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ABSTRACT
Most cancer-related deaths in breast cancer patients are associated with 

metastasis, a multistep, intricate process that requires the cooperation of tumour 
cells, tumour microenvironment and metastasis target tissues. It is accepted that 
metastasis does not depend on the tumour characteristics but the host’s genetic 
makeup. However, there has been limited success in determining the germline 
genetic variants that influence metastasis development, mainly because of the 
limitations of traditional genome-wide association studies to detect the relevant 
genetic polymorphisms underlying complex phenotypes. In this work, we leveraged 
the extreme discordant phenotypes approach and the epistasis networks to analyse 
the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup 
facilitates metastases by the dysregulation of gene expression that can promote the 
dispersion of metastatic seeds and help establish the metastatic niche—providing a 
congenial soil for the metastatic seeds.
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INTRODUCTION

The metastatic dissemination of the disease causes 
the overwhelming majority of cancer-related deaths, 
yet this enormously complex process remains poorly 
understood. The different models and unifying concepts 
that explain metastasis cannot yet explain the adaptive 
programs that allow tumour cells to thrive in distant tissues 
and, therefore, the biological and clinical observations 
associated with metastasis [1, 2]. 

The metastatic cascade requires the cooperation of 
tumour cells with different cells of the rest of the organism. 
Carter et al., showed how the genetic background (i.e., 
the inherited polymorphisms carried in the germline) 
could influence the somatic evolution of a tumour in at 
least two ways: by determining the site of tumourigenesis 
and modifying the likelihood of acquiring mutations in 
specific cancer genes [3]. Furthermore, genes are not 
expressed in isolation but promote the expression of other 
genes in a coordinated pattern. Therefore, the tendency of 
a tumour to metastasise may be determined by coordinated 
changes in gene expression. Studies based on many 
prognosis signatures [4–7] show that the coordinated gene 
expression in most cells present early in tumourigenesis—
i.e., gene regulation—often determines tumour biology.

Animal models and epidemiological studies suggest 
that the risk of developing metastasis after breast cancer 
diagnosis depends on the characteristics of the tumour and 
germline gene variants [8, 9]. Furthermore, Xu et al., have 
shown how germline variants of natural killer cells in the 
tumour immune microenvironment can sway metastasis 
risk in several cancers [10]; they have also identified 
germline genomic patterns that contribute to cancer 
progression and metastasis [11]. 

Germline variants predate and complement tumour 
cells’ somatic variants (mutations). The tumour acquisition 
of further mutations empowers its cells to disseminate and 
proliferate in a distant tissue (i.e., metastatic seeds), and the 
host’s genetic makeup promotes metastasis by providing a 
congenial soil [12]. Germline genetic variants that facilitate 
metastasis tend to be spread across the genome and interact 
with one another. In complex traits such as metastasis, 
multiple genetic influences are responsible for moderate 
differences in survival. Variants with a single, potent 
effect on the phenotype are rare. Therefore, the metastatic 
phenotype depends on accumulating weak effects on a 
substantial fraction of the genes that comprise the regulatory 
pathways driving metastasis (Boyle et al., 2017). 

Detecting these collectives of interacting variants, 
each with modest effect size, requires substantially 
greater research effort than the individual strong-effect 
variants usually studied [13]. The extreme discordant 
phenotypes approach based on comparing high-risk 
healthy individuals—and therefore likely to bear the 
genetic variants that protect them from disease—with sick, 
low-risk individuals likely to bear the genetic variants that 

predispose them to that disease. This approach assumes 
that the patients at both ends of the disease spectrum 
are the most informative and, therefore, requires fewer 
patients to genotype and increases the statistical power of 
gene association studies [14]. 

Epistasis networks constitute a novel technique to 
identify genetic variants associated with a disease that 
accounts for the heritability of complex traits—traits for 
which the interactions among many genes control the 
variations between individuals [13, 15]. Metastasis is 
such a complex process that metastasis susceptibility is 
probably due to complex allelic combinations of germline 
variants [16]. Therefore, metastasis is the perfect ground 
to deploy epistasis networks since they rest on the idea 
that the synergistic interactions among many genetic 
variants, each with a moderate individual effect, determine 
the disease susceptibility. Epistasis emphasises that the 
synergistic interactions among genetic variants determine 
their effect on the phenotype; that is, the effect of one 
genetic variant on a given trait depends on the genotype 
of many other variants affecting the trait [17]. Therefore, 
epistasis has the potential to characterise the network of 
interactions among genetic variants that shapes the genetic 
architecture of metastasis [18]. 

Agarwal et al., proposed that germline variants 
complement somatic mutations as breast cancer drivers—
although germline polymorphisms affect critical biological 
processes required for breast carcinogenesis, their action 
is not enough for cancer initiation. Pre-existing germline 
variants could determine the subsequent somatic mutations 
required for cancer initiation [19]. Our work is based on a 
similar hypothesis: what constitutes a somatic event that 
drives metastasis in breast cancer is conditional on the 
collection of germline variations in the patient. Therefore, 
in this work, we have analysed the host factors (i.e., 
germline variants) that contribute to the susceptibility 
to metastasis in breast cancer patients. According to the 
extreme discordant phenotypes approach, our analysis 
framework is based on genome-wide genotyping of a 
small set of patients at the extreme of the metastasis 
susceptibility distributions—low-risk individuals who 
unexpectedly relapse within five years of follow-up 
and high-risk patients without relapse. We performed 
an epistasis network analysis to detect the variants that 
take part in metastasis by modulating the effect of other 
variants. We selected the genes that harbour these germline 
variants based on their role in the regulation of metastasis. 
We found several gene candidates through which the 
host’s genetic makeup contributes to metastasis.

