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ABSTRACT
Cancer immunotherapy has significantly improved patient survival. Yet, half of 

patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical 
responsiveness of melanoma patients on immunotherapies; however, different taxa 
have been associated with response status with implicated taxa inconsistent between 
studies. We used a tumor-agnostic approach to find common gut microbiome features 
of response among immunotherapy patients with different advanced stage cancers. A 
combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort 
and three published immunotherapy gut microbiome datasets from different melanoma 
patient cohorts found certain gut bacterial taxa correlated with immunotherapy response 
status regardless of tumor type. Using multivariate selbal analysis, we identified two 
separate groups of bacterial genera associated with responders versus non-responders. 
Statistical models of gut microbiome community features showed robust prediction 
accuracy of immunotherapy response in amplicon sequencing datasets and in cross-
sequencing platform validation with shotgun metagenomic datasets. Results suggest 
baseline gut microbiome features may be predictive of clinical outcomes in oncology 
patients on immunotherapies, and some of these features may be generalizable across 
different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate 
how machine learning models can reveal microbiome-immunotherapy interactions that 
may ultimately improve cancer patient outcomes.
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INTRODUCTION

In the last decade, the use of cancer immunotherapy 
targeting immune checkpoint inhibitors (ICIs) to boost 
T cell mediated cancer cell clearance has significantly 
improved cancer patient survival [1]. Commonly used 
ICIs include monoclonal antibodies targeting programmed 
cell death protein (PD-1) and its ligand (PD-L1) or 
CTL antigen 4 protein (CTLA-4) [2]. ICI combination 
therapy is also widely used to increase the effectiveness 
of other cancer treatments [3]. Although immunotherapy 
can significantly improve treatment outcomes amongst 
different cancer types as compared to other treatment 
modalities [4], approximately half of patients do not 
respond to immunotherapy [3, 5, 6]. To optimize treatment 
outcomes, current efforts are aimed at elucidating the 
internal or external features of patients or tumors that 
correlate with immunotherapy responsiveness [7, 8].

Increasing evidence has emerged that gut microbial 
communities help shape the host immune system [9–11]. 
Several studies have suggested specific gut bacteria can 
influence immunotherapy outcomes by modulating the 
immune responses of patients with metastatic melanoma, 
non–small cell lung cancer, and renal cell cancer [12–33]. 
Treatment responders generally exhibit increased gut 
microbial community diversity and are enriched in certain 
bacterial taxa including Akkermansia and Bifidobacterium 
[16, 19]. Prior studies have primarily focused on the impact 
of individual bacterial taxa on immunotherapy outcomes 
in melanoma patients. It is currently unclear whether the 
identified response signals are generalizable across tumor 
types. Furthermore, findings may not be reproducible 
across different patient cohorts due to geographical 
variation in the microbiome [34] as well as differences in 
sequencing platform or analysis methodology. Here, we 
took a tumor-agnostic approach to identify microbiome 
features  associated with immunotherapy response from a 
discovery cohort of patients with nine different advanced 
stage cancers. To uncover common immunotherapy 
response signals regardless of tumor type, we conducted 
a combined meta-analysis integrating the discovery 
cohort data with three previously published 16S rRNA 
gene sequencing datasets from melanoma patients. Using 
the combined dataset, we trained and validated models 
with machine learning algorithms to predict patients’ 
clinical responses, followed by cross-sequencing-platform 
validation using shotgun metagenomic sequencing data. 

RESULTS

Specific bacterial taxa associated with 
immunotherapy response in advanced stage 
cancer patients

We sought to investigate the association between 
patients’ baseline gut microbiomes and clinical outcomes 

of immunotherapy. The discovery cohort consisted of 16 
patients with late-stage solid tumors enrolled in different 
immunotherapy trials at the National Cancer Institute 
(NCI). Immunotherapy clinical response rate in the 
cohort was 38% (6 responders and 10 non-responders) 
(Supplementary Table 1). Despite a male predominance in 
the cohort (12 of 16 male patients), patient demographics 
did not differ significantly between responders (83% 
male; mean age 58.5 ± 7.8 years) and non-responders 
(70% male; mean age 57.1 ± 15.5 years) (two-tailed 
Student’s t-test, p = 0.8140). However, antibiotic use 30 
days prior to immunotherapy was more common among 
non-responders than responders (Fisher’s exact test, p 
= 0.2335); although not statistically significant due to a 
small sample size, our data align with prior observations 
of a negative association between recent antibiotic use and 
immunotherapy outcomes [35, 36].

Sequencing data from 16 patient stool samples 
collected prior to immunotherapy encompassed 1583 
amplicon sequencing variants (ASVs, single DNA 
sequences). Taxonomic profiles at the genus level showed 
high relative abundances of Bacteroides and firmicutes 
across all samples (Figure 1A, Supplementary Tables 
2–4). Neither alpha nor beta diversity, calculated at the 
ASV level, differed between responder and non-responder 
patients.

