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ABSTRACT
Introduction: Cancer research has significantly improved in recent years, 

primarily due to next-generation sequencing (NGS) technology. Consequently, an 
enormous amount of genomic and transcriptomic data has been generated. In most 
cases, the data needed for research goals are used, and unwanted reads are discarded. 
However, these eliminated data contain relevant information. Aiming to test this 
hypothesis, genomic and transcriptomic data were acquired from public datasets.

Materials and Methods: Metagenomic tools were used to explore genomic cancer 
data; additional annotations were used to explore differentially expressed ncRNAs 
from miRNA experiments, and variants in adjacent to tumor samples from RNA-seq 
experiments were also investigated.

Results: In all analyses, new data were obtained: from DNA-seq data, microbiome 
taxonomies were characterized with a similar performance of dedicated metagenomic 
research; from miRNA-seq data, additional differentially expressed sncRNAs were 
found; and in tumor and adjacent to tumor tissue data, somatic variants were found.

Conclusions: These findings indicate that unexplored data from NGS experiments 
could help elucidate carcinogenesis and discover putative biomarkers with clinical 
applications. Further investigations should be considered for experimental design, 
providing opportunities to optimize data, saving time and resources while granting 
access to multiple genomic perspectives from the same sample and experimental run.

INTRODUCTION

Advances in molecular biology and bioinformatics 
allow for unprecedented data generation, thereby 
promoting a greater understanding of many physiological 
and pathological phenomena in human organisms [1]. 
Nevertheless, the amount of data produced in each of 
these experiments usually surpasses the main focus of the 
proposed investigations [2, 3]. Currently, the strategies 
for finding molecular markers in cancer research 
have accumulated an enormous amount of unintended 
information. Most of these supposed useless data are often 

treated as trash and remain unexplored. However, in some 
cases, treasures hidden in these data are discarded [2, 4]. 
Here, we demonstrate potential strategies to benefit from 
nontargeted information resulting from high-throughput 
cancer investigations.

Human cancer genome and metagenomics

The last three decades have been extremely prolific 
regarding the generation of cancer genome data [5, 6]. 
Thousands of cancer genomes have been sequenced and 
analyzed around the world, and millions of dollars have 
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been invested in such a “gold rush”, thus leading to an 
immense improvement in our understanding of disease 
[7, 8]. After sequencing, bioinformatics teams deeply 
explored the data according to the investigation goals. 
This difficult task of processing human genome data 
remains ongoing, especially in case of additional questions 
emerging after initial investigations. Nevertheless, a 
fraction of data is uncharted.

Recently, a new gold rush was launched: 
metagenomics. Again, large investments have been made 
toward efforts to discover the role of the microbiome in 
many cancer types [9–11]. Moreover, data generation 
is followed by bioinformatics, which has the task of 
interpreting the data and generating new hypotheses. New 
horizons in cancer knowledge are arising and on their way 
to be implemented in clinical practice.

These two gold rushes have several common 
features: most experiments collect fresh samples from 
human tumors and paired noncancer tissues; sequencing 
procedures result in a large and complex amount of data; 
bioinformatics teams select the desired information; and 
nonessential information (“trash”) is discarded, aiming at 
focusing on the research goals and reducing confounding 
data [12–15]. Next-generation sequencing (NGS) data 
are available in public data banks, such as GEO (http:// 
www.ncbi.nlm.nih.gov/geo) [16], and they usually 
provide access to raw genomic data, thereby increasing 
the credibility, transparency, and reproducibility of the 
results, while also allowing for additional investigations.

The steps of both cancer genomics and 
metagenomics experiments are similar. Both investigations 
are usually based on the acquisition of fresh samples from 
tumors followed by DNA extraction, library preparation 
and sequencing. In fact, human and nonhuman DNA are 
available at this point of the experiment. Nevertheless, 
according to the investigator, focus is driven to either 
human DNA for genomics or nonhuman DNA for 
metagenomics. The unexplored data from each case might 
harbor some of the objectives of other studies, paving 
the way for an integrative exploration of both human and 
nonhuman information.

