downstream of 
N-RAS or B-RAF mutations [44] suggesting that CD200 
induction is an early event in melanoma pathogenesis. In 
human and murine cSCC lesions, we previously observed 
little to no CD200 expression in early, well-differentiated 
tumors [39]. However, CD200 expression was induced in 
poorly-differentiated primary and metastatic cSCC with 
enrichment of CD200 localized to leading edge tumor cells 
[39, 54]. In endometriosis patients, CD200 expression is 
upregulated in lesional stromal cells and in the blood and 
17β-estradiol treatment of stromal cells in culture increased 
expression of CD200 [74]. In colorectal carcinoma cells, 
CD200 expression is dependent on the activity of the Rho 
GTPase effector protein FMNL2 [75]. CD200 is a target 
of miR-499a and a polymorphism in miR-499a is a poor 
prognostic factor for non-small cell lung cancer cases who 
also exhibit elevated CD200 expression [76]. 

In the future, unbiased genomic- and proteomic-
based approaches may help to clarify these issues by 
identifying tumor-specific mechanisms of CD200 
expression regulation across a variety of human cancers 
that may be leveraged for broader therapeutic benefit.
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