RESULTS AND DISCUSSION

Characteristics of the study and patients

We performed genome-wide genotyping in a cohort 
of 97 breast cancer patients that showed metastatic 
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extreme discordant phenotypes: 34 good prognosis cases 
(with tumours smaller than 2 cm and no lymph nodes 
affected who relapsed within five years after surgery) 
and 63 poor prognosis cases (patients with more than 
ten lymph nodes affected who did not relapse within 
five years after surgery). This design has the advantage 
of reducing the phenotypic heterogeneity of the cohort, 
resulting in a potential enrichment of germline variants 
associated with metastasis predisposition. The median 
age at diagnosis was 50 years (range 29–89), and about 
half of the patients were postmenopausal at diagnosis 
(55%). Patients had mainly tumours with histological 
grade 2 (50%), hormone receptor-positive (72%) and 
HER2 negative (70%). Most of them received adjuvant 
therapy: chemotherapy (71%), hormonotherapy (68%), 
or radiotherapy (78%). None of the patients stopped the 
treatment unless they had progression. Supplementary 
Table 1 shows the characteristics of patients in the good 
and poor prognosis groups. We found a similar proportion 
of immunohistochemical subtypes in both cohorts (~55% 
luminal, ~20% HER2+ and ~15% triple-negative). 
Therefore, the prognosis risk in each group was likely 
due to clinical size and lymph node involvement and 
not enrichment in different biological subtypes. Patients 
from the poor prognosis cohort received more adjuvant 
treatment than patients from the good prognosis group, 

as expected by their clinicopathological characteristics 
(tumour size and lymph node involvement).

Epistatic interactions unveil genes contributing 
to metastasis susceptibility

We obtained 2016 SNPs from our genome-wide 
genotyping of extreme discordant phenotypes ranked by 
SNPRank (see SNPs with SNPRank score > 0.5 in Table 1 
and the 2016 SNPs in Supplementary Table 2). According 
to their minor allele frequencies (MAF) obtained from 
the 1000 Genomes Project, these SNPs are frequent in 
the population (91% of the SNPs had MAF greater than 
5% and thus can be considered very common) and not 
different from what is expected by chance (Chi-square 
test, p-value = 0.76). However, SNPs at the top of the rank 
(i.e., those in Table 1) have lower MAF than the complete 
list of SNPs (median 0.09; IQR: 0.05, 0.17; Welch’s 
t-test p-value < 0.0001). Some of these top SNPs are in 
or near genes associated with either enhanced metastatic 
dissemination or with reduced metastatic ability–see, for 
instance, PIK3C2B [20], ZAP70 [21] and VIP [22]. 

Previous studies that tried identifying germline 
variants associated with breast cancer survival did 
not find any that reached genome-wide significance 
[23–25]. In line with these results, we did not find any 

Table 1: Top SNPs ranked by SNPrank score
SNP ID Gene Chromosome SNP Rank score SNP location MAF
rs11139965 RN7SKP242 9 0.5898 intergenic 0.170
rs67242866 LINC01362 1 0.5784 intergenic 0.028
rs199830092 PIK3C2B 1 0.5749 intron variant NA
rs72951131 ZAP70 2 0.5587 intron variant 0.183
rs34000182 MIR5689HG 6 0.5485 intron variant 0.053
rs61776380 RNU6-830P 1 0.5444 intergenic 0.065
rs778902 ISCA1P2 1 0.5378 intergenic 0.098
rs2501357 C1orf204 1 0.5360 intron variant 0.306
rs742635 ABTB2 11 0.5349 intron variant 0.085
rs16927008 CLVS1 8 0.5324 intron variant 0.027
rs4849127 IL1B 2 0.5257 downstream gene variant 0.125
rs41263676 C1orf21 1 0.5251 3’UTR variant 0.131
rs11692741 MYT1L 2 0.5211 intron variant 0.180
rs77142354 MIR4300HG 11 0.5165 intron variant 0.039
rs77162747 ZNF767P 7 0.5144 intergenic 0.072
rs77169575 MAML3 4 0.5142 intron variant 0.198
rs9994379 ELOVL6 4 0.5136 intron variant 0.034
rs13421497 PRKCE 2 0.5134 intergenic 0.073
rs1197934 LINGO2 9 0.5128 intron variant 0.112
rs75394800 EML6 2 0.5115 intron variant 0.033
rs3799142 VIP 6 0.5039 downstream gene variant 0.172

Abbreviation: MAF: minor allele frequency.
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germline variants that showed a strong single-effect on 
the predisposition to metastasis at the required GWA 
statistical significance (p-value < 5 × 10−8). Similarly, 
when looking for these 2016 SNPs in dbSNP, only ten 
were previously associated with breast cancer two 
were associated with breast cancer risk, and none were 
associated with metastasis. This underannotation could be 
because dbSNP includes SNPs found in tumour/normal 
tissue, i.e., somatic variants, while we are investigating 
germline variants that have not been described previously. 
Another possibility is that none of these variants has a 
strong single-effect, as shown by previous GWAS. Thus, 
our genotype analysis suggests that germline variants 
do not affect the susceptibility to metastasis by acting 
individually on a few genes; they act in coordination over 
many genes.

We looked for germline variants that affect the 
susceptibility to metastasis through epistatic interactions 
to study this pervasive action of germline variants over 
many genes. These are statistical interactions between loci 
in their effect on a trait such that the impact of a particular 
single-locus genotype depends on the genotype at other 
loci. Therefore, the germline variants in our cohort might 
affect genes that are associated with regulatory networks 
and pathways, driving the susceptibility to develop 
metastasis. We modelled the gene epistasis network 
that encodes the susceptibility to develop metastasis in 
our cohort and identified the core genes that direct the 
susceptibility to metastasis by the community centrality 
measure.

The epistasis network contains 1428 genes and 
ca. 5600 links among them. It is a large and dense 
network (i.e., there are many links among genes), which 
further emphasises the polygenic nature of the germline 
contribution to a complex trait such as metastasis. It is 
also a small-world network, meaning that most genes can 

be reached from every other gene in a few steps and that 
genes are tightly interconnected, forming communities. 
The sheer number of nodes and edges obscure essential 
features such as the nodes that support the integrity of 
connections—around which the network is organised. 
The centrality of these nodes is an indicator of a particular 
node’s relevance to the network’s large-scale structure, 
which helps us prioritise nodes and identify the essential 
genes in the epistasis network. The epistasis network 
is modular, i.e., it is formed of communities that group 
together highly interconnected nodes representing related 
genes that work together. The interactions within a 
community are somehow autonomous from interactions 
in other communities; thus, in the epistasis network, 
each community embodies a different aspect of the 
susceptibility to metastasis. In such a network, the nodes 
that participate in several communities partake in most 
interactions throughout the network, connecting different 
communities otherwise isolated and maintaining the global 
network structure. These are the core genes expected 
to play a direct role in metastasis by their influence on 
many other genes—which germline variants might also 
perturb—that either promote the migration of tumour 
cells or favour the seeding of cells disseminated from 
the primary tumour in target tissues. Figure 1 shows the 
epistasis network and illustrates the community centrality 
using AR and TSHZ2, two examples of genes influencing 
the susceptibility to metastasis because they connect 
several communities in the epistasis network.