Therefore, NGS genomic data have sufficient 
information for taxonomic investigation with similar 
precision of dedicated metagenomic experiments. In an 
attempt to test this hypothesis, we performed additional 
analyses using publicly available gastric, prostate and 
bladder cancer genomic data to explore metagenomic 
information.

Exploring additional small noncoding RNAs 
from miRNA sequencing

Total RNA-seq analyses are NGS experiments that 
have the most significant opportunity to explore new 
data. The majority of these experiments focus only on 
specific types of transcripts, such as mRNA, lncRNA, or 

miRNA. However, this strategy allows for exploration 
of several RNA molecules simultaneously. Additionally, 
from total RNA-seq data, it is possible to detect new 
genomic variants, providing potentially insights to such 
experiments. Furthermore, nonhuman microbiome 
expression data (metatranscriptome) are captured from 
total RNA-seq. Since both human and nonhuman data are 
usually sequenced, the identification of microbiome gene 
expression and several downstream investigations are 
possible, such as taxonomic profiles and host-microbiome 
interactions [17].

Most small noncoding RNA (sncRNA) 
investigations in cancer research address miRNA 
expression as potential cancer biomarkers and targets 
for therapy [18–20]. Usually, miRNA sequencing 
pipelines identify and select small RNA fragments and 
subsequently quantify each known miRNA [21, 22]. 
However, among these small fragments, many sequences 
are not representative of miRNAs and are excluded 
from analyses as contaminants. Some of these excluded 
sequences correspond to other classes of noncoding 
RNAs that increase the cancer process, as is the case for 
piwi-interacting RNAs (piRNAs) [23, 24]. An integrative 
strategy should include other noncoding RNAs (ncRNAs), 
thus harnessing the full potential of all samples and 
laboratory work, while opening new possibilities for the 
discovery of regulatory networks.

We hypothesize that evaluating the discarded 
sequences from miRNA sequencing data enables the 
identification of sncRNAs with potential value as 
cancer biomarkers or treatment approaches. To test this 
hypothesis, gastric, bladder and prostate cancer miRNA-
seq data were explored.

Hidden markers in adjacent to tumor samples

Most gene expression investigations in solid 
tumors rely on comparisons between tumors and adjacent 
to tumor samples, considering adjacent samples as 
normal controls. Nevertheless, such specimens harbor 
molecular alterations that are insufficient to cause cancer 
but differ from normal tissues collected from noncancer 
patients [21, 25, 26]. The focus of such experiments is 
to identify differentially expressed genes between cancer 
and adjacent to cancer samples because these genes shed 
light on the molecular events involved in the carcinogenic 
process [27, 28]. However, initial molecular events 
are likely present in both adjacent to tumor and tumor 
samples; thus, searching for differences between them 
may not reveal these important carcinogenic molecular 
events [29].

In some cases, however, the analyzed transcripts 
contain neglected information, such as concomitant 
expression of oncogenes and expression of mutated genes 
from both adjacent to tumor and cancer tissues. Once 
more, these relevant data are likely to be discarded because 
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the goal is generally to identify differential expression and 
not concurrent variant patterns [27].

Thus, adjacent tumor tissue, which is often used 
only as a gene expression control, potentially has somatic 
alterations common to cancer that may hold an essential 
role in understanding the first steps of carcinogenesis. 
Aiming to prove this concept, we explored sequencing 
data from paired gastric tumors and adjacent to tumor 
tissues.

