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ABSTRACT
Introduction: Identifying neoadjuvant chemotherapy (NAC) response in patients 

with muscle invasive bladder cancer (MIBC) has had limited success based on 
clinicopathological features and molecular subtyping. Identification of chemotherapy 
responsive cohorts would facilitate delivery to those most likely to benefit.

Objective: Develop a molecular signature that can identify MIBC NAC responders 
(R) and non-responders (NR) using a cohort of known NAC response phenotypes, 
and better understand differences in molecular pathways and subtype classifications 
between NAC R and NR. 

Materials and Methods: Presented are the messenger RNA (mRNA) and microRNA 
(miRNA) differential expression profiles from initial transurethral resection of 
bladder tumor (TURBT) specimens of a discovery cohort of MIBC patients consisting 
of 7 known NAC R and 11 NR, and a validation cohort consisting of 3 R and 5 NR. 
Pathological response at time of cystectomy after NAC was used to classify initial 
TURBT specimens as R (pT0) versus NR (≥pT2). RNA and miRNA from FFPE blocks 
were sequenced using RNAseq and qPCR, respectively. 

Results: The discovery cohort had 2309 genes, while the validation cohort 
had 602 genes and 13 miRNA differentially expressed between R and NR. Gene 
set enrichment analysis identified mitochondrial gene expression, DNA replication 
initiation, DNA unwinding in the R discovery cohort and positive regulation of vascular 
associated smooth muscle cell proliferation in the NR discovery cohort. Canonical 
correlation (CC) analysis was applied to differentiate R versus NR. 3 CCs (CC13, CC16, 
and CC17) had an AUC >0.65 in the discovery and validation dataset. Gene ontology 
enrichment showed CC13 as nucleoside triphosphate metabolic process, CC16 as 
cell cycle and cellular response to DNA damage, CC17 as DNA packaging complex. All 
patients were classified using established molecular subtypes: Baylor, UNC, CIT, Lund, 
MD Anderson, TCGA, and Consensus Class. The MD Anderson p53-like subtype, CIT 

https://creativecommons.org/licenses/by/3.0/


Oncotarget1189www.oncotarget.com

MC4 subtype and Consensus Class stroma rich subtype had the strongest correlation 
with a NR phenotype, while no subtype had a strong correlation with the R phenotype.

Conclusions: Our results identify molecular signatures that can be used to 
differentiate MIBC NAC R versus NR, salient molecular pathway differences, and 
highlight the utility of molecular subtyping in relation to NAC response.

INTRODUCTION

In 2022, the American Cancer Society estimates 
there will be 81,180 new cases of bladder cancer diagnosed 
in the United States and 17,100 people will die from the 
disease [1]. About half of these initial cases are superficial 
to the muscularis propria and have a 5-year overall 
survival of 95%, while about one third of these initial cases 
are found to be muscle invasive bladder cancer (MIBC) 
with a significant decrease in 5-year survival rate to 69% 
[2, 3]. For MIBC, neoadjuvant chemotherapy (NAC) 
prior to cystectomy is standard of care and provides a 
5–8% increase in 5-year overall survival compared to 
cystectomy alone [4, 5]. In addition, patients who achieve 
a pathologic response to NAC have a 5-year survival 
rate of about 80–90% compared to 40–50% in non-
responders [6]. However, a significant number of patients 
do not respond to NAC, with reported pT0 rates of 38% to 
neoadjuvant methotrexate, vinblastine, doxorubicin, and 
cisplatin (MVAC) and accelerated MVAC [6, 7], as well 
as pT0 rates of 42% to dose-dense MVAC (ddMVAC) and 
36% to gemcitabine, cisplatin (GC) [8]. The NAC non-
responders suffer from unnecessary adverse effects and 
a delay in time to cystectomy leading to worse overall 
survival [9, 10]. Subsequently, there remains a critical 
need to understand the molecular biology behind NAC 
responsiveness, in order to better tailor individual NAC 
therapy. 