We found that the top 10% of community-central 
genes are overrepresented in KEGG pathways (over-
representation test; multiple comparisons adjusted and 
false discovery rate controlled), such as the interaction 
with extracellular matrix receptors (KEGG: hsa04512; 
q-value = 0.018) and the establishment of cell-extracellular 
matrix contact points (KEGG: hsa04510; q-value = 0.017). 

Figure 1: Epistasis network encoding the susceptibility to metastasis in our cohort. The genes with high community centrality 
are represented in blue. The right panel highlights the participation of two community-central genes in several communities by the colour 
of their links.
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This implies that the genetic variants of breast cancer 
patients who tend to develop metastasis affect genes 
mechanistically involved in metastasis.

The preliminary analysis of our genotyping data 
suggests that the community-central genes integrate the 
communities effectively in the topology of the epistasis 
network. Therefore, the community-central genes 
contribute extensively to metastasis by influencing many 
other genes implicated in metastasis.

Genes influence breast cancer metastasis 
through gene regulation

According to the seed and soil hypothesis, we 
postulate that the community-central genes partake in 
metastasis either by being part of the metastatic seeds—
expressed in the tumour or its microenvironment—or 
by priming the congenial soil—i.e., they are expressed 
in non-tumour tissue. Our analysis of the epistatic 
interactions suggests that germline variants affect genes 
expressed either in the tumour and its microenvironment 
or target tissues, making the primary tumour more prone 
to develop metastasis. Since a tumour’s capability to 
metastasise depends on the coordinated gene expression 
present early in tumour development, we also postulate 
that the genes harbouring germline variants will be critical 
players in gene regulation. To analyse the regulatory role 
of the community-central genes, we have modelled a gene 
regulatory network for metastasis in breast cancer.

We modelled a metastasis gene regulatory network 
by expanding a set of metastasis genes on a breast cancer 
gene regulatory network that contained 254 TFs, 3178 
target genes and 9414 TF-target interactions. These 
metastasis genes are dysregulated in metastatic tumours 
and responsible for the dedifferentiation to cancer 
stem cells, for stem cells are crucial in establishing the 
premetastatic niche—they mobilise and eventually arrive 
in and manipulate the secondary microenvironment in 
sites that will become metastases [26, 27]. The network 
comprises 142 transcription factors that regulate the 
expression of 373 target genes. Although the network 
is dense, connections are not evenly distributed, for the 
metastasis regulatory network is scale-free. That means 
that there are a few nodes with many connections, and 
most nodes have very few connections. For example, 
the median number of connections for a gene in the 
metastasis regulatory network is 4, but 9 genes (all of 
them are transcription factors) have more than ten times 
the median number of connections and 81% of the genes 
have lower than twice the median number of connections. 
Since all the connections come from TF and end up in 
target genes, the TF regulating many target genes have the 
most outgoing connections. In contrast, genes subjected to 
extensive regulation have many incoming connections in 
our metastasis regulation network. This handful of TF and 
target genes holds a privileged position in gene regulation.

The metastasis regulatory network is modular. 
That means that genes interact more closely within 
the community than with other parts of the network. 
Communities in a network tend to be associated with a 
biological function. Therefore, in our metastasis regulatory 
network, the communities are associated with processes 
and biological functions related to metastasis.

Figure 2 illustrates the composition of the network 
in communities. We can see that the yellow community 
(31 genes) is enriched in genes regulated by E2F—which 
promotes metastasis in breast cancer [28].

The genes regulated by MYC form the blue 
community (16 genes), whereas the dark yellow (43 genes) 
and purple (67 genes) communities are formed by genes 
associated with adipogenesis and cell cycle checkpoints, 
respectively. Both processes are relevant in metastasis. 
Adipogenesis is related to metastasis in triple-negative 
breast cancer through different mechanisms (Oshi et al., 
2021). The dysregulation of genes involved in the cell 
cycle checkpoints is associated with aggressive cellular 
behaviour, including invasion- and metastasis-associated 
changes [29]. The genes involved in the response to 
Interferon gamma (IFN-γ) signalling arrange in the small 
light blue community (9 genes). The intensity of the IFN-γ 
signalling can describe the pro-metastatic role of tumours 
since tumours treated with low-dose IFN-γ acquired 
metastatic properties while those infused with high dose 
led to tumour regression [30]. 

Chromosome instability is another tumour feature 
that leads to the metastatic phenotype [31–33]. Our 
metastasis regulatory network captures chromosome 
instability in the green community (72 genes). Finally, the 
two processes are more clearly associated with metastasis, 
the epithelial-mesenchymal transition (EMT) and the 
extracellular matrix’s remodelling. These two processes 
are fundamental for the metastasis hallmark of motility 
and invasion (Welch and Hurst, 2019). They are present 
in our regulatory network across the red (55 genes) and 
orange (48 genes) communities, respectively.

More (smaller) communities on the network are not 
highlighted in Figure 2 because they are loosely related 
to metastasis. These results show that we have modelled 
a gene regulatory network that encodes the complex 
regulation of breast cancer metastasis.

Since inherited genetic variants tend to associate 
with complex phenotypes through the regulation of gene 
expression [34], we assessed whether the genes with 
germline variants might regulate the expression of tumour 
genes, thus influencing metastasis. We have used the 
gene regulatory network focused on metastasis in breast 
cancer to determine genes harbouring germline variants 
of metastasis susceptibility that effectively participate 
in metastasis. We mapped our community-central genes 
onto the metastasis regulatory network and analysed their 
relevance in the network topology, which indicates their 
importance in metastasis. Thirty-nine genes out of the 
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1428 genes present on the epistasis network map to the 
metastasis regulatory network. Sixteen of them are TFs 
that target 23 genes in the metastasis regulatory network. 
These transcription factors tend to have larger regulons in 
the breast cancer gene regulatory network than the rest of 
the transcription factors in the network (average regulon 
size of 40 and 30, respectively). The 23 target genes are 
not more extensively regulated than the rest of the target 
genes in the network; on average, three transcription 
factors regulate each gene.