MATERIALS AND METHODS

Data acquisition

All data were downloaded from SRA 
databank (https://www.ncbi.nlm.nih.gov/sra) [30]. 
For metagenome from genome data analysis, we 
employed three different cancer types: bladder cancer 
(PRJNA185252, 44 samples) [31], gastric cancer 
(PRJNA173904, 19 samples) [32], and prostate cancer 
(PRJNA412953, 15 samples; PRJEB6530, 20 samples) 
[33, 34]. For identification of additional sncRNAs 
from miRNA sequencing, we explored the same cancer 
types distributed as follows: bladder cancer (five cancer 
and five noncancer samples) [35]; peripheral blood of 
prostate cancer (32 cancer and 13 noncancer patients) 
[36]; and gastric cancer (eight cancer and eight noncancer 
samples) [20]. For variant calling from RNA-seq, we 
obtained data from 80 samples, which were generated 
from 20 gastric cancer patients and distributed as follows: 
20 exome tumor samples, 20 exome blood samples, and 
20 RNA-seq paired tumor and adjacent to tumor samples 
(Supplementary Table 1) [37].

Quality control

All downloaded samples were analyzed using FastQC 
(version 0.11.2) [38]. Trimming and filtering were performed 
using Trimmomatic (version 0.36) [39]. The parameters for 
each analysis were chosen based on the visual evaluation 
performed with FastQC, quality of data, data origin 
(sncRNA, RNA, or DNA), and type of sequencing (paired-
end or single-end). The parameters and quality values (QVs) 
for each analysis are described in Supplementary Table 2.

Read alignment

To analyze metagenomic data from genomic 
sequencing, we used Centrifuge Aligner software (version 
1.0.4-beta) [40], mapping reads to bacteria, archaea, 
viruses, and human sequences.

STAR aligner (version 2.7.0) [41] was used 
to map reads and identify additional sncRNAs and 
perform variant calling from RNA-seq data analysis. 
The genome version used in both analyses was HG19 
(version 37.7; http://www.ensembl.org/info/data/ftp/). 

Since some sncRNAs may be repeated in several sites 
in human genome, the aligner parameters were adjusted, 
allowing at least 100 repetitions in genome. To improve 
identification of other sncRNAs, such as piRNAs in case 
multimapping occurred, the best alignment score was 
selected.

Exome samples were also mapped to HG19 human 
reference genome (version 37.7; http://www.ensembl.
org/info/data/ftp/) with Burrow Wheeler Aligner (BWA; 
version 0.7.15) [42] using default parameters.

sncRNA expression data

For each sample, three annotations were performed 
for transcript quantification using htseq-count software 
(version 0.6) [43]. First, mirBase annotation [44] was used 
to quantify microRNA expression. Reads identified as 
miRNAs were quantified and filtered out from the .sam file. 
Next, piRbase annotation [45] was used to perform piRNA 
expression quantification, and reads identified as piRNAs 
were also quantified and filtered out from the .sam file. 
The remaining .sam file was then used for the identification 
and quantification of other transcripts with ENSEMBL 
annotation (https://www.ensembl.org). Since there are 
several overlapping sequences in piRbase, we used BEDtools 
(version 2.17) [46] to merge overlapping sequences into 
unique sequences, thus avoiding ambiguous recognition.

Taxonomic identification

Taxonomic identification consisted of identifying 
reads that did not align to the human genome but 
displayed a minimum alignment score of 60%. The results 
were reclassified with Recentrifuge (version 1.0.3-beta) 
[47]. This tool increases identification precision by using 
two approaches. One that considers a minimum score 
(here considered as 50) and a robust algorithm to remove 
contaminants. We employed genus-level taxonomic 
classification for comparison to literature data.

Variant calling from RNA-seq and DNA-seq data

Duplicated reads were removed using Picard Tools 
(version 2.18; http://broadinstitute.github.io/picard). The 
Genome Analysis Toolkit (GATK version 4.1.2) [48] was 
used for local realignment and recalibration.