Ten taxa, including 5 within the family 
Lachnospiraceae and 4 within Coriobacteriaceae, exhibited 
significant differences in the mean relative abundance 
between responders versus non-responders (Figure 1B,  
p < 0.05, unadjusted, Supplementary Table 5). Consistent 
with previous studies, 6 genera -- including Akkermansia, 
Parabacteroides and Prevotella, which have been reported 
as differentially abundant between responders and non-
responders, were also found to differ in this cohort 
though this difference was not statistically significant 
(Supplementary Figure 1). To examine relationships 
among individual genera within the responders vs. non-
responders, we performed a network analysis which 
highlighted that bacterial taxa are deeply interconnected 
in the responder network but less connected in the non-
responder network (Supplementary Figure 2), suggesting a 
need to examine gut immunotherapy microbial predictors 
at a more global level.

Gut microbial compositions distinguish 
responders from non-responders in the 
combined dataset

To expand the potential generalizability of cancer 
immunotherapy gut microbiome analyses, we validated our 
findings using three additional published immunotherapy 
microbiome datasets from melanoma patients that used 
a similar sequencing strategy (16S rRNA, V4 region) 
and comparable response status reporting: Matson et al., 
[16], Gopalakrishnan et al., [14], and Peters et al., [18] 
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(Supplementary Table 6). The combined dataset was 
comprised of 128 patient samples (70 responders and 58 
non-responders), yielding a total of 5654 unique ASVs 
(Supplementary Figure 3, Supplementary Tables 7–9). 
While Chao1 richness was statistically significantly 
higher in responders as compared to non-responders (p = 

0.0041, Wilcoxon rank-sum test), Shannon diversity did 
not differ significantly (p = 0.2200, Wilcoxon rank-sum 
test) (Figure 2A). All 4 datasets were evenly dispersed in 
the first and second dimensions of NMDS, suggesting that 
these datasets can be analyzed together due to a lack of 
study-specific clustering (Supplementary Figure 4).

Figure 1: Major gut bacterial taxa of responders and non-responders from the NCI cohort. (A) Bar plot of phylogenetic 
composition of the top 25 bacterial taxa at the genus level, grouped by the response types (n = 16). (B) Volcano plot with all taxa signals 
from species to phylum levels. Taxa signals with greater than 2-fold change and statistically significant differences between responders and 
non-responders are highlighted in green (Wilcoxon rank-sum test, p < 0.05, unadjusted).
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Analysis of the combined dataset showed statistically 
significant community differences between the microbiomes 
of responders and non-responders from phylum to genus 
levels (Figure 2B). Unsupervised hierarchical clustering of 

the ASV table based on Bray-Curtis distance at the phylum 
level clustered patients into two groups with significantly 
different response rates (cluster1: 0.67, cluster 2: 0.41, p 
= 0.0030, 2-sided proportion z-test) (Figure 2C). Patients 

Figure 2: Comparisons of gut microbiome between responders and non-responders from the combined dataset. (A) 
Alpha diversity of the gut microbiome from responders and non-responders was compared by Wilcoxon rank-sum test (unadjusted p values). 
Left: Chao1 richness. Right: Shannon diversity. Boxes represent the first and third quartiles. Upper and lower whiskers extend from the 
box hinge to the largest/smallest value no further than 1.5*IQR. (B) Betadisper permutest plots with Bray-Curtis distance from phylum to 
species level (top left to bottom right) showing the centroid points and distribution of responder and non-responder sample groups. P values 
were adjusted with FDR correction. (C) Agglomerative hierarchical clustering of all patient samples using Ward’s method with Bray-Curtis 
distances at the phylum level. Stacked bar plot shows the relative abundances of bacterial phyla for individual patients. Black dotted line 
separates cluster 1 (higher response rate) from cluster 2 (lower response rate) (p = 0.003, 2-sided proportion z-test). (D) Boxplot of selected 
taxa with differential relative abundance between responders and non-responders (Wilcoxon rank-sum test, p < 0.05, FDR-corrected).



Oncotarget880www.oncotarget.com

in cluster 1 with higher relative abundances of Firmicutes 
had higher response rates, while patients in cluster 2 were 
enriched in Bacteroidetes and had lower response rates. 
Hierarchical clustering at the genus level showed a similar 
pattern of two clusters of patients with different response 
rates though not statistically significantly different (cluster1: 
0.44, cluster 2: 0.62, p = 0.0520, 2-sided proportion 
z-test) (Supplementary Figure 5). To further evaluate the 
robustness of these findings, we used Unifrac distance 
analysis to account for the phylogenetic relationships 
between taxa. At the genus level, unweighted Unifrac 
distance, which takes into consideration only the presence 
or absence of taxa, failed to distinguish responders from 
non-responders by hierarchical clustering (p = 0.0830, 
2-sided proportion z-test) (Supplementary Figure 6A). 
However, weighted-Unifrac, which accounts for relative 
abundance differences, showed two significantly different 
hierarchical clusters (p = 0.0150, 2-sided proportion z-test) 
(Supplementary Figure 6B). 

