
Oncotarget695www.oncotarget.com

www.oncotarget.com Oncotarget, 2022, Vol. 13, pp: 695-706

Research Paper

CancerOmicsNet: a multi-omics network-based approach to anti-
cancer drug profiling

Limeng Pu1,*, Manali Singha2,*, Jagannathan Ramanujam1,3 and Michal Brylinski1,2

1Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
2Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
3Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
*These authors contributed equally to this work

Correspondence to: Michal Brylinski, email: michal@brylinski.org
Keywords: cancer growth rate; kinase inhibitors; differential gene expression; gene-disease association; cancer-specific networks
Received: March 22, 2022 Accepted: May 03, 2022 Published: May 19, 2022

Copyright: © 2022 Pu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Development of novel anti-cancer treatments requires not only a comprehensive 

knowledge of cancer processes and drug mechanisms of action, but also the ability to 
accurately predict the response of various cancer cell lines to therapeutics. Numerous 
computational methods have been developed to address this issue, including 
algorithms employing supervised machine learning. Nonetheless, high prediction 
accuracies reported for many of these techniques may result from a significant 
overlap among training, validation, and testing sets, making existing predictors 
inapplicable to new data. To address these issues, we developed CancerOmicsNet, a 
graph neural network with sophisticated attention propagation mechanisms to predict 
the therapeutic effects of kinase inhibitors across various tumors. Emphasizing on the 
system-level complexity of cancer, CancerOmicsNet integrates multiple heterogeneous 
data, such as biological networks, genomics, inhibitor profiling, and gene-disease 
associations, into a unified graph structure. The performance of CancerOmicsNet, 
properly cross-validated at the tissue level, is 0.83 in terms of the area under the 
receiver operating characteristics, which is notably higher than those measured for 
other approaches. CancerOmicsNet generalizes well to unseen data, i.e., it can predict 
therapeutic effects across a variety of cancer cell lines and inhibitors. CancerOmicsNet 
is freely available to the academic community at https://github.com/pulimeng/
CancerOmicsNet.

INTRODUCTION

Cancer is perhaps best understood as a complex 
system of interacting molecular-level networks, such 
as nuclear and cell networks, influenced by local and 
distant factors [1]. The nuclear network is composed of 
nucleic acid and protein molecules linked by a variety 
of biochemical and structural pathways allowing for the 
production of proteins based on the information encoded 
in the DNA [2]. Numerous curative cancer treatments have 
been developed either by targeting a single component 
within this network or by combining multiple agents to 
target different levels of the nuclear network in order 
to interrupt nucleic acid and protein machineries in the 

nucleus [3]. The cell network consists of various molecules 
interacting through the linkage of signal transduction 
pathways and the cytoskeleton [4, 5]. Particularly, the 
modulation of the activity of receptor tyrosine kinases, 
important components of the cell network, is an effective 
strategy against a wide variety of cancers [6]. This 
therapeutic effect can be achieved by either blocking 
upstream receptors with antibodies and small molecules 
or directly suppressing kinase catalytic activity with 
inhibitors [7]. Another group of therapies targeting the 
cell network disrupt metabolism by affecting the function 
of proteasome and chaperone molecules [8]. Since many 
cancer-specific data, such as molecular interactions, 
belong to the non-Euclidean space, a network-based 

https://creativecommons.org/licenses/by/3.0/


Oncotarget696www.oncotarget.com

representation of cancer is generally well suited not only 
to predict the response of tumor cells to pharmacotherapy, 
but also to help understand drug-cell line interactions. 
However, utilizing these information-rich data requires 
advanced graph information processing algorithms and 
machine learning systems designed specifically to operate 
on the graph-structured data.

One of the earliest graph information processing 
techniques is a graph neural network (GNN) that employs 
a graph structure to learn the representation of the input 
data [9]. The major limitation of this method is that it 
restricts the information propagation to the first-order 
neighbors of every node limiting the information flow 
in the model. Recently, a graph convolutional network 
(GCN) was proposed to provide a more flexible model 
propagating information through many orders of neighbors 
[10, 11]. More advanced models were developed following 
the fundamental work on GCN, including a graph-based 
neural network employing the long-short term memory 
(LSTM) to carry out the information propagation that 
was demonstrated to have a significantly improved 
performance [12]. Another information propagation 
scheme aggregates the average embeddings of the 
neighboring nodes yielding a high performance especially 
for node classification in large graphs [13]. Numerous 
other techniques implementing minor improvements are 
currently available to operate on the graph-structured data 
[14–16].