Gene expression profiling of MIBC holds promise for 
future individualization of therapy, and several studies have 
attempted to predict chemosensitivity using the molecular 
profile of tumors. Somatic mutations in the following 
DNA damage repair genes have been found to correlate 
with response to chemotherapy: ERCC2, ATM, RB1, and 
FANCC [11, 12]. This discovery has led to ongoing clinical 
trials designed to provide bladder sparing approaches after 
NAC using these biomarkers (NCT03609216). However, 
these mutations are only one part of the complex biological 
pathway driving bladder cancer, with <15% of patients 
harboring mutations in ATM and ERCC2 in the 2017 
TCGA analysis [13]. Smith et al. used a microarray analysis 
to identify genes from the National Cancer Institute’s 
Developmental Therapeutics Program (NCI-DTP) whose 
expression was related to in vitro drug sensitivity, and then 
determined which of these genes maintained concordant 
expression with in vitro chemosensitivity analysis from 
40 commonly used bladder cancer lines [14]. The SWOG 
S1314 Phase II study was designed to evaluate this 
approach, named Coexpression Extrapolation (COXEN), 
in order to determine if a treatment-specific COXEN 

score can predict NAC pathologic response [15]. Results 
from the trial indicated that the COXEN scores were not 
significantly prognostic for chemotherapy response in the 
individual treatment arms [16].

Moving one step further, transcriptomic profiling 
and unsupervised class discovery performed in several 
studies have found prognostic molecular subtypes [13, 
17–23]. These classifications have been derived from 
non-overlapping datasets using different methods, which 
has generated conflicting results and no general consensus 
on a definitive subtype classification. Furthermore, none 
of the studies have attempted to develop a classification 
based on known NAC response, which in our study is 
defined as a pathological complete response pT0 for 
chemotherapy responders (R) and ≥pT2 for chemotherapy 
non-responders (NR). 

Therefore, our MIBC patient population with its 
known chemotherapy response phenotype represents 
a unique cohort to understand both the molecular 
mechanisms driving NAC response and to identify a 
molecular signature that truly correlates with NAC 
response. Here we present the differential mRNA and 
miRNA expression analysis of a discovery cohort 
of known chemotherapy responders versus non-
responders. Expression differences are used to identify 
NAC responsiveness, which was further validated in 
a validation cohort of eight patients, as well as identify 
relevant molecular pathways in NAC non-responders 
and responders, and examine the correlation between 
established molecular subtypes and NAC response.  

RESULTS

Demographics 

Patients from 2008–2018 diagnosed with MIBC on 
a transurethral resection of bladder tumor (TURBT) were 
selected from the Northwell Health tumor bank. Patients 
received either 4 cycles of neoadjuvant GC or 3 or more 
cycles of ddMVAC chemotherapy. Pathological response 
at time of cystectomy was used to classify initial TURBT 
specimens as NAC responders with pathological complete 
response (pT0) versus non-responders with muscle 
invasive bladder cancer (≥pT2). 

A total of 26 patients with known NAC response were 
identified, and inclusion in either the discovery or validation 
cohort was chosen at random. The discovery cohort 
consisted of 18 patients: 11 NR and 7 R. The average age of 
the entire cohort was 65, with about half receiving ddMVAC 
and half receiving GC. The majority of the patients were 
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male. The NR group had an average time to recurrence of 13 
months. The validation cohort consisted of 8 patients: 5 NR 
and 3 R. The average age of the entire cohort was 67 with 
the majority being male patients (see Table 1).

RNAseq expression analysis 

In the discovery cohort, 2039 genes had significant 
expression differences between the R vs. NR groups after 
accounting for multiple testing corrections (See Figure 1 
for Top 20 genes in both cohorts and Supplementary 
Table 1 for the complete list of genes). Of those genes, 
a slight majority were seen in the R group (1,041 genes) 
compared to the NR group (998 genes). In the validation 
cohort, 602 genes had significant expression differences 
between the R vs. NR groups (p-value < 0.01, data 
included in Supplementary Table 2), with the majority seen 
in the R group (509 genes) compared to NR (93 genes).

Pathway enrichment analysis using GSEA (gene 
set enrichment analysis) identified 519 gene sets in the 
R discovery cohort (see Table 2 for top 12 biologically 
relevant gene sets for R and NR) and 155 gene sets in the 
R validation cohort with a p-value < 0.01. 33 of these gene 
sets overlapped. For the NR discovery cohort, there were 
60 gene sets and 354 gene sets in the NR validation cohort 
with a p-value < 0.01. 18 of these gene sets overlapped 
(Supplementary Table 3).

miRNA expression analysis 

In the discovery cohort, no miRNA were found to 
meet statistical significance (Supplementary Table 4), 
however the validation cohort had 13 miRNAs that met 
a p-value threshold of .05. miR-18a was upregulated in 

the R group while the remaining 12 were seen in the NR 
group (Supplementary Table 5).