Because Bacteroidetes and Firmicutes have 
previously been associated with immunotherapy 
response rates [12, 13, 19], we performed a targeted 
analysis of individual phyla from the combined dataset, 
which demonstrated a statistically significantly higher 
relative abundance of Bacteroidetes in non-responders 
and Firmicutes in responders (Figure 2D). A logistic 
model predicting responder status based on the relative 
abundances of Bacteroidetes and Firmicutes yielded 
an ROC curve with an estimated AUC value of 0.67, 
suggesting moderate prediction accuracy based on these 
two phylum level signals alone (Supplementary Figure 
7). Thus, microbiome analyses of the combined dataset 
distinguished responders from non-responders and 
provided insight into taxa associated with these differences. 

Variable selection identifies microbial signatures 
most closely linked to response status

To look beyond individual taxa and more deeply 
examine groups of taxa (microbial signatures) associated 
with response status, we utilized selbal, an algorithm-
based modeling and variable selection method to identify 
microbial signatures that distinguish responders from non-
responders [37]. Of the 20 selbal-selected genera, 11 were 
enriched in responders, while the remaining 9 genera were 
overrepresented in non-responders (Figure 3A). When 
analyzed by univariate tests, 7 of the 20 selected genera 
showed statistically significant differences in relative 
abundance between responders and non-responders 
based on unadjusted p values but were not statistically 
significant after FDR correction (Supplementary Figure 
8, Wilcoxon rank-sum test), suggesting that selbal 
provides the advantage of identifying certain taxa that 
may collectively have associations with response status 
but would not otherwise be identified through univariate 
analyses. Among these 7 genera, Bacteroides, Bilophila 

and Blautia, which were overrepresented in non-
responders, have been reported in prior studies as enriched 
in the gut microbiomes of non-responders or patients 
with shorter progression-free survival (PFS) [14, 18]. 
Barnesiella, Lachnospiraceae_NA2674, Subdoligranulum, 
and Aestuariispira were enriched among responders. 
Consistent with prior studies, we also identified 
Bifidobacterium and Prevotella as important predictors 
of response status using selbal, though not statistically 
significant in univariate analyses [16, 18]. Hierarchical 
clustering based on Bray-Curtis distances calculated using 
selbal-selected genera clustered patients into two groups 
with significantly different response rates (cluster1: 0.46, 
cluster 2: 0.67, p = 0.0200, 2-sided proportion z-test) 
(Figure 3B). A small group of non-responders within 
cluster 2 had higher relative abundance of Prevotella 
(Figure 3B), suggesting a potential association between 
Prevotella and poorer outcomes.

Gut microbiome feature modeling predicts 
clinical response status

We next sought to develop models using microbiome 
features as clinical response predictors. We included as 
predictors relative abundances of taxa (species to phylum 
levels) after removing rare microbes as well as 10 alpha 
diversity indexes selected to comprehensively represent 
the community diversity characteristics. The majority 
of these indexes were weakly correlated with each other 
based on a Spearman correlation study (Supplementary 
Table 10, Supplementary Figure 9). Samples from the 
four combined datasets were randomly divided into 
a training set (n = 88) and a validation set (n = 40). To 
identify the model with the highest prediction accuracy, 
we tested a large number of diverse machine learning 
algorithms during model training, including penalized 
logistic regression with ridge, lasso or elastic net (EN, 
alpha = 0.5), regression tree (RT), random forest (RF), 
neural network (NN), support vector machine (SVM), as 
well as the SuperLearner (SL) ensemble-based algorithm. 
Prediction accuracy of all models was measured and 
compared across taxonomic levels using the ROC curve 
and AUC value. Across all models, AUC values generally 
increased at higher taxonomic ranks (family and above) 
(Figure 4, Supplementary Table 11). The inclusion of 
alpha diversity indexes as predictive features led to a 
modest, though not statistically significant increase 
(0.042, two-sided P = 0.062, Supplementary Figure 10) 
in the average AUC (across algorithms and taxa levels). 
The best prediction accuracy was attained at the class rank 
with alpha diversity indexes using SVM (AUC = 0.737). 
Without diversity indexes, ridge regression at the phylum 
level yielded the best prediction (AUC = 0.717).

Next, we evaluated the accuracy of the prediction 
equations derived from the training set for predicting 
tumor response in the validation samples. The AUC 
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estimates in this external validation tended to be lower 
than those from the internal cross-validation but remained 
higher than 0.5 (AUC for a purely random assignment) 
in most cases (Figure 4, Supplementary Table 12). AUC 
estimates were generally higher when alpha diversity 
indexes were added to taxa signals as additional features 
for prediction, but the difference was not statistically 
significant. The highest AUC estimates were 0.71 and 
0.73 for predictions made with or without alpha diversity 
indexes, respectively. Interestingly, the models generally 
performed better at lower taxonomic levels (genus/
species) in the validation dataset rather than at the phylum 
or class level.