All variants were called using BCFtools (version 
1.8) [49] on exonic regions. Low coverage variants were 
filtered out (less than five variant reads or variant read 
depth less than 20% of total depth). We called somatic 
variant filtering out blood variants from tumor and 
adjacent to tumor samples. BCFtools was applied to 
compare and identify common variants between tumor and 
adjacent to tumor samples, and Ensembl Variant Effect 
Predictor (VEP; https://www.ensembl.org/Homo_sapiens/
Tools/VEP) [50] was used for common variant annotation.

https://www.ncbi.nlm.nih.gov/sra
http://www.ensembl.org/info/data/ftp/
http://www.ensembl.org/info/data/ftp/
http://www.ensembl.org/info/data/ftp/
https://www.ensembl.org
http://broadinstitute.github.io/picard
https://www.ensembl.org/Homo_sapiens/Tools/VEP
https://www.ensembl.org/Homo_sapiens/Tools/VEP
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Statistical and graphical analyses

To compare taxonomic profiles, we filtered all 
data for the top 40 most relatively abundant genera 
(representing >90% of reads in all cancer types; 
Supplementary Table 3). We also converted the data 
to presence/absence to avoid sequencing biases and 
compared taxonomic profiles at genus level. The 
hypergeometric distribution was used to test significant 
overlap among microorganisms identified by the proposed 
whole-genome sequencing captured data (WGScd) and 
other literature data.

P values were adjusted for multiple testing 
using Benjamini-Hochberg false discovery rate (FDR) 
adjustments [51]. Alpha diversity was calculated using 
Simpson’s diversity index with Vegan library [52], which 
was implemented in R, and significant differences between 
the WGScd and literature data were identified using the 
Kruskal–Wallis test followed by Dunn’s post hoc test. The 
Vegan library was also employed to calculate and plot 
rarefaction curves.

To identify additional differentially expressed 
(DE) sncRNAs not addressed by the original authors, 
we used DESeq2 package [53], which was implemented 
in R, to analyze gastric, bladder, and prostate cancer 
experiments. SncRNAs satisfying the following criteria 
were tagged as differentially expressed: |log2(fold-
change) | >1 and p value < 0.05. All graphics were 
created in the R statistical platform using the Venn [54] 
and ggplot2 [55] packages. The R codes for all statistical 
analyses and plots are provided in the Supplementary 
Material.

RESULTS

Metagenomic analysis from genomic data

Three different cancer types from bladder, 
prostate, and gastric tumors were explored to obtain 
additional findings. This methodology is hereafter 
referred to as “Whole Genome Sequencing captured 
data” (WGScd) to differentiate it from other 
metagenomic analyses. The results were compared to 
metagenomic literature data.

We downloaded data from 44 bladder cancer 
samples (PRJNA185252) and searched for nonhuman 
sequences aiming to obtain taxonomic information 
from the bladder cancer microbiome. After quality 
filtering and human sequence removal, an average 
of 180 thousand reads per sample were obtained. 
The most abundant bacterial genera found in 
bladder cancer tissues are demonstrated in Figure 
1A and Supplementary Table 4. Since there is scarce 
information about bladder cancer metagenomics, urine 
metagenomic data were also included (Figure 1B)  
[56–60].

Despite finding some common genera, the 
hypergeometric enrichment test did not indicate any 
significant overlap between the analyzed data (p-adj > 
0.05; Supplementary Table 5). However, two genera were 
present in all six studies: Finegoldia and Streptococcus. 
Data from Bučević Popović et al. (2018) were the only 
data that presented detailed taxonomic information from 
every studied case, and majority of the genera were also 
found by the WGScd approach (Figure 1B).

The metagenomic data obtained from genomic 
experiments from prostate and gastric cancers are shown 
in Figure 2. Rarefaction curves indicate that in most 
samples, the employed strategy generated sufficient 
data to represent the bacterial diversity of each sample 
(Supplementary Figure 1).