Canonical correlation analysis in the discovery 
and validation cohorts

Canonical correlation analysis (CCA) is used to 
determine and measure the association amongst two 
different sets of variables and redefine them as canonical 
components (CCs). Whereas Principal Component 
Analysis (PCA) focuses on finding linear combinations 
that contribute to the most variance in a data set, CCA 
focuses on finding linear combinations that correlate the 
most between two datasets. In essence, CCs are de novo 
combinations of genes and miRNA that have correlated 
expression patterns, and each CC can be seen as a co-
expression network with its own molecular profile with 
the potential to influence a clinical outcome. 

A total of 17 CCs were identified (Supplementary 
Table 6). To classify patients as R versus NR, univariate 
logistic regression was performed on the CCs. 3 CCs 
(CC13, CC16, and CC17) have an AUC >0.65 in both 
the discovery and validation datasets, with the top 
performer CC16 having an AUC of 0.81 in the discovery 
dataset (Table 3). Gene set enrichment showed CC13 
as nucleoside triphosphate metabolic process and cell 
envelope, CC16 as cell cycle and cellular response to DNA 
damage and stress, CC17 as DNA packaging complex.

Molecular subtype analysis

All 26 patients were classified using the following 
molecular subtyping: Baylor, UNC, CIT, Lund, MD 
Anderson, TCGA, and Consensus Class [13, 17–20, 22]. 

Figure 1: Volcano plot of significant differentially expressed genes with the left volcano being the discovery cohort and 
validation cohort on the right. For each volcano plot, R are on the left side nand NR on the right side pf each volcano. X-axis is the 
log 2 fold change between groups while the y-axis is the -log 10 raw p-value. The top 20 genes by p-value are labeled.
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The Baylor classification is divided into basal and 
differentiated. The UNC classification is split into basal-
like and luminal. The CIT classification has MC1-7, 
while the Lund subtype breaks down into: urobasal 
A, genomically unstable, urobasal B, squamous cell 
carcinoma like, and infiltrated. MD Anderson (MDA) is 
divided into luminal, basal and p53-like. The TCGA has 
5 subtypes: luminal infiltrated, luminal papillary, luminal, 
basal squamous, and neuronal. Lastly, the Consensus 
Classification was an international effort that reconciled 
six previously mentioned classification scheme into a new 
consensus classification that was divided into six subtypes: 
luminal papillary, luminal nonspecified, luminal unstable, 
stroma-rich, basal/squamous, and neuroendocrine-like.

Table 4 includes the subtype classification for each 
patient using the aforementioned 6 different molecular 
classification schemes. For the discovery cohort, 6 out 
of 11 NR were p53-like (MDA), which is known to be 
a chemo-resistant phenotype. In addition, the majority of 
the six patients who were classified as p53-like (MDA) in 
the NR discovery group were also defined as basal (UNC), 
MC4 (CIT), and stroma-rich (Consensus Class). Of the 
remaining patients in the NR discovery cohort, 3 were 
defined as the MDA basal subtype and 2 were defined 
as the luminal subtype. The R discovery cohort had one 
chemotherapy resistant p53-like patient (MDA), while the 
remaining 6 patients were evenly split between the MDA 
basal and luminal subtypes. 

Table 1: Patient demographics
Discovery Cohort 
Path Status Gender Age at TURBT NAC Cys Path Stage Time to Recur (Months)
NR1 M 53 ddMVAC pT3aN0 26.6
NR2 M 79 GC pT4aN0 5.2
NR3 M 68 GCarbo pT3bN0 28.6
NR4 M 69 N/A pT3bN0 20
NR5 M 67 ddMVAC pT3aN2 9
NR6 F 72 GC pT2bN0 no recurrence
NR7 M 64 ddMVAC pTisN1 4.9
NR8 F 68 GC pT3N2 5.2
NR9 M 62 ddMVAC pT3bN1 3.2
NR10 M 61 GC pT2aN0 19
NR11 M 66 ddMVAC pT3aN1 N/A
R1 M 64 GC pTisN0 no recurrence
R2 F 56 GC pT0N0 no recurrence

R3 F 57 ddMVAC pT0N0 no recurrence
R4 M 59 N/A pT0N0 no recurrence 
R5 M 65 N/A pT0N0 no recurrence 
R6 F 70 N/A pT0N0 no recurrence
R7 M 75 GC pTisN0 no recurrence
Validation Cohort 
NR12 F 60 ddMVAC pT3 9.1
NR13 M 52 N/A pT2bN0 no recurrence 
NR14 M 61 ddMVAC pT2bN0 N/A
NR15 F 80 GC pT2bN0 9.8
NR16 M 93 GC pT2aN0 N/A
R8 M 66 ddMVAC pT0N0 no recurrence
R9 M 67 GC pT0N0 no recurrence
R10 F 57 GC pT0N0 no recurrence
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For the validation cohort, 3 out of the 5 NR patients 
were p53-like (MD Anderson), as well as differentiated 
(Baylor), basal (UNC), MC4 (CIT), luminal-infiltrated 
(TCGA), and stroma-rich (Consensus Class). The remaining 
2 patients in the NR validation cohort were split between 
luminal and basal (MDA), while of the three patients in the 
R validation, 2 were defined as MDA luminal and 1 as basal. 