The 39 genes that have germline variants associated 
with metastasis and that participate in the regulation of 
metastasis tend to be in the communities highlighted 
in Figure 2. Half of the genes are in the communities 
associated with the EMT and the extracellular matrix 
reorganisation; six genes are in the community associated 
with the alterations in cell cycle checkpoints. These 
processes are essential for the dispersion of the metastatic 
seeds and for establishing the pre-metastatic niche. 

The TFs and the targets of regulation that bear 
germline variants could participate in breast cancer 
metastasis by regulating many other genes. Therefore, 
they are representative of the host genetic makeup that 
makes some breast cancer patients more susceptible to 
develop metastasis. We postulate that these regulators and 
regulated genes influence the predisposition to develop 
metastasis in breast cancer patients, and thus we termed 
them metastasis influence genes. The rest of the paper 
focuses on how these 39 genes partake in metastasis.

The metastasis regulatory network has a bow-tie 
structure, i.e., a structure in which the genes that form a 
tightly interconnected inner core facilitate the effective 
communication between the genes in the periphery of the 
network, the TFs and the genes under their regulation. 
The metastasis influence transcription factors are 
significantly overrepresented on the bow-tie core of the 
network (one proportion z-test, p-value < 0.05). Of the 
five transcription factors that harbour germline variants of 

Figure 2: Gene regulatory network of breast cancer metastasis. Network communities are depicted in different colours and 
annotated according to the enriched functions of their genes.
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metastasis susceptibility, TSHZ2 is an important regulator 
that participates in breast cancer and metastasis [35]. 
Our metastasis influence genes are significantly central 
(one proportion z-test, p-value < 10−6), which means that 
they tend to be relevant in the network, i.e., the network 
revolves around these genes. The relevance in the network 
translates to importance in the phenotype encoded in the 
network [36]. Therefore, our network analysis suggests 
that we have selected the genes that contribute most 
effectively to metastasis among those that have germline 
variants associated with metastasis susceptibility.

Metastasis influence genes are expressed across 
all breast cancer subtypes and in metastatic 
breast cancer cell lines

Breast cancer molecular subtypes are associated 
with survival and patterns of distant metastasis. For 
example, the luminal A subtype is associated with the 
longest survival times, followed by luminal B, HER2-
enriched and Basal-like [7, 37]. Therefore, the expression 
in breast tumours of our metastasis influence genes could 
be directed by the breast cancer subtype.

We have tested the expression of the 39 metastasis 
influence genes in the breast cancer cohort of the TCGA. 
This cohort has gene expression data for 1100 tumour 
samples and 112 control samples; we used both tumour 
and control samples to assess whether each community-
central gene is expressed in breast cancer. We calculated 
the proportion of tumour samples for each gene in which 
the gene is differentially expressed compared with control 
samples. The gene is expressed in a subtype if the tumour 
expression index is higher than 0.35 in that PAM50 
subtype (see Methods). 

The metastasis influence genes are expressed in 
all the molecular subtypes, except for the transcription 
factors EN1 and AR and the regulated gene SMARCD3. 
EN1 and AR are expressed only in basal-like tumours, and 
SMARCD3 is not expressed in luminal-A and normal-like 
tumours (Supplementary Tables 3 and 4 have the Kaplan-
Meier p-values for the metastasis influence genes and 
their regulons, respectively). Even though the molecular 
subtypes can have different tendencies to produce 
metastasis and have an assorted pattern of association with 
distant metastasis-free survival, our results apply to breast 
cancer regardless of its subtype since all the genes of 
interest are expressed in all the subtypes—with the caveat 
of EN1, AR and SMARCD3 mentioned above.

This result agrees with the idea that tumour size and 
lymph node involvement have a more substantial effect 
on metastasis than the molecular subtype of the tumour. 
These two factors are the most relevant in the prognosis of 
localized breast cancer even when the hormone receptors 
and HER2 status were not assessed. Carter et al., [38] 
showed that 5278 patients with tumours smaller than 2 cm 
and no lymph node involvement had a 5-year survival of 

96.3%, suggesting that the metastasis-free survival was 
even higher. Furthermore, the prognosis of patients with 
more than ten metastatic axillary lymph nodes had a five-
year disease-free survival of 30–39%, independently of 
the adjuvant treatment received and their ER status [39]. 
Therefore, the predictive value of the subtype (and its 
importance in developing metastasis) is less relevant than 
the tumour size and the number of lymph nodes involved, 
which are the criteria we have used to design our cohort 
of patients. That is why the metastasis influence genes we 
have found are evenly expressed in all the subtypes. 

We compared the expression of the metastasis 
influence genes in metastatic vs. non-metastatic cell lines 
and metastatic vs. healthy mammary epithelium cell lines. 
The transcription factors EN2, NFE2L3 and SALL4, are 
upregulated in metastasis in both assessments. However, 
AR is upregulated in metastasis compared with the healthy 
mammary epithelium cell line, and genes such as EBF1 
and LHX2 are upregulated in metastasis only when 
compared with the non-metastatic breast cancer cell line 
MDA-MB-468GFP.

We also assessed the differential expression of the 
metastasis influence genes in metastatic tumours compared 
with healthy tissue and non-metastatic tumours in MMTV-
Wnt1 transgenic mice. Together with the expression data 
from cell lines, this data provides further validation of 
the participation in metastasis for 20 metastasis influence 
genes (see Table 2). 

Germline variants in metastasis influence genes 
are associated with somatic events in cancer genes

Carter et al., [3] leveraged genotype, clinical, copy-
number variation, and somatic mutation data from TCGA 
to search for germline variants that either: (i) predict the 
tissue of origin of the tumour (i.e., cancer type across the 
22 types compiled in the TCGA); or (ii) are associated 
with somatic events (i.e., both somatic mutations and 
somatic copy-number changes) in cancer genes. They 
found 232 genes harbouring germline variants that predict 
breast cancer and 364 genes with germline variants 
associated with somatic events in cancer genes. 