Cross-platform validation confirms predictive 
capacity of the models across sequencing 
platforms

Because shotgun metagenomic sequencing 
is an additional method used for analyzing gut 
microbiomes, we further investigated whether the 
prediction equations generated with the training set of 
16S rRNA V4 sequencing data would predict responses 
in two independent shotgun metagenomic sequencing 
datasets from melanoma patients: Frankel et al., [13] 
(19 responders and 20 non-responders) and McCulloch 
et al., [38] (19 responders and 8 non-responders). To 

Figure 3: Microbial signatures associated with response status as determined by selbal variable selection. (A) Boxplots 
represent the distribution of balance scores in responders versus non-responders. The balance reflects the compositional difference between 
the two groups of genera selected by selbal. Specific genera enriched in each group are listed above the boxplots. A density plot of balance 
scores for each group is shown on the right. (B) Agglomerative hierarchical clustering of all patient samples using Ward’s method with 
Bray-Curtis distances calculated from selbal-selected genera. Stacked bar plot shows the relative abundances of the selected genera for 
individual patients. Black dotted line separates cluster 1 (lower response rate) from cluster 2 (higher response) (p = 0.02, 2-sided proportion 
z-test). Pink box highlights a small group (primarily non-responders) within cluster 2 with higher relative abundance of Prevotella.
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generate comparable taxonomy variables as the 16S 
rRNA amplicon sequencing data, we included relative 
abundances of family to phylum level taxa as features 
without alpha diversity indexes (Supplementary Table 
13). We tested our prediction equations on the two shotgun 
metagenomic datasets both individually and jointly. AUC 
estimates were generally higher with McCulloch et al., 
data, but the difference in prediction accuracy was not 
statistically significant between datasets (Supplementary 
Figure 11, Supplementary Table 14). The best prediction 
accuracy was attained at the order level with the RF 
algorithm (AUC = 0.73) when testing with McCulloch 
et al., dataset. The highest AUC estimates for the Frankel 
et al., dataset and the combined datasets were 0.67 and 
0.63, respectively, revealing a weaker yet still meaningful 
prediction accuracy. Thus, statistical models utilizing gut 
microbiome community features were robust to a different 
sequencing platform.

DISCUSSION

In this study, we identified baseline microbiome 
features associated with immunotherapy response based 
on a combined analysis of three previously published 16S 
rRNA gene sequencing datasets from melanoma patients 
along with our additional cohort of advanced stage solid 
tumor patients enrolled in NCI immunotherapy trials. By 
using a tumor-agnostic approach for the discovery cohort 
and by analyzing these data in combination with larger 
melanoma datasets, we uncovered microbiome response 
signals that may be generalizable across tumor types; 

however, additional investigation with large-scale cohorts 
of different tumor types will be needed to confirm these 
findings. In the meta-analysis, we found that responder 
microbiomes more clearly separated from non-responder 
microbiomes at higher taxonomic levels. Whereas 
previous studies have primarily focused on individual taxa 
associated with immunotherapy response, we examined 
more complex community-based interactions using 
selbal analysis and uncovered differentially abundant 
groups of taxa (i.e., microbial signatures) that associated 
with clinical response status. To predict immunotherapy 
response, we developed and validated statistical models 
using taxonomic variables and community diversity 
indexes as predictive features. These models had good 
prediction accuracy in 16S training and validation datasets 
and, importantly, maintained predictive capacity across 
sequencing platforms when verified separately on shotgun 
metagenomic sequencing datasets.

Although several previous studies have identified 
potential microbiome-based biomarkers for cancer 
immunotherapy response, prior investigations have 
primarily focused on melanoma patients and largely 
inconsistent taxa. Different studies have reported higher 
relative abundances of Faecalibacterium, Bifidobacterium 
or Akkermansia in responders [12–14, 16, 18, 19], and 
Bacteroides or Bacteroidales in non-responders [12, 14, 
18], yet, no clear consensus signals have emerged. In our 
meta-analysis, we accounted for multiple variables that 
could contribute to the inconsistencies observed across 
studies by geographically restricting our analyses to 
US-based patient cohorts with consistent responder/non-