When looking at NR for both discovery and 
validation combined, subtypes that correlated the most 
with being a NR include: basal (Baylor) 63% (7/11), 
differentiated (Baylor)  57% (8/14), basal (UNC) 68% 
(11/16), MC4 (CIT) 90%  (10/11), p53-like (MDA) 
90% (9/10), luminal-infiltrated (TCGA) 72% (8/11), 
basal-squamous (TCGA) 60% (6/10) and stroma rich 

(Consensus Class) 100% (8/8). Overall, the NRs from 
both cohorts have a significant portion of patients who 
are MC4 (CIT), p53-like (MD Anderson), and stroma-
rich (Consensus Class). When examining the known 
chemotherapy resistant p53-like subtype within our entire 
cohort more closely, using Fisher’s exact test with a 
2 × 2 contingency table (9 p53-like NRs and 1 p53-like 
R versus 7 non p53-like NRs and 9 non p53-like Rs), 
shows the p53-like subtype is significantly associated 
with being a NR (p-value of .03674, Odds Ratio 10.5). 
Lastly, for both the R discovery and validation cohorts, 
the subtypes for each classification were mixed without 
any definitive subtype making up a significant majority 
for each molecular classification. 

Table 2: GSEA analysis, Top 12 pathways for the R discovery cohort on the top and NR discovery 
cohort on the bottom, based on p-value < 0.01
R GOBP_Pathway
1 GOBP_KERATINIZATION
2 GOBP_KERATINOCYTE_DIFFERENTIATION
3 GOBP_SULFUR_COMPOUND_CATABOLIC_PROCESS
4 GOBP_DNA_DEPENDENT_DNA_REPLICATION
5 GOCC_ORGANELLAR_RIBOSOME
6 GOBP_ANTIMICROBIAL_HUMORAL_RESPONSE
7 GOCC_CORNIFIED_ENVELOPE
8 GOBP_DNA_REPLICATION_INITIATION
9 GOBP_MITOCHONDRIAL_TRANSLATION
10 GOCC_MITOCHONDRIAL_LARGE_RIBOSOMAL_SUBUNIT
11 GOBP_EPIDERMAL_CELL_DIFFERENTIATION
12 GOBP_DNA_UNWINDING_INVOLVED_IN_DNA_REPLICATION
NR GOBP_Pathway
1 GOBP_GENE_SILENCING_BY_RNA
2 GOMF_RNA_BINDING_INVOLVED_IN_POSTTRANSCRIPTIONAL_GENE_SILENCING
3 GOBP_CELL_MIGRATION_INVOLVED_IN_SPROUTING_ANGIOGENESIS
4 GOBP_REGULATION_OF_SPROUTING_ANGIOGENESIS
5 GOBP_REGULATION_OF_CELL_MIGRATION_INVOLVED_IN_SPROUTING_

ANGIOGENESIS
6 GOBP_BLOOD_VESSEL_ENDOTHELIAL_CELL_PROLIFERATION_INVOLVED_IN_

SPROUTING_ANGIOGENESIS
7 GOBP_VASCULAR_ASSOCIATED_SMOOTH_MUSCLE_CELL_MIGRATION
8 GOBP_SMOOTH_MUSCLE_CELL_DIFFERENTIATION
9 GOBP_SPROUTING_ANGIOGENESIS
10 GOMF_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT_CONFERRING_

TENSILE_STRENGTH
11 HP_SPARSE_BODY_HAIR
12 GOMF_METALLOENDOPEPTIDASE_ACTIVITY
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DISCUSSION

The preceding analysis combines differential mRNA 
and miRNA expression in known MIBC phenotypes 
to better understand the molecular driver behind NAC 
response. The majority of molecular classification and 
subtyping to date has been performed with variations 
in gene expression technology, cohorts that have 
varied in size, and has primarily relied on unsupervised 
hierarchical clustering without factoring in NAC response. 
We report significant gene sets associated with NAC 
response phenotype, as well as three multigene and 
miRNA signatures generated by CCA that can be used to 
potentially classify NAC response. 

