## Correction

## **Correction: Suppression of PKC causes oncogenic stress for triggering apoptosis in cancer cells**

## Suthakar Ganapathy<sup>1,\*</sup>, Bo Peng<sup>1,\*</sup>, Ling Shen<sup>1</sup>, Tianqi Yu<sup>1</sup>, Jean Lafontant<sup>1</sup>, Ping Li<sup>2,3</sup>, Rui Xiong<sup>3</sup>, Alexandros Makriyannis<sup>1</sup> and Changyan Chen<sup>1</sup>

<sup>1</sup>Center for Drug Discovery, Northeastern University, Boston, MA, USA

<sup>2</sup>The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China

<sup>3</sup>The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, Sweden

\*These authors contributed equally to this work

## Published: February 25, 2023

**Copyright:** © 2023 Ganapathy et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**This article has been corrected:** In Figure 3, the panel B image of MIA - MnSOD contains an accidental duplicate of the Figure 6, panel B image of MIA - GADD153. The corrected Figure 3B, produced using the original data, is shown below. The authors declare that these corrections do not change the results or conclusions of this paper.

Original article: Oncotarget. 2017; 8:30992-31002. https://doi.org/10.18632/oncotarget.16047



Figure 3: ROS regulators were activated after co-suppression of PKC  $\alpha$  and  $\beta$ . (B) MnSOD expression in the cells after the treatments was analyzed by immunoblotting.