Since the focus of Carter’s work is significantly 
different from ours, we do not expect a high coincidence 
between the germline variants associated with the origin 
of breast cancer or associated with somatic alterations in 
cancer genes and the germline variants associated with 
the susceptibility to develop metastasis we are looking 
for in this study. Nevertheless, we find substantial overlap 
between the genes that affect somatic events from Carter 
et al., and our metastasis susceptibility genes (see Table 2).

This result further supports the idea that germline 
variants work in collaboration with somatic alterations 
to promote tumour development and progress, as well 
as provide additional validation of the implication of our 
metastasis influence genes.
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Table 2: Role of the metastasis influence genes on the metastasis regulatory network, their expression 
in models of metastatic breast tumours and their association with distant metastasis-free survival 

Gene Regulon 
size

Central 
in the 
metastasis 
regulatory 
network

Bow-tie 
core of the 
metastasis 
regulatory 
network

Expression 
in BC 
subtypes

Differentially 
expressed in 
metastatic 
tumours

Germline-
somatic 
interaction

Associated 
with DMFS

Regulon 
associated 
with DMFS

Stemness 
phenotype

Implicated 
in 
metastasis

AR 5 yes BL cell line 2 – NKI; 
METABRIC 

[42, 79]

BACH2 3 BL, HER2, 
LUM, NL

mouse –  

CALN1 NA BL, HER2, 
LUM, NL

–  NA

CDCA8 NA BL, HER2, 
LUM, NL

cell line 1 NKI; 
METABRIC; 
UNT

NA yes [80, 81]

CLEC14A NA yes BL, HER2, 
LUM, NL

– – NA [82]

COL10A1 NA BL, HER2, 
LUM, NL

cell line 2 VDX NA yes [83–86]

COMP NA BL, HER2, 
LUM, NL

– yes TRANSBIG NA yes [87, 88]

EBF1 13 yes BL, HER2, 
LUM, NL

cell line 1; 
mouse

yes – MAINZ yes

EN1 3 yes BL cell line 1 yes – MAINZ [89, 90]

EN2 2 BL, HER2, 
LUM, NL

cell line 1; 
cell line 2

yes – NKI; 
METABRIC 

[91–93] 

EXO1 NA BL, HER2, 
LUM, NL

– MAINZ; 
UNT

NA yes [94, 95]

FLI1 4 BL, HER2, 
LUM, NL

– MAINZ; 
UNT

MAINZ; 
METABRIC; 
UNT; VDX

[96–98] 

GNA14 NA BL, HER2, 
LUM, NL

cell line 2 yes – NA [99]

GPIHBP1 NA yes BL, HER2, 
LUM, NL

mouse – NA yes

GRM7 NA BL, HER2, 
LUM, NL

– yes – NA

L3MBTL4 6 yes BL, HER2, 
LUM, NL

– UNT – yes

LHX2 3 BL, HER2, 
LUM, NL

cell line 1 TRANSBIG; 
METABRIC

METABRIC [100]

LRP1B NA BL, HER2, 
LUM, NL

– yes – NA [101–104] 

LRRC4B NA BL, HER2, 
LUM, NL

– yes – NA

MEF2A 4 BL, HER2, 
LUM, NL

– yes – TRANSBIG [105] 

METTL11B NA yes BL, HER2, 
LUM, NL

– – NA yes

NEIL3 NA yes BL, HER2, 
LUM, NL

cell line 1 TRANSBIG; 
METABRIC

NA yes [106]

NEK2 NA yes BL, HER2, 
LUM, NL

cell line 1; 
mouse

NKI NA yes [107, 108] 

NFE2L3 3 yes BL, HER2, 
LUM, NL

cell line 1; 
cell line 2

– – [109, 110] 

NMNAT3 NA BL, HER2, 
LUM, NL

– – NA

NR3C1 5 yes BL, HER2, 
LUM, NL

cell line 2; 
mouse

yes – NKI; 
TRANSBIG; 
METABRIC

yes [111–113] 

RP9P NA BL, HER2, 
LUM, NL

– – NA
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Metastasis influence genes correlate with distant 
metastasis-free survival

To validate the role of the metastasis influence genes 
in modulating metastasis, we tested their involvement in 
breast cancer outcomes. Since metastasis determines the 
clinical outcome and survival of breast cancer patients, 
we used DMFS as a proxy to analyse the impact of our 
metastasis influence genes. We first investigated whether 
the expression of our metastasis influence genes was 
significantly altered in breast cancer patients and if their 
expression profiles were significantly more correlated with 
DMFS than random genes. We found that the association 
between the expression profile of a gene and the outcome 
is highly dependent on the cohort analysed and thus 
inconsistent among different gene expression datasets 
analysed. That means that a gene significantly associated 
with survival in a particular cohort will probably not 
be associated with survival in a different cohort. This 
instability and study-dependency of prognostic genes 
in cancer and its implication on the reliability of gene 
expression signatures have been studied before [40]. Venet 
et al., [41] showed that random gene signatures could be 
significantly associated with breast cancer outcome, being 
better outcome predictors than published signatures. We 
tested the 70-gene prognostic signature [5] in four gene 
expression data sets and found that it is significantly 
associated with breast cancer outcome in only two of 

them. This phenomenon has important implications for 
our work: since our metastasis influence genes do not 
result from analysing any gene expression dataset, they 
will compare unfavourably with random genes in any gene 
expression dataset. To provide an unbiased assessment of 
the association with DMFS our metastasis influence genes 
might have, we have tested them across several gene 
expression datasets (Supplementary Tables 3 and 4).