To our knowledge, our study is the first to use 
combined differential mRNA and miRNA expression 
in MIBC to identify a NAC response signature. The 
mitochondrial and metabolic signature seen in CC13,  the 
cell cycle signature and response to DNA damage seen 
in CC16, and the DNA packaging signature in CC17 all 
appear to be driven by the responders in the discovery 
cohort given the overlap seen when comparing these CC 
signatures to the GSEA results for this cohort (i.e., Gene 
Ontology Biological Process (GOBP)_mitochondrial gene 
expression, GOBP_DNA replication initiation, GOBP_
DNA Unwinding involved in DNA Replication, seen in 
Supplementary Table 3). 

Biologically, these CC and GOBP signatures make 
sense given MIBC’s historical success with cisplatin based 
chemotherapy regimens, in which cisplatin causes DNA 
damage, blocks cell division and triggers apoptotic cell 
death [24]. When looking at GOBP_mitochondrial gene 
expression, it is known that mitochondria take part in short 
and long patch base excision repair, which is achieved by 
DNA polymerase γ. This is critical for the DNA repair 

pathway to maintain whole genome stability, as well as 
being a primary source for reactive oxygen species (ROS) 
and regulating apoptosis [25, 26]. Within this pathway, 
several mammalian mitochondrial ribosomal small subunit 
(MRPS) genes are upregulated in the R discovery cohort, 
including MRPS12, MRPS34, MRPS28, MRPS14, and 
MRPS2. Upregulation of these genes in vitro may restore 
chemosensitivity in resistant bladder cancer cell lines, 
potentially by restoring the cells ability to undergo apoptosis.

Another intriguing pathway identified in the R 
discovery cohort was GOBP_Sulfur Compound Catabolic 
Process. Hydrogen sulfide inhibition in one study was 
shown to enhance cisplatin induced apoptosis both in vitro 
and in vivo, and exogenous administration in another study 
enhanced in vitro cell proliferation [27, 28]. Overall, there 
appears to be a metabolic shift in the R discovery cohort 
that likely contributed to chemosensitivity, as evident by 
other significant pathways expressed: GOBP_Glucosamine 
Containing Compound Metabolic Process, GOBP_
Threonine Type Peptidase Activity, GOBP Isoprenoid 
Biosynthetic Process, and GOBP_ Cellular Response to pH.

When further examining GOBP_DNA replication 
initiation and GOBP_DNA Unwinding involved in DNA 
Replication , the minichromosome maintenance complex 
(MCM) genes play a crucial role in both DNA replication 
and unwinding. MCM2-7 forms a helicase complex that 
contributes to both the initiation and elongation phase of 
DNA replication [29]. MCM2-3 and 5–6 are significantly 
upregulated in the R discovery cohort. Although the 
knockdown of MCM genes has been linked to decreased 
cellular proliferation [30], increased expression could 
theoretically promote cells to undergo ineffective DNA 
replication due to platinum DNA intercalation that 
eventually leads to cell death. XPA is also substantially 
enhanced in the NR discovery cohort. It is a zinc finger 

Table 3: Canonical components (CCs) with AUC >0.65 in both the discovery and validation cohorts, 
based on a p-value < 0.05
Canonical Component Discovery AUC Validation Auc GO Terms
CC 13 0.792 0.667 ORGANELLE INNER MEMBRANE

MITOCHONDRIAL ENVELOPE
MITOCHONDRIAL PART
ENVELOPE
NUCLEOSIDE TRIPHOSPHATE METABOLIC 
PROCESS

CC 16 0.818 0.667 CELL CYCLE
CELLULAR RESPONSE TO DNA DAMAGE 
STIMULUS
CELLULAR RESPONSE TO STRESS
CELL CYCLE PROCESS

CC 17 0.766 0.667 GO_DNA_PACKAGING_COMPLEX
GO_PROTEIN_DNA_COMPLEX
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protein that plays a central role in nucleotide excision 
repair (NER), which is responsible for repair of DNA 
adducts induced by cisplatin chemotherapy. The XPA 
protein binds to DNA and several NER proteins, acting as 
a scaffold to assemble the NER incision complex at sites 
of DNA damage [31]. Targeting MCM and XPA genes 
in vitro may be another potential candidate for inducing 
chemotherapy response.