Figure 4: Prediction accuracies of statistical models. Performance of the models at different taxa levels with or without diversity 
indexes were evaluated by estimated AUC values of ROC curves. Bar plots of AUC values are reported with colors representing different 
taxa levels and stripes representing the models without diversity indexes. Upper panel: AUC values from the training set in cross validation. 
Lower panel: AUC values from model testing in the validation set.
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responder classification; by including only datasets that 
used comparable sequencing techniques (16S V4 region); 
and by re-analyzing previously published datasets using 
one standardized pipeline. When we initially analyzed 
the NCI cohort alone, we took an agnostic approach to 
include multiple tumor types to find common microbiome 
features. A few bacterial genera were identified 
as significantly enriched among responders (e.g., 
Ruminococcus2 and Eggerthella), and some previously 
reported genera (Prevotella and Akkermansia) were also 
differentially abundant between responders and non-
responders but not statistically significant, possibly due 
to the small sample size [14, 19]. In the meta-analysis, 
we further validated the identified common microbiome 
features with larger datasets from melanoma patients. 
Responder microbiomes separated more distinctly from 
non-responder microbiomes when analyzed at higher 
taxonomic levels, indicating that taxonomic rank may 
be an important variable to consider when searching 
for microbiome features consistently associated with 
response status. The lack of significant separation between 
responders and non-responders at lower taxonomic levels 
could reflect a prevalence of low abundance species or 
genera that are not adequately resolved by the sequencing 
methodology. This could also result from heterogeneity 
in the patient population and inter-individual variation 
between subjects, which may be more apparent at lower 
taxonomic ranks. By using unsupervised hierarchical 
clustering at the phylum level, we observed a higher 
response rate in patients enriched in Firmicutes and a 
lower response rate in patients enriched in Bacteroidetes. 
Interestingly, recent systemic antibiotic usage has been 
associated with an increase in the Bacteroidetes/Firmicutes 
ratio and linked to poorer immunotherapy outcomes [35, 
36, 39]. These findings align with the microbiome features 
associated with non-responders in our analyses.

While individual taxa may strongly influence 
biological outcomes, we sought to identify more complex 
microbial community interactions that might improve 
prediction of immunotherapy response. Thus, we analyzed 
our combined dataset using selbal, a newer method 
suitable for finding differentially abundant groups of taxa 
(microbial signatures) in compositional data [37, 40]. 
Selbal analyses identified two groups of genera associated 
with responders or non-responders, which included 
several genera discussed in previous publications (i.e., 
Bacteroides, Bifidobacterium, Clostridium_XIVa, Blautia 
and Gemmiger). Importantly, most of the selbal-selected 
taxa were not initially identified using univariate analyses, 
highlighting the relevance of multivariate analyses 
in identifying taxa groups, which may collectively 
associate with response status through direct or functional 
interactions.

To predict immunotherapy response status, we 
developed and validated statistical models using global 
microbiome features and major taxonomic variables. 

Using 16S data, our training and validation sets 
demonstrated a favorable prediction accuracy with the 
highest AUC value around 0.75, which is equal to or 
higher than the prediction accuracy reported for several 
previously published microbiome-based models of 
immunotherapy response [41–43]. Our models achieved 
this level of prediction accuracy based solely on the 
inclusion of taxonomic features and diversity indexes, and 
they outperformed some previous models that included 
both taxonomic features and metagenome-derived 
functional features (e.g., Kyoto Encylopedia of Genes 
and Genomes/KEGG ortholog differential abundances) 
[41, 43]. Model prediction accuracy varied substantially 
across taxonomic levels. Interestingly, taxonomic rank 
appeared to have a greater effect on prediction accuracy 
than the chosen machine learning algorithm, indicating 
that taxonomy level may be an important driver in model 
performance. Because the inclusion of functional features 
generally increased model performance in prior studies, 
the prediction capacity of our models may be even further 
enhanced by the future inclusion of functional features. 
Strikingly, our models were additionally validated on 
microbiome data generated using a shotgun metagenomic 
sequencing platform with one of two shotgun datasets 
yielding a robust prediction accuracy. Multiple factors 
including the technical differences of distinct sequencing 
platforms and batch effects from different experiments 
likely affected the effectiveness of the models. However, 
the cross-platform applicability of our models is 
encouraging and suggests the possibility of broader 
generalizability across disparate datasets. 