Table 2 reports the gene expression datasets in 
which our metastasis influence genes (or their regulons) 
are significantly associated with DMFS. Twenty out of 
39 metastasis influence genes are associated with DMFS 
either by their expression or by the genes they regulate. 
Eleven of them are also upregulated in metastatic tumours. 
The androgen receptor (AR) activation regulates several 
pathways leading to different processes like proliferation, 
migration and invasiveness [42]. AR correlates with a 
good prognosis in ER-positive breast cancer patients and 
controls progression and drug resistance in ER-negative 
[43]. This agrees with our result that AR is upregulated 
in metastatic tumours, and its regulon is implicated in 
metastasis. The downregulation of Engrailed-2 (EN2) 
suppresses prostate cancer cell survival and metastasis 
[44], which is in concordance with our results, for EN2 
is upregulated in metastatic breast cancer cell lines and 
regulates genes that influence metastasis. These are just 
two examples of how our metastasis influence genes can 
affect metastasis. Some of them were known to participate 

RPS6KA2 NA BL, HER2, 
LUM, NL

– – NA [114] 

SALL4 6 BL, HER2, 
LUM, NL

cell line 1; 
cell line 2

yes – MAINZ yes [115,116] 

SMAD3 3 BL, HER2, 
LUM, NL

cell line 1 – – [117–119] 

SMARCD3 NA BL, HER2, 
LUMB

– – NA [120,121] 

SMYD3 6 yes BL, HER2, 
LUM, NL

cell line 1 – – [122–124] 

SPARCL1 NA yes BL, HER2, 
LUM, NL

cell line 2 NKI NA yes [125–127] 

STARD8 NA yes BL, HER2, 
LUM, NL

– – NA [128] 

TMEM132C NA BL, HER2, 
LUM, NL

– – NA yes  

TNS1 NA yes BL, HER2, 
LUM, NL

cell line 1; 
mouse

– NA yes [129,130] 

TSHZ2 28 yes BL, HER2, 
LUM, NL

– yes – MAINZ; 
NKI; 
METABRIC

yes [35,131]

TUBA1C NA BL, HER2, 
LUM, NL

mouse METABRIC NA yes [132,133] 

ZNF385D 3 BL, HER2, 
LUM, NL

– yes – METABRIC yes  

The gene is central in the metastasis regulatory network if its community centrality (a measure of its importance by the number of network communities to which the gene belongs) 
is in the top 20%. The transcription factor is in the bow-tie core if its bow-tie score is in the top 10%. Abbreviations: BL, basal-line; HER2, HER2-enriched; LUM, luminal; LUMB, 
luminal-B; NL, normal-like. Cell line 1, the gene is upregulated in the metastatic breast cancer cell line MDA-MB-468GFP vs. the poorly metastatic breast cancer cell line MDA-
MB-468LN; cell line 2, the gene is upregulated in the metastatic breast cancer cell line MCF7 vs. the mammary epithelium cell line MCF10. Germline-somatic interaction, the gene 
harbours germline variations associated with somatic events. Stemness phenotype, the gene has an expression profile across the TCGA breast tumour samples significantly correlated 
with the mRNA stemness index (see Methods). Associated with DMFS, the gene is significantly more associated with DMFS than random genes in the indicated expression datasets. 
Implicated in metastasis reference of the studies that show how the gene participates in the molecular mechanisms of metastasis.
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in metastasis, either in breast cancer or other tumours, as 
shown in Table 2. Approximately half of the metastasis 
influence genes participate in establishing the stemness 
phenotype in the tumour. Since cancer stem cells have 
a unique role in establishing the pre-metastatic niche 
[26, 45, 46], this result indicates that the metastasis 
influence genes could be involved in how the primary 
tumour prepares its future metastatic niche. Our analysis 
shows that the metastasis influence genes participate in 
metastasis not just because they are altered in the tumour 
but also because they have germline variants that make 
them prone to contribute to metastasis development.

In conclusion, our work moves onward with the seed 
and soil hypothesis—i.e., the host’s genetic background 
contributes to the development of metastasis. We unveiled 
several genes altered by germline variants that influence 
metastasis through their synergistic interaction with many 
other genes in our epistasis network. Therefore, we suggest 
that women who harbour specific sequence variants in the 
metastasis influence genes will deploy gene expression 
patterns that favour metastasis should they develop breast 
cancer.

The metastasis influence genes could affect the 
susceptibility to develop metastasis in two ways: either 
they are dysregulated in breast tumours and partake in 
the mechanisms of metastasis, or they regulate genes that 
form part of these mechanisms. Furthermore, they favour 
the dissemination of metastatic seeds and contribute to the 
congenial soil by priming the pre-metastatic niche. 

MATERIALS AND METHODS

Patients and study design

We collected patients diagnosed in eight Spanish 
Hospitals that met the inclusion criteria. These criteria 
included female patients over 18 years old with 
histologically confirmed invasive breast cancer who had 
undergone surgery and had at least five years of follow-up. 
Patients with bilateral breast cancer and second primary 
tumours were excluded. All patients participating in the 
study gave their informed consent and protocols were 
approved by institutional ethical committees (Comité 
Coordinador de Ética de la Investigación Biomédica de 
Andalucía).

According to our extreme discordant phenotypes 
framework, we selected patients with a low risk of 
developing metastasis who nevertheless relapsed 
(good prognosis cases) and patients with a high risk of 
developing metastasis who did not develop a disseminated 
disease (poor prognosis cases). In the recently published 
8th Edition Cancer Staging Manual from the American 
Joint Committee on Cancer, patients with tumours smaller 
than 2 cm and without lymph node involvement have 
an excellent prognosis, independently of their biology. 
Likewise, tumours with more than ten positive lymph 

nodes (pN3) are classified as stage IIIC, independently 
of the primary tumour size, hormone receptor and HER2 
status. These patients had a 5-year disease-free survival 
(DFS) of 30-39%, independently of the adjuvant treatment 
received and their oestrogen receptor (ER) status [39]; 
in this set of patients, the absence of relapse within five 
years was a rare event. Therefore, our cohort encompasses 
breast cancer patients that, regardless of their histological 
subtype, are either good prognosis cases, i.e., patients with 
tumours smaller than 2 cm and no lymph nodes affected 
who relapsed within five years after surgery; or poor 
prognosis cases, i.e., patients with more than ten lymph 
nodes affected regardless their tumour size who did not 
relapse within five years after surgery.

Samples and genotyping

Genomic DNA was extracted from 3 mL of 
peripheral blood using the QiaAmp DNA Blood Mini 
Kit (Qiagen). The Human Genotyping Unit-CeGen 
CNIO conducted the genome-wide genotyping using 
the Illumina Infinium LCG Quad Assay protocol with 
the HumanOmni5-Quad Beadchip (Illumina). This chip 
contains ca. 4.3 million SNPs selectively distributed and 
separated by an average distance of 0.68 kb. The scanned 
signal raw intensities from all SNPs in the assay were 
analysed using the GenomeStudio software (Illumina). We 
filtered the data for quality control using the open-source 
tool PLINK [47]. We did not exclude any patient from 
the study due to low genotyping (call-rate < 90%). SNPs 
were excluded if they had a call-rate < 90% or a Hardy-
Weinberg equilibrium p-value < 10−6.