Expanding upon the previous two pathways, DNA 
packaging plays a critical role in many nucleic acid 
processes, including transcription, DNA repair, and DNA 
replication. When DNA damage is induced by cisplatin, 
chromatin encounters dramatic changes in response to DNA 
damage both locally and genome-wide, which initiates the 

DNA repair process [32]. Genes implicated in the DNA 
packaging pathway may potentially change cisplatin 
response through change in their expression. ELK4 is 
markedly upregulated in the NR discovery cohort. This 
gene is a member of the Ets family of transcription factors, 
whose functions are DNA-binding transcription factor 
activity and chromatin binding [33]. FOXA3 is dramatically 
increased in the R discovery and validation cohort. This 
gene is a member of the forkhead class of DNA-binding 
proteins and also interacts with chromatin [34]. These 
chromatin interactive genes involved in DNA packaging 
will be further studied to predict cisplatin response.

Although no miRNA had statistically significant 
differential expression in the discovery cohort, several 

Table 4: Patient molecular subtype classifications, as defined by the baylor, UNC, CIT, lund, MD 
anderson, TCGA, and consensus class classifications
Discovery Cohort 

Path Status Baylor UNC CIT Lund MDA TCGA Consensus Class

NR1 Basal Basal MC4 Ba/Sq-Inf p53-like Luminal_infiltrated Stroma-rich

NR2 Basal Basal MC4 Mes-like p53-like Basal_squamous Stroma-rich

NR3 Differentiated Luminal MC4 GU p53-like Luminal_infiltrated LumU

NR4 Basal Basal MC4 Mes-like p53-like Luminal_infiltrated Stroma-rich

NR5 Basal Basal MC4 Mes-like p53-like Basal_squamous Stroma-rich

NR6 Differentiated Luminal MC4 UroA-Prog p53-like Luminal_infiltrated LumP

NR7 Basal Basal MC4 GU-Inf basal Luminal_infiltrated Ba/Sq

NR8 Differentiated Luminal MC1 UroA-Prog luminal Luminal_papillary LumP

NR9 Basal Basal MC7 Ba/Sq-Inf basal Basal_squamous Ba/Sq

NR10 Basal Basal MC7 Ba/Sq basal Basal_squamous Ba/Sq

NR11 Differentiated Basal MC7 UroB luminal Basal_squamous Ba/Sq

R1 Differentiated Basal MC4 GU-Inf p53-like Luminal_infiltrated Stroma-rich

R2 Basal Basal MC7 Mes-like basal Basal_squamous Ba/Sq

R3 Basal Basal MC7 Ba/Sq basal Basal_squamous Ba/Sq

R4 Basal Basal MC7 UroB basal Basal_squamous Ba/Sq

R5 Differentiated Luminal MC1 GU luminal Luminal_papillary LumU

R6 Differentiated Luminal MC1 UroA-Prog luminal Luminal LumP

R7 Differentiated Luminal MC1 UroA-Prog luminal Luminal_infiltrated LumP

Validation Cohort 

NR12 Differentiated Basal MC4 Uro-Inf p53-like Luminal_infiltrated Stroma-rich

NR13 Differentiated Basal MC4 UroC p53-like Luminal_infiltrated Stroma-rich

NR14 Differentiated Basal MC4 Mes-like p53-like Luminal_infiltrated Stroma-rich

NR15 Basal Basal MC7 Ba/Sq-Inf basal Basal_squamous Ba/Sq

NR16 Differentiated Luminal MC1 UroC luminal Luminal_papillary LumU

R8 Differentiated Luminal MC1 UroC luminal Luminal_infiltrated LumU

R9 Basal Basal MC7 Ba/Sq-Inf basal Basal_squamous Ba/Sq

R10 Differentiated Luminal MC3 GU luminal Luminal LumU
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miRNAs significantly contribute to the three relevant CC 
signatures. The following miRNAs listed for each CC 
may be potential candidates for modulating chemotherapy 
sensitivity or serve as therapeutic targets. For CC13, miR-
192 and mi-194 overexpression has been shown to inhibit 
cell proliferation in bladder cancer cells in vitro [35, 36]. 
In CC16, miR-15 has been shown to inhibit bladder 
cancer cell proliferation, migration and invasion in vitro 
by targeting BMI1 through the PI3K/AKT pathway [37]. 
Also, one study found that miR-34 upregulated PTEN 
and inhibited bladder cancer cell migration and invasion 
[38]. For CC17, miR-455-5p has been shown to induce 
cisplatin resistance in bladder cancer cells by regulating 
Notch1 [39].