Our study serves as an example of how small patient 
cohorts can be appropriately integrated into a larger body 
of published data to elucidate biologically meaningful 
conclusions. Prior efforts to optimize consistency between 
studies have focused on matching potential confounding 
variables between cases and controls at the study design 
stage [44]. This remains an ideal approach yet may 
preclude the use of publicly available sequencing data. 
Based on our meta-analysis, there are several important 
parameters to consider in future studies to effectively 
combine distinct datasets for the consistent identification 
of gut microbiome features associated with disease states 
or treatment response. These factors include careful 
selection and inclusion of samples from the following: 
patients with equivalent classification of disease state 
or treatment response; patient cohorts from comparable 
geographic regions; patients with appropriately annotated 
clinical metadata; datasets generated using equivalent 
sequencing regions/technologies; and datasets processed 
and re-analyzed using a single standardized pipeline. Our 
meta-analysis provides a model for combining distinct 
datasets in a controlled manner; this methodology may 
enable biological findings from large-scale analyses to be 
extrapolated and applied to size-limited patient cohorts in 
future studies. 
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Our study is limited by the sample size. While our 
findings suggest that certain immunotherapy response 
signals may be generalizable across different tumor 
types, this must be confirmed in larger patient cohorts. 
Large-scale investigations are needed to distinguish 
potential tumor-agnostic response signals from those 
that may be associated with specific tumor types. An 
additional limitation of this study is the resolution of 
our sequencing data when analyzing at lower taxonomy 
levels. We utilized an ASV clustering method at species 
and genus levels, and the bacterial variables generated 
by this method cannot be applied to other sequencing 
methods. This problem could be rectified by using long 
read 16S sequencing methodologies, which would likely 
improve classification accuracy at lower taxonomic 
levels [45, 46]. The performance of our models may be 
potentially enhanced by the inclusion of additional clinical 
variables such as antibiotic usage, body mass index, 
transcriptomic or proteomic data. The KEGG pathways or 
meta-transcriptomics features from gut microbiome have 
been analyzed by several research groups to identify the 
different patterns between the microbiome of responders 
and non-responders [18, 27, 29, 42, 43]. Thus, additional 
microbiome features may be beneficial for future model 
development.

In conclusion, analyses of our cohort and the 
combined microbiome dataset have provided a robust 
assessment of immunotherapy patients’ gut microbiomes. 
The development of reliable models provides additional 
opportunity to distinguish and predict immunotherapy 
responders from non-responders. However, the interactions 
between key microbial taxa and host immunity still need 
to be elucidated. Ultimately, this research will assist in 
identifying microbial biomarkers or novel therapeutic 
targets to improve immunotherapy outcomes and the 
overall survival of cancer patients.

MATERIALS AND METHODS 

NCI patient cohort and sample collection

Adult oncology patients who were enrolled in 
National Cancer Institute cancer immunotherapy clinical 
trials (NCT01772004, NCT02517398, NCT02496208) 
at the National Institutes of Health Clinical Center in 
Bethesda, MD USA were recruited to participate in gut 
microbiome sample collection through IRB-approved 
protocols (NCT00001506, NCT02471352) from 2014 to 
2018. Any subject willing to participate and provide stool 
samples were eligible. All patients enrolled in this study 
provided written informed consent. Demographic, medical 
treatment and clinical information are summarized 
in Supplementary Table 1. Radiographic response to 
therapy while receiving immunotherapy was determined 
by treating investigators and assessed using response 
evaluation criteria in solid tumors (RECIST) v1.1. 

Subjects classified by RECIST criteria as having complete 
response (CR), partial response (PR), or stable disease 
(SD) for at least 6 months were considered responders. 
Subjects with progressive disease (PD) or stable disease 
for less than 6 months were considered non-responders. 
Response status reflects the best overall response from 
the start of treatment until disease progression or the 
end of the study. Mean age between responders and non-
responders was compared using Student’s t-test. Subjects 
provided stool samples prior to starting immunotherapy 
trials. Samples were immediately stored in −80°C freezer 
until processing. 

DNA extraction, PCR amplification, and 
sequencing

Stool DNA was extracted following the PowerSoil 
DNA Isolation Kit protocol (Qiagen Cat no. 47014). Final 
DNA concentration was measured by Qubit BR DNA 
Kit. Extracted DNA was used for PCR amplification of 
the 16S rRNA gene V4 region with 515F/806R primer 
pair (515F: 5′-GTGCCAGCAGCCGCGGTAA-3′, 806R: 
5′-GGACTACCAGGGTATCTAAT-3′), which contains 
adapters for Illumina MiSeq sequencing and sample-
specific barcodes. PCR reactions were performed in 30 
cycles. PCR products were pooled in equimolar amounts 
before purification with AMPure xp magnetic beads and 
then quantified with Qubit BR DNA Kit. Sequencing was 
performed on the NGS MiSeq platform (Illumina, Inc, San 
Diego, CA, USA) at NIH Intramural Sequencing Center 
or NIH Laboratory of Integrative Cancer Immunology, 
Microbiome and Genetics Core with reagent, sequencing, 
and collection controls used to test for background and 
collection contamination. 2 × 250 bp paired end MiSeq 
run was used to yield forward and reverse reads with close 
to full overlap.

Sequencing read analyses and taxonomy 
profiling

Raw sequencing reads were analyzed using the 
DADA2 pipeline (version 1.16.0) in R (version 4.0.5) 
to generate exact amplicon sequencing variants (ASV) 
based on the guidelines at https://benjjneb.github.io/dada2/
tutorial.html [47]. Briefly, raw sequences were processed 
to remove barcodes and quality filtered with default 
settings (maxN = 0, maxEE = c(2,2), truncQ = 2, rm.phix 
= TRUE). Based on the quality scores and for the purpose 
of maximum merging, forward and reverse reads were 
truncated to be 180 bp and 139 bp and followed by primer 
trimming. Dereplicating, merging, and chimera removal 
were processed with default settings. After processing, a 
seqtab table was generated with rows corresponding to 
samples and columns corresponding to ASVs.