Epistasis network analysis

We looked for germline variants with a robust 
individual effect on susceptibility to metastasis (i.e., with a 
p-value < 5 × 10−8) by performing an association analysis 
between SNPs in the good and poor prognosis cases with 
the PLINK library within the Encore pipeline [48]. 

We modelled and analysed a genetic interaction 
network from our genetic population data with the Encore 
pipeline. Figure 3 depicts the Encore workflow to model 
the epistasis network from genotyping data. Encore is 
an open-source tool for the analysis of biological data 
with the power to detect genetic variants relevant to a 
phenotype using genetic epistasis; it discovers variants 
without a substantial individual effect but whose relevance 
to the phenotype comes from their multiple interactions 
[49]. Encore focuses on common and rare variants to 
identify susceptibility hubs or groups of variants with 
numerous connections that influence the phenotype. 
To characterise these hubs, Encore computes a genetic 
association interaction matrix (reGAIN matrix) that ranks 
the variants according to their connection with other 
variants with the algorithm SNPrank [48]. Therefore, we 
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obtain a list of ordered variants based on their importance 
to the phenotype of interest, which in our study is 
susceptibility to metastasis. With this list of SNPs and the 
reGAIN matrix, we identified the genes that harbour the 
most relevant SNPs (top SNPs). We modelled the gene 
epistasis network for the susceptibility to metastasis, 
keeping only significant epistatic interactions (Benjamini-
Hochberg false discovery rate corrected p-value < 0.01). 

According to network theory, a network revolves 
around a set of nodes termed central nodes. These central 
nodes capture the information flow represented in the 
network, and there are many ways to determine them [52]. 
In our gene epistasis network, central genes contain most 
of the metastasis susceptibility information through their 
interactions. To identify these central genes, we used the 
community centrality, which measures the importance of a 
gene by the number of network communities to which the 
gene belongs. We performed all the network analyses with 
the iGraph package [53] and the R platform for statistical 
computing.

Gene expression in breast tumour samples, 
animal models and cell lines

We downloaded the RNASeq normalised gene 
expression dataset for breast cancer from the TCGA [54] 
with the R library RTCGAToolbox [55]. We transformed 
the RNASeq data to Z-scores so that per each tumour 
sample for each gene, we measured how many standard 
deviations (sd) away from the mean that gene expression 
is. We considered those with Z >1.96 (roughly p-value < 
0.05 or more than 2 sd away) to be differentially expressed. 
We considered the tumour t and control c samples in the 

calculation of Z-scores for each gene g using the following 
equation:

Z
E E

t
g t

g
c
g

c
g=

− 〈 〉
σ

We thus compare the expression of gene g in the 
tumour sample t with the average and standard deviation of 
g in control samples. The gene’s tumour expression index 
is the proportion of tumour samples in which the gene is 
differentially expressed (i.e.) |Z| >1.96. We established a 
threshold for the tumour expression index using a random 
model of 10000 genes: less than 5% of random genes have 
a tumour expression index higher than 0.35. Therefore, 
we considered a gene expressed in tumour samples if its 
tumour expression index was higher than 0.35.

We performed differential expression analyses 
in animal models and breast cancer cell lines. We used 
microarray expression data from the Gene Expression 
Omnibus (GEO) dataset GSE84917 for MMTV-Wnt1 
transgenic mice to compare the expression profiles of 
metastatic versus non-metastatic mammary tumours and 
metastatic mammary tumours versus healthy mammary 
tissue. We considered genes dysregulated if their logFC > 
1 and their Benjamini and Hochberg false discovery rate 
(FDR) adjusted p-value < 0.01 with the limma 3.46 library 
on R 4.0.2 [56].

MDA-MB-468GFP is a poorly metastatic cell line; 
however, it has a variant (MDA-MB-468LN) with high 
metastatic ability. We compared the expression profiles of 
non-metastatic vs. metastatic tumours using the microarray 
expression data for these two cell lines in the GEO dataset 
GSE11683. We performed a differential expression 

Figure 3: A pipeline of the epistasis network modelling with Encore. We used as input .bim/.bed/.bam files from PLINK. 1) The 
linkage disequilibrium pruning step removes highly correlated (i.e. low informative) SNPs. 2) Evaporative cooling is a machine learning 
method that integrates multiple importance scores while removing irrelevant genetic variants. In this step, we kept the 10000 most relevant 
SNPs, which constitutes a significant reduction from the initial ~ 4.3 million. 3) After filtering, Encore calculates the pairwise interaction 
for the 10000 SNPs with a generalised linear model. It computes a matrix of epistatic interactions among SNPs with Benjamini-Hochberg 
false discovery rate corrected p-values (reGAIN matrix). From that matrix, SNPs are ranked and filtered with SNPrank; we kept 2016 
SNPs. 4) We obtained the names of the genes in or near (1 MB) the most relevant SNPs with the R library PostGWAS [50]. 5) Finally, we 
ranked the most relevant genes by their community centrality (using link communities [51]); genes are important if they participate in many 
communities.
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analysis (logFC > 1, Benjamini and Hochberg FDR 
adjusted p-value < 0.01) with the limma library in R 4.0.2.

We also compared the expression profiles of 
metastatic tumours and healthy mammary epithelium 
using the cell lines MCF7 and MCF10A, respectively. 
MCF7 is a transformed breast cancer cell line derived 
from a metastatic site, and MCF10A is a normal-like 
mammary epithelial cell line. We performed a differential 
expression analysis (logFC > 1, Benjamini and Hochberg 
FDR adjusted p-value < 0.01) with the expression data 
from the GEO dataset GSE71862 [57], which contains 
RNA-seq data for these two cell lines. We calculated the 
differential gene expression using the DESeq2 version 
1.30.1 [58] library in R 4.0.2.

Map of gene regulation in metastasis 

To represent the map of gene regulatory interactions 
in breast cancer metastasis, we have modelled a 
transcriptional regulatory network focused on metastasis. 
We started by building a broad gene regulatory network 
for breast cancer from the collection of 1612 transcription 
factors (TF) compiled in [59] and the genes controlled by 
those TFs, which we obtained from the TCGA (RNASeq 
breast cancer gene expression dataset). We used the RTN 
pipeline [60] to reconstruct transcriptional regulatory 
networks. 