To compare the WGScd metagenomic findings 
with data from exclusively metagenomics studies 
[61–65], we first filtered out low abundance taxa of 
all samples (read counts < 10) and compared alpha 
diversity indices among samples with those found in 
other studies with same cancer types. The results showed 
that WGScd metagenomic analysis had alpha diversity 
values similar to those obtained from metagenomic 
sequencing (Kruskal–Wallis and Dunn’s post hoc test; 
adjusted p value > 0.05; Supplementary Table 6; Figure 
3A and 3B).

After correcting for multiple testing, the 
hypergeometric enrichment test did not indicate any 
significant overlap among cancer metagenomic results 
(p-adj > 0.05; Supplementary Table 7). In both cancer 
types, we found several genera present in WGScd analyses 
and all metagenomic experiments: four in gastric cancer 
(Helicobacter, Neisseria, Prevotella, and Streptococcus) 
and ten in prostate cancer (Escherichia, Pseudomonas, 
Ralstonia, Acinetobacter, Corynebacterium, Rhodococcus, 
Staphylococcus, Sphingomonas, Streptococcus, and 
Acidovorax) (Figure 3C and 3D).

sncRNAs analysis

For bladder cancer, we analyzed an average of 16 
million (Mi) known transcript reads per sample, including 
~81% miRNA reads, ~9% piRNA, and ~10% other 
transcripts. There was an average of 0.8 Mi reads per 
sample in gastric cancer, of which ~43% were miRNA 
reads, ~22% were piRNA reads, 13% were small nucleolar 
RNA (snoRNA) reads, and ~22% were other transcripts. 
For prostate cancer peripheral blood, we quantified 1.3 Mi 
reads per sample, from which ~21% were piRNA reads, 
~11% were snoRNA reads, ~3% were snRNAs, ~2% were 
miRNA reads, and ~63% were other transcripts (Figure 4A).

Comparing gastric cancer sncRNA expression 
with that of noncancer gastric samples, we identified 
57 DE piRNAs, of which 46 were upregulated and 11 
were downregulated (Figure 4B). Regarding sncRNA 
expression in prostate cancer peripheral blood samples 
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with that of noncancer patients, we were able to identify 
two upregulated piRNAs and one upregulated snoRNA 
(Figure 4C). Comparing bladder cancer sncRNA 
expression with noncancer bladder samples, we identified 
102 DE piRNAs, of which 29 were upregulated and 73 
were downregulated (Figure 4D). Supplementary Table 8 
contains the list of DE sncRNAs.

Analyzing common variations in tumor and 
adjacent-to-tumor samples

After filtering, 7,443 somatic variants in tumor 
samples and 7,469 variants in adjacent samples were 
identified. Comparing tumors with adjacent to tumor 
samples, we found 1,635 common variants in 1,084 

Figure 1: Most abundant bacteria taxa found in bladder analysis. In (A), relative genus abundance among samples. In (B), 
presence/absence Venn diagram: Bladder cancer tissue metagenomic profile obtained from Whole Genomic Sequencing captured data 
(WGScd) compared with literature research of urine bladder cancer metagenomic profile obtained from sequencing rRNA 16s amplicon. 
Taxon data were converted to genus since not all works present results in species resolution.

Figure 2: Metagenomic relative abundance in the genus rank from genomic sequencing of (A) gastric and (B) prostate cancers (WGScd).
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genomic positions, most of which were single nucleotide 
variants (1,021; 94.9%). Small deletions (30; 2.8%) and 
small insertions (25; 2.3%) were also found. Most variants 
had been previously reported (1,036; 95.6%), and 48 
(4.4%) were unreported mutations.

This analysis was able to identify 23 high-impact 
common variants (Supplementary Table 9; Figure 5), 
including 11 frameshifts, two start-loss variants, one stop-
loss variant, and one stop-gained variant. From total, 144 
common variations were previously reported for gastric 
cancer on the COSMIC cancer dataset (https://cancer.
sanger.ac.uk/cosmic) [66].