Gene expression profiling of MIBC holds promise 
for future individualization of therapy, and several studies 
have attempted to predict chemosensitivity using the 
molecular profile of tumors. Two studies using whole-
exome-sequencing and DNA sequencing targeting 287 
cancer-related genes respectively, found that alterations 
in DNA repair genes may correlate with response to 
chemotherapy: ERCC2, ATM, RB1, and FANCC [11, 12]. 
Of those 4 genes, FANCC was the only one found to have 
significant expression, albeit in our NR discovery cohort. 

Lastly, of note, two studies used microarray analysis 
of TURBTs to create a prediction scoring system that can 
potentially determine response to GC or MVAC NAC, 
respectively [40, 41]. Although these two studies created 
their prediction scoring system based on known NAC 
response, responders in these studies were defined as 
having had at least a partial response (either >60% tumor 
shrinkage or ≤pT1 after 2 cycles of chemotherapy) unlike 
our cohort where the majority of the responders were 
pT0 (we included 1 pTis) and response was determined 
after 4 cycles of chemotherapy (standard of care) [42]. 
Interestingly enough, 2 of the genes used in the prediction 
scoring system developed by Kato et al. had concordant 
significant expression in our discovery cohort: Spry1 was 
increased in NR and CRKL increased in R. PNPO was 
increased in our R discovery cohort, while it was increased 
in the NR cohort form Kato et al. [40]. None of the genes 
from the Takata et al. scoring system had significant 
expression in our discovery cohort. 

In addition to the aforementioned molecular 
analysis, subtyping patients based on molecular expression 
is another promising approach that has potential for 
determining chemosensitivity. However, the TCGA and 
several other studies have identified molecular expression 
subtypes using hierarchical classification techniques that 
to date have served more as biological classifications 
rather than predictors of clinical outcome [13, 17–22]. 
In the TCGA analysis, predicted chemotherapy response 
is hypothesis driven from patients with incomplete 
or unknown treatment history, and not derived from 
comparing molecular phenotypes between NAC 
responders and non-responders.  The basal/squamous 

subtype is predicted to be the most chemotherapy 
sensitive, with luminal-infiltrated and luminal-papillary 
having lower response rates to NAC. However in the NR 
discovery cohort, 45% (5/11) were basal/squamous and 
42% (3/7) of the R discovery cohort were either luminal 
infiltrated or luminal-papillary. Despite there being some 
basal/squamous patients in the NR discovery cohort, 
basal expression does appear to play a significant role in 
chemotherapy response as shown by the top two GSEA 
pathways in the R discovery cohort: GOBP_Keratinization 
and GOBP_Keratinocyte Differentiation. Significant 
genes within these two pathways are another candidate 
for further exploration to better characterize chemotherapy 
response. 

Expanding upon established subtyping analysis, 
Seiler et al. used 149 genes from the subtypes identified 
by hierarchical clustering from four studies (TCGA, 
Lund, MDA, UNC), to develop a single-sample genomic 
subtyping classifier (GSC) that showed patient outcomes 
after NAC varies by four molecular subtypes: basal, 
claudin-low, luminal, or luminal infiltrated subtype [23]. 
The basal subtype benefited most from NAC, whereas 
the other three subtypes did not demonstrate a significant 
survival advantage with NAC. Although the four subtypes 
are associated with overall survival predictions after NAC, 
the subtypes could not establish which patients would 
have a pathological response to NAC. A lack of correlation 
between NAC pathological response and overall survival 
is a limitation that conflicts with previously mentioned 
studies, although the study may have been underpowered 
to find this correlation.

In contrast to the TCGA and Seiler et al. analysis, 
Choi et al. in their initial discovery cohort and in a 
subsequent phase 2 follow-up study, found that p53-like 
tumors were mostly resistant to NAC [21, 43]. 54% (6/11) 
of our NR discovery cohort were classified as p53-like, 
and when looking at all of the patients classified as p53-
like in both the discovery and validation cohorts combined, 
90% (9/10) were classified as NR. This correlation (being 
classified as p53-like and being a NR) was statistically 
significant in our cohort. Overall, this finding strengthens 
both the validity of the Choi et al. p53-like subtype and 
our own molecular expression analysis. Similar to what 
Choi et al. reported, the MDA basal and luminal subtypes 
for our two cohorts are mixed between NR and R. One 
patient in the R discovery cohort was defined as p53-like, 
which raises the point that relying on one classification 
system may have limited potential. However, given that 
MC4 (CIT) and stroma rich (Consensus Class) were 
also highly correlated with a NR phenotype, tumors that 
express these 2 subtype classifications, as well as p53-like 
may have the potential to be confidently classified as a 
NR. This may be worth assessing and validating in a larger 
follow-up study. 