For taxonomy profiling, ASVs from the seqtab 
table were aligned against the RefSeq-RDP reference 

https://benjjneb.github.io/dada2/tutorial.html
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database (RefSeq-RDP16S_v2_May2018.fa.gz) to 
generate the taxonomic table assigned to the species level  
[48]. ASVs which failed to assign at species and genus 
levels were clustered by sequence similarity to species/
genus-level operational taxonomic units (OTU) by kmer 
package (version 1.1.2) in R (version 3.6.1). Thresholds 
for clustering were set to 0.99 (for species-level OTUs) 
and 0.97 (for genus-level OTUs). Output OTUs and 
representative sequences were combined with assigned 
species or genera to form the final taxonomic table. For 
taxonomic tables at family or upper levels, un-assigned 
ASVs were removed from downstream analyses.

Microbiome community analyses

Read counts from the taxonomic table were 
converted into relative abundances by dividing the count 
of each taxon by the sum of read counts within each 
sample. Alpha diversity indexes were calculated with 
vegan package (version 2.5.7) or microbiome package 
(version 1.8.0), and Bray-Curtis dissimilarity distances 
were calculated via vegan package in R. Both alpha and 
beta diversity calculations were based on ASV-level 
relative abundances. Bar-plots and boxplots to visualize 
the microbiome community difference between responders 
and non-responders were generated with genus-level 
relative abundances. To reduce the number of rare 
microbes and multi-testing, only the taxa with more than 
0.1% relative abundance in at least 10% of samples at each 
taxonomy level from species to phylum were included in 
the volcano plot. Wilcoxon rank-sum tests with unadjusted 
as well as false discovery rate (FDR)-corrected p-values 
were used to determine the taxa with significantly different 
relative abundance (p < 0.05) between responder and non-
responder samples.

Literature review and published dataset collection 

PubMed was searched for published literature 
relating to gut microbiome-immunotherapy interactions 
to find microbiome sequencing data, particularly datasets 
of 16S rRNA gene sequencing of the V4 region. Based 
on consideration of sequencing region/techniques and 
availability of sequencing datasets and patient metadata, 3 
eligible studies from Matson et al., [16], Gopalakrishnan 
et al., [14], and Peters et al., [18] were selected for 
statistical model development. Sequencing datasets 
were downloaded from the Sequence Read Archive 
(SRA) with the accession numbers PRJNA399742 
for Matson et al., PRJEB22894 for Gopalakrishnan 
et al., and PRJNA541981 for Peters et al., Patients’ 
response information was obtained from the study 
GitHub repository (Matson dataset) (https://github.
com/cribioinfo/sci2017_analysis), the SRA data library 
website (Peters dataset), or kindly received from the 
authors (Gopalakrishnan dataset).

Response status of pooled samples 

Response status after immunotherapy was 
consistently assigned for patients from selected datasets. 
Responder and non-responder groups were classified 
according to RECIST 1.1 based on available metadata. For 
NCI and Gopalakrishnan datasets, patients were classified 
as responders if they achieved CR, PR, or SD with PFS 
no less than 6 months. Patients with PD, or SD with PFS 
less than 6 months were considered non-responders. For 
Matson et al., in which PFS information is not available, 
patients with SD were treated as non-responders according 
to the publication [16]. Patients with PFS no less than 
6 months were considered responders in Peters dataset, 
as only PFS information is reported. In total there are 128 
samples, including 70 responders and 58 non-responders.

Combining sequencing data and taxonomy 
profiling

Sequencing data were analyzed by DADA2 pipeline 
as described above. According to the quality scores and 
pipeline for NCI dataset, forward and reverse reads were 
truncated to be 140 bp before merging for samples from 
Matson et al., and Peters et al., Reads for Gopalakrishnan 
et al., samples were merged already and subsequently 
truncated to be 254 bp. Dereplicating, merging, and 
chimera removal were processed with default settings. 
Seqtab tables with rows corresponding to samples and 
columns corresponding to ASVs from each DADA2 run 
were combined into a final seqtab table for taxonomy 
classification. All ASVs were trimmed to 252 bp and 
merged by ASV sequence in R during table combining. 
5654 unique ASVs were generated after combining all 
samples from 4 datasets.

ASVs were aligned against the RefSeq-RDP 
reference database (RefSeq-RDP16S_v2_May2018.fa.gz) 
to generate the taxonomic table as described above [48]. 
ASVs that failed to assign at species and genus levels were 
clustered by the sequence similarity to species/genus-level 
OTU signals as described above. Output OTU signals and 
representative sequences were combined with assigned 
species or genera to form the final taxonomic table. For 
taxonomic tables at family or upper levels, un-assigned 
ASVs were removed from downstream analyses.