DISCUSSION

Obtaining financial support for cancer research 
remains a challenge. Additionally, recruiting patients for 
such investigations also represents a critical step. Therefore, 
optimizing cancer research by reducing the number of 
expensive rounds of sequencing experiments and exploring 
the produced data by additional innovative approaches 
represents an option to overcome the limitations of collecting 
human biological samples and the scarce availability of 
resources to cover the costs of high-throughput experiments. 
Thus, three different approaches are proposed to better 

Figure 3: In (A) and (B), alpha diversity box plot: comparison with literature data indicates that metagenomic analyses from WGScd 
seem to be as capable of representing community diversity as are dedicated metagenomic analyses. In (C) and (D), presence/absence Venn 
diagram: Gastric and prostate cancers microbiome profile obtained from WGScd compared with dedicated metagenomic data of gastric and 
prostate cancers. Taxon data were converted to genera since not all works present results in species resolution. *Yow et al. (2017) performed 
two different analyses: v2/v3 rRNA 16s regions and v4 rRNA 16s region.

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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Figure 4: Additional sncRNAs differential expression analysis of gastric, prostate, and bladder cancers obtained 
from miRNAs expression analyses data. In (A), sncRNAs relative abundance of each sequencing. In (B), (C) and (D) volcano plot 
identifying differentially expressed (DE) sncRNAs (adjusted p-value < 0.05; |log2(fold-change)| > 1).

Figure 5: Somatic variants identified in both tumor and adjacent tissue. In (A) common variants by impact. In (B) potential 
consequences from high impact common variants. Variants impact and consequences were predicted by the ENSEMBL VEP (https://www.
ensembl.org/info/genome/variation/prediction/predicted_data.html).

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html
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explore NGS data: (i) obtaining metagenomic data from 
genomic sequencing; (ii) capturing additional sncRNAs 
from miRNA sequencing; and (iii) analyzing common 
variants in tumor and adjacent to tumor samples.

Metagenomics has become a new player in cancer 
research that has reached clinical practice [67]. Although 
it has been explored in many types of tumors, the role 
of the microbiome in bladder cancer remains obscure. 
Bladder epithelium and urine have been considered sterile 
in healthy individuals; however, new evidence recently 
demonstrated that the urinary tract also harbors a specific 
microbiome [56] that may participate in many diseases, 
including cancer.

Our results showed that metagenomic analyses using 
genomic data are viable. However, several discussions 
may emerge from this approach regarding data reliability, 
such as whether contamination may mask results and 
whether combined acquisition of human and nonhuman 
sequences produces the same results as those from solely 
human or solely nonhuman experiments.

Regarding contamination, both metagenomic and 
WGScd analyses share similar vulnerabilities. Tissue 
collection, laboratory handling, and even sterile reagents 
are not free of contaminants, since sequencing does 
not require exclusively viable microorganisms, and 
fragments of inert DNA may be sequenced and included 
in downstream investigations. Finding such contaminants 
remains a challenge, even for metagenomics experiments. 
Filtering contaminants should not be disregarded, 
both during classical metagenomics experiments and 
WGScd, and a critical assessment of results is essential 
for any potential clinical application. Nevertheless, as 
demonstrated, a significant part of the bacterial presence 
in NGS data [68–71] is obtained from sequenced tissue 
and potentially represents tissue microbiome.

A comparison of WGScd results with metagenomics 
experimental results strongly suggested similarities between 
the two methods. According to these preliminary results, 
it seems viable to capture metagenomics information and 
save time, lab work, and financial resources by looking at 
already produced data from genomic sequences.

Another question arises from the applicability 
of WGScd for other tumor sites. To shed light on this 
question, additional analyses were carried out, and gastric 
and prostate cancer data were also tested. Compared with 
other reports, our results seem to be as reliable as those 
from metagenomic investigations.