Limitations of our study include a small patient size 
in both the discovery and validation cohorts, as well as 
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intratumoral heterogeneity that may limit reproducibility 
of results and subtype analysis. However, the overlap 
of a known chemoresistant molecular subtype (MDA’s 
p53-like subtype) and our cohort of NR, gives validity 
to our small sample size. Furthermore, CCA accounts for 
intratumor heterogeneity when creating de novo mRNA 
and miRNA modules across different samples and in 
effect theoretically limits heterogeneity. Another limitation 
is the decreased number of significant differentially 
expressed genes in the validation cohort as compared to 
the discovery cohort. We suspect that this is largely due 
to the fewer number of patients in the validation cohort.

In conclusion, our results identify molecular 
signatures that can be used to differentiate MIBC NAC 
responders versus non-responders. We have presented the 
salient molecular pathways and relevant genes, including 
mitochondrial response gene expression (MRPS12, 
MRPS34, MRPS28, MRPS14, and MRPS2), DNA 
replication initiation, and DNA unwinding and DNA 
damage (MCM2-3, MCM5-6 and XAP , ELK4, and 
FOXA3) that can be further analyzed to better understand 
NAC response. The above mentioned genes derived from 
their respective three pathways may be selected as part of 
a NAC response biomarker panel. In addition, we have 
highlighted the utility of molecular subtyping in relation 
to NAC response. If validated in a larger cohort, these 
findings may help deliver chemotherapy to those patients 
most likely to respond.

MATERIALS AND METHODS

Patient selection

A total of 26 patients with known NAC response 
were identified, and inclusion in either the discovery or 
validation cohort was chosen at random. The discovery 
cohort consisted of 7 NAC responders and 11 non-
responders, while the validation cohort consisted of 3 
responders and 5 non-responders. The Northwell Health 
System Institutional Review Board and Regional Ethics 
Committee granted research approval for the study with 
waivers of HIPAA authorization and informed consent. 
Clinical investigation was conducted according to 
the principles outlined in the Declaration of Helsinki. 
TURBT specimens from the Northwell Health pathology 
department were received as formalin-fixed, paraffin-
embedded (FFPE) tissue blocks. Pathologic response 
at the time of cystectomy was determined using the 
American Joint Committee on Cancer staging [44].

RNA extraction

A genitourinary oncology pathologist at Northwell 
Health reviewed all FFPE tissue blocks and their 
corresponding H&E slides, outlining neoplastic tissue 
on the H&E slide. Tissue blocks were matched up with 

their respective slides and approximately 35 mg of pre-
identified tumor was cut away from the blocks using a 
scalpel. RNA was extracted from FFPE tissue using the 
RecoverAll™ Total Nucleic Acid Isolation Kit with quality 
control performed using an AB Bioanalyzer. 

mRNA expression analysis

RNA was sequenced using the Illumina TruSeq 
RNA Access Library Prep Guide and NextSeq 500. 
Sequenced segments were aligned using the STAR2 
aligner [45]. Gene counts were assessed using ht-seq 
counts [46]. Differential expression was calculated using 
DESeq2 [47]. Adjustment for multiple corrections was 
performed using Benjamini-Hochberg method. Pathway 
enrichment analysis was performed using GSEA [48, 49].

miRNA expression analysis 

Differential expression of 754 miRNAs was 
analyzed using the TaqMan Open Array miRNA qPCR 
panel. A Ct threshold of 30 was used and miRNAs 
were filtered by removing miRNAs detected in <10% 
of samples. The top 10 most stable miRNAs from the 
NormPCR package were used as housekeeping miRNAs, 
which were used to normalize raw Ct values with deltaCt 
normalization [50, 51]. The limma package was used to 
calculate differential expression [52]. 

Canonical correlation analysis and validation 

Sparse canonical correlation analysis was used 
to identify de novo mRNA and miRNA Canonical 
Components (CCs) with AUC to NAC response was 
determined using pROC [53, 54]. Data analysis was 
performed using R and tidyverse [55, 56]. Gene Ontology 
(GO) enrichment was performed using a Fisher’s test.

Subtype analysis

Subtyping was performed using the BCLAsubtyping 
R package created by Kamoun et al. [57].
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