Diversity calculation

Alpha diversity indexes were calculated with vegan 
and microbiome package in R with ASV-level relative 
abundances. For data standardization (maximum method), 
raw reads were standardized with decostand function from 
vegan package (method = “max”). Chao1 richness index 
was calculated with read counts rarefied to 7378 reads 
per sample, which is the lowest sequencing depth among 
all samples. Wilcoxon rank-sum tests were performed 

https://github.com/cribioinfo/sci2017_analysis
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to determine the diversity indexes with statistically 
significant differences (p < 0.05) between responders and 
non-responders.

Beta diversity was assessed based on ASV-level 
relative abundances using the Bray-Curtis dissimilarity 
distance calculated via vegan package in R. Non-metric 
multi-dimensional scaling (NMDS) plot was used to 
visualize the distance between samples from different 
datasets.

Statistical analyses

Permutational multivariate analyses of variance 
(PERMANOVA) test was performed to study the group 
difference between responder and non-responder samples 
by considering both the difference of mean values and 
within-group variation (dispersion) [49]. Only signals 
with more than 0.1% relative abundance in at least 10% 
of samples were included at each taxonomy level from 
species to phylum (final number of taxa features from 
species to phylum levels are 169, 83, 25, 15, 13 and 7, 
respectively). The test was performed with adonis function 
(vegan package) based on Bray-Curtis distance matrices 
calculated at each taxonomy level. Betadisper plots were 
created to visualize the centroids of each group and the 
distribution of data points in the principal coordinates-
derived Euclidean space.

Hierarchical agglomerative clustering (i.e., Ward’s 
method) was applied to Bray-Curtis distance matrices or 
Unifrac distances calculated with filtered information at 
each taxonomy level with agnes function (cluster package, 
version 2.1.0). Percentage of responders from 2 major 
patient clusters were compared using 2-sided proportion 
z-test. A p-value of 0.05 was set as the cutoff of statistical 
significance. P-values were adjusted using FDR correction 
except when specified in the text to be unadjusted.

Relative abundance values of Firmicutes and 
Bacteroidetes were fit into a generalized linear model 
by glm function in R. Response type was used as the 
predictor factor with parameter “family = binomal”. A 
receiver operating curve (ROC) reflecting model results 
was generated by rocit function from ROCit package 
(version 2.1.1) using the empirical method. 

Selection of taxonomy signals 

Key genera associated with response types were 
studied using selbal package (version 0.1.0). A forward 
selection process with 5-fold cross-validation was performed 
to optimize the taxa variables and maximize the balance 
score between the two response groups. We used filtered 
relative abundances at genus level to minimize the number 
of tests. Variables selected in the global balance table were 
reported as key genera reflecting microbiome differences 
between responder and non-responder samples. Boxplot 
with balance scores was generated from selbal analysis 

output. Boxplots for each selected genera were created in R 
(version 3.6.1). Wilcoxon rank-sum tests were performed to 
determine the genera with statistically significant difference 
(p < 0.05) between responders and non-responders using 
unadjusted and FDR-corrected p-values.

Tumor response prediction using machine 
learning algorithms

The SuperLearner (SL) package in R was used to 
make predictions based on the SL and individual algorithms 
(penalized logistic regression with ridge, lasso or elastic net 
(EN), as well as regression tree (RT), random forest (RF), 
neural network (NN), support vector machine (SVM)) via 
wrapper functions for the glmnet, rpart, randomForest, 
nnet and svm packages. SL yields an optimized weighted 
average of the aforementioned algorithms.

The algorithms were evaluated using the training 
set of 88 patients and internally validated through 10-fold 
cross validation. The resulting prediction equations were 
externally validated using the validation set of 40 patients 
and separate shotgun metagenomic sequencing datasets. 
A nonparametric bootstrap procedure was used to obtain 
standard errors for area under the curve (AUC) estimates. 
For internal cross-validation, the bootstrap procedure was 
to repeatedly sample 88 patients with replacement from the 
training set of 88 patients and compute an AUC estimate for 
each bootstrap sample. In external validations, the prediction 
equations from the training data were considered fixed, and 
bootstrap sampling was performed on the validation set of 
40 patients or the shotgun metagenomic sequencing dataset.

Shotgun metagenomic sequencing data analyses

PubMed was searched for publications with 
available shotgun metagenomic sequencing datasets. 
We analyzed metagenomic sequencing data reported in 
the study by Frankel et al., from the SRA with accession 
number SRP115355 [13] and by McCulloch et al., [38] 
whose data were made available with accession number 
PRJNA762360. Reads mapping to human genome 
database (humanGRCh38) were identified and removed 
using Bowtie2 and samtools programs. Prinseq was used 
for trimming of low-quality reads and seqtk further split 
the output files into forward and reverse reads which 
went through MetaPhlAn3 pipeline for taxonomic 
profiling [50]. Taxonomy information was compiled for 
downstream analyses.
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