An additional application of the proposed strategy 
is the investigation of rare tumors and sites with complex 
accessibility, such as the brain. These data could be 
reinvestigated from a metagenomic standpoint to provide 
insights on potential interactions that could be addressed both 
for carcinogenic understanding and clinical applications.

Experiments should be designed to search for 
both types of data and perform integrative investigation 
of genomics and metagenomics from the same samples. 

In addition to conserving time, saving human and 
financial resources, and reducing the number of recruited 
patients, as discussed, this integrative analysis provides 
an additional advantage of joining genomics and 
metagenomics from the same clinical situation instead of 
analyzing each from a different set of patients.

Another approach for better exploring NGS data is 
simultaneous analysis of diverse sncRNAs. A significant 
number of miRNA NGS experiments are currently 
reported due to their potential role as biomarkers. They 
are essential for cellular and tissue homeostasis and are 
involved in posttranscriptional gene regulation [18]. 
Sequencing is relatively inexpensive, and the results for 
cancer research are relevant. However, other promising 
sncRNAs are involved in critical biological processes, 
such as piRNAs [72], and could be analyzed from the 
same raw dataset.

By exploring this possibility in three cancer types, 
a large number of additional ncRNAs were identified 
and quantified, confirming our hypothesis. This relevant 
information adds strength and value to such analyses, 
introducing new players and enabling an integrative 
interpretation of the role of these sncRNAs in cancers and 
other biological processes.

However, it should be noted that library preparation 
has an essential role in ncRNA identification [73]. Some 
sncRNA sequencing requires size selection of larger 
RNA fragments when compared to exclusive miRNA 
sequencing. Library preparation from each analyzed 
dataset had different sizes, namely, 18–30 nucleotides 
(nts) for bladder tissue, 10–40 nts for prostate tissue, 
and 15–35 nts for gastric tissue. Larger size selections 
allowed for identification of a greater variety of sncRNAs, 
although with lower expression levels. Conversely, smaller 
size selection resulted in a lower variety of molecules 
but higher expression levels. This should be taken into 
consideration for experimental design.

Finally, RNA-seq data were analyzed to find 
common variants for both tumor and adjacent to tumor 
tissue in gastric cancer. Using RNA-seq data to identify 
genomic variants is challenging given the technical 
computational limitations due to intrinsic complexity of 
transcriptome, which increases the rate of false-positives 
compared to DNA-seq data [74, 75]. Alignment of RNA-
seq data is more complex than that of DNA-seq data 
because in mRNA, introns are removed by splicing, which 
in turn could be identified as deletions. Similarly, RNA 
editing and polyadenylation processes introduce additional 
mismatches not found in usual DNA-seq alignment [75]. 
The false-positives introduced by RNA editing can be 
minimized since most RNA editing sites are already 
described [76] and variations in these genomic positions 
can be removed.

In this particular analysis, removing RNA editing 
variants was not considered since we aimed to find 
common variants from tissue adjacent RNA-seq data and 
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tumor DNA-seq data. Somatic variants in both tissues at 
an RNA edit position are more likely to be true genomic 
variants than false-positive findings.

Another putative limitation is calling only mutations 
in expressed transcript, leaving out both unexpressed 
genes and intronic/intergenic regions. However, using 
RNA-seq data to call variants allows for the identification 
of tissue-specific variant expressions, which are relevant 
for translational approaches.

Our results identified several common deleterious variants 
in both tissues. Although these findings may need further 
experimental investigation, based on the field cancerization 
hypothesis, this approach may shed light on early steps of 
carcinogenesis. The proof of concept is again strengthened, 
especially when regarding the strategy of obtaining as much 
data as possible from each experiment, allowing more 
comprehensive interpretations and optimizing resources.

Altogether, our results strengthen the hypothesis that 
abundant additional and potentially useful information 
can be extracted from NGS. Moreover, the integrated 
investigation of every available information should 
provide a broader and more robust interpretation of the 
molecular scenario from each experiment.
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