A transcriptional regulatory network consists of a 
collection of TFs and their regulated target genes. Each 
TF guides the expression of a set of genes, which forms a 
regulon. Therefore, TFs are regulators that either activate 
or repress the expression of the target genes. The RTN 
pipeline first computes the interactions between each 
TF and all potential target genes through the mutual 
information between a regulator and all potential targets—
i.e., the mutual dependence between the expression 
profiles of the TF and their targets. Then, it performs a 
bootstrapping analysis to remove non-significant and 
unstable TF-target interactions. Each target gene may be 
linked to many TFs at this stage because regulation can 
occur through direct interactions between a transcription 
factor and a target gene and indirect interactions (TF-TF-
target). The final step in the RTN pipeline is the ARACNe 
algorithm [61] to remove the weakest interaction in any 
triplet formed by two TFs and a common target gene, 
preserving the dominant TF-target pair.

From this broad network, we wanted to model a 
subnetwork centred on metastasis, that is, the part of the 
general network that contains the TFs and their regulons 
involved in the regulation of metastasis. Based on the 
idea that the network neighbourhood of a set of genes 
contains information about the biological processes in 
which the genes participate [62], we started from a set of 
genes involved in metastasis and characterised its network 
neighbourhood to obtain the gene regulatory network for 
metastasis in breast cancer.

We obtained the genes implicated in breast cancer 
metastasis from three sources: genes differentially 
expressed in metastasis samples, genes involved in the 
stemness phenotype, and genes dysregulated in metastasis 
through the metastasis expression index.

We compared the expression of metastatic 
samples (from both local and distant metastasis) with 
the expression of healthy control tissue from the TCG 
to obtain 65 differentially expressed genes (logFC ≥ 5; 
p-value < 0.0001). These genes were enriched in KEGG 
pathways related to metastasis, such as ECM-receptor 
interaction, IL-17 signalling and PPAR signalling.

Cancer stem cells are responsible for recurrence, 
relapse and metastasis [63]. Breast cancer metastasis 
involves acquiring stem-cell-like features characterised by 
the expression of markers that contribute toward a stemness 
phenotype [64]. Malta et al., [65] found that the stemness 
phenotype was generally most prominent in metastatic 
tumours and developed a stemness index for assessing 
this phenotype. We have used their mRNA stemness index 
and the weighted gene correlation analysis [66, 67] to find 
75 genes whose expression profiles were significantly 
correlated with the stemness phenotype (p-value < 10−10). 
As expected, these genes are enriched in cell cycle-related 
biological processes and pathways related to metastasis and 
breast cancer progression, such as the oestrogen-responsive 
protein and Sonic Hedgehog signalling.

We developed the metastasis expression index 
analogous to the tumour expression index to obtain 
additional genes implicated in breast cancer metastasis. 
In this case, we obtained a Z-score for each gene in each 
breast metastasis sample from the TCGA RNASeq gene 
expression dataset by comparing the gene expression 
in the metastasis sample with the average and standard 
deviation of the gene expression in tumour samples. 
Thus, we obtained 121 genes dysregulated in metastatic 
breast tumours that were enriched in processes related 
to metastasis, such as the activation of epithelial cell 
proliferation and Wnt signalling. 

We mapped the 261 genes related to metastasis onto 
the general breast cancer gene regulatory network. We used 
the DIAMOnD network diffusion algorithm [68] to obtain 
the network neighbourhood of these genes. DIAMOnD 
evaluates the significance of the connections that the 
initial set of genes has in the network to incorporate those 
genes better connected with the initial set. Therefore, with 
enough iterations of the algorithm (200 iterations), we 
obtained the subnetwork that comprises the initial set of 
261 genes and their network neighbourhood, resulting in a 
gene regulatory network of breast cancer metastasis.

The metastasis regulatory network is modular. Each 
community of genes that interact more closely among 
them than with the rest of the network tends to encode a 
particular feature of the phenotype encoded in the network. 
We have highlighted those communities associated with 
metastatic processes through the over-representation test 
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(multiple false discovery rate controlled; q-values < 0.001) 
on the Gene Ontology, REACTOME and the MSigDB 
hallmark gene set collection [69].

Gene regulatory networks often exhibit a bow-tie 
topology [70]. The presence of a robust interconnected 
core characterises the topology of these networks; this core 
is essentially a set of genes that communicate the fan-in 
component of source nodes (the transcription factors) with 
the fan-out component of sink nodes (i.e., the target genes). 
The core of the bow-tie structure reduces the number of 
genes and connections required to connect the transcription 
factors with the target genes, decreasing perturbation and 
noise [71]. We can identify the genes that belong to the 
core of the network by the bow-tie score [72]:

b v
S T
S T
v v( ) =

Where Sv is the number of source nodes (i.e., 
transcription factors) that can reach the gene v, Tv is the 
number of target genes that v can reach, S and T are the 
total number of source and target nodes, respectively. We 
have implemented the bow-tie score to characterise the 
topology of the metastasis gene regulatory network.

Survival analysis

 We identified the transcription factors among our 
genes of interest and their regulons on our gene regulatory 
map. We tested the association of our genes and their 
regulons (when they are transcription factors) with breast 
cancer outcomes using the Kaplan-Meier survival analysis 
with the SigCheck R library [73]. For each gene and each 
regulon, we tested whether they were more significantly 
associated with distant metastasis-free survival (DMFS) 
than random genes (comparative survival analyses with 
random genes), on six gene expression datasets of breast 
cancer: NKI, 319 samples [5]; METABRIC, 1422 samples 
[74]; TRANSBIG, 198 samples [75]; MAINZ, 200 samples 
[76]; UNT, 125 samples [77]; and VDX, 344 samples [78]. 
The algorithm computes the mean expression value for each 
sample across the regulon (or the gene) in each independent 
survival analysis, which allows dividing the samples into 
a high expression group and a low expression group. 
Comparing the survival curves of these two groups results 
in a p-value that indicates the confidence that the samples 
are separable into groups with distinct survival outcomes. 
The comparative survival analysis produces an empirical 
p-value of the performance of genes or regulons against 
random genes in 1000 independent survival analyses.
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