Compared to other types of biological networks, 
gene co-expression networks have certain advantages, 
such as a high coverage of human genes, the additional 
knowledge obtained from the biomedical literature, and 
the possibility to study different cancer subtypes. [17, 18]. 
One of the most important applications of gene co-
expression networks is to study the sensitivity of cancer 
cells to pharmacotherapy. Indeed, networks constructed 
by connecting those genes having correlated drug-
induced expression values, contain a sufficient amount of 
information to predict drug sensitivity. In a recent study, 
two feature selection methods, network- and correlation-
based, were developed to extract representative features 
for drug response prediction from gene co-expression 
networks [19]. The network-based feature selection 
utilizes assignment vectors describing the importance of 
individual vertices to predict drug sensitivity, whereas 
the correlation-based selection employs the Pearson 
correlation coefficient (PCC) between gene expression 
and the sensitivity of cell lines to drugs. Benchmarking 
calculations against non-small cell lung cancer with 
several canonical prediction algorithms, Elastic Net, 
Partial Least Squares Regression, Random Forest, 
Support Vector Regression, and Deep Neural Networks, 
demonstrated that features extracted with the network-
based approach yield the highest performance when 
predicting the dose-response curve and the median 
effective dose.

Another group of methods utilize dual-layer cell 
line-drug networks, constructed by integrating drug 
similarity and cell line similarity networks in a weighted 
fashion, to predict the drug sensitivity of cancer cells. 
These techniques build on the observation that chemically 
similar drugs exhibit similar inhibitory effects on different 
cell lines and vice versa, similar cell lines tend to respond 
comparably to a treatment with the same drug. Dual-
layer models typically require the optimization of various 
parameters, such as weights for individual drugs and cell 
lines, in order to determine the relative contribution of 
each network to the final prediction. As an example, a 
dual-layer network was developed to evaluate separately 
the response of a known cell line to a new drug and the 
effect of a known drug against a new cell line using a 
linear weighted model, followed by combining these 
two quantities into a sensitivity score for the treatment 
of a particular cell line with a drug [20]. Encouragingly, 
comprehensive benchmarks against the Cancer Cell Line 
Encyclopedia (CCLE) [21] and the Cancer Genome 
Project (CGP) [22] datasets showed that the predicted 
and observed therapeutic responses are correlated for 
most tested drugs with a PCC of 0.6, significantly 
outperforming an Elastic Net model. Additionally, this 
dual-layer integrated cell line-drug network model 
correctly predicted that certain mutant cell lines are more 
sensitive to inhibitors than the corresponding wild-type 
cell lines even though no mutation-specific information 
was provided.

More advanced methods combine genomics with 
drug chemical and activity information to predict the 
response to drugs in cancer treatment. For instance, 
the Cancer Drug Response Profile scan, or CDRscan, 
predicts anticancer drug responsiveness based on the drug 
screening assay data, the genomic profiles of human cancer 
cell lines, and the molecular fingerprints of drugs [23]. 
The analysis of observed and predicted drug responses 
showed an exceptionally high accuracy of CDRscan with 
a mean coefficient of determination of 0.84 and the area 
under the receiver operating characteristics (ROC) of 
0.98. Another technique, DeepDR, predicts drug response 
purely based on the mutation and expression profiles of 
cancer cells. The reported overall prediction performance 
of DeepDR is also exceptionally high with a mean squared 
error of only 1.96 in the log-scale IC50 values. Further, 
a similarity-regularized matrix factorization method, or 
SRMF, predicts anticancer drug responses of cell lines 
solely from the chemical structures of drugs and the 
baseline gene expression levels in cell lines [24]. Those 
two features are used as regularization terms, which are 
incorporated into the drug response matrix factorization 
model. SRMF yields a drug-averaged mean squared error 
of 1.73 between predicted and observed responses of 
sensitive and resistant cell lines.

Notwithstanding these encouraging reports, there 
are two drawbacks of currently available techniques to 
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predict the response of cancer to drug treatment. First, 
most of these methods employ hand-crafted features 
simply exploiting similarities between instances, i.e., 
they essentially look for similar combinations of cell lines 
and drugs with known therapeutic outcomes. In reality, 
similar cell line-drug combinations may not necessarily 
produce the anticipated effects. Explicit similarity-based 
approaches are also unlikely to reveal the underlying 
mechanisms of the response of cancer to drug treatment. 
Second, the performance of many existing algorithms is 
likely grossly overestimated due to randomly splitting 
the redundant data into training, validation, and testing 
subsets resulting in a significant overlap among these sets. 
To address both issues, we developed CancerOmicsNet, 
a GNN-based algorithm employing multiple graph 
convolutional blocks with the attention-based propagation 
and a sophisticated graph readout mechanism to predict the 
effect of a drug treatment on the cancer cell growth. This 
novel method utilizes compact, cancer-specific networks 
constructed from protein-protein interactions, differential 
gene expression, disease-gene association, and drug 
inhibition data. The generalizability of CancerOmicsNet 
is carefully evaluated in a series of cross-validation 
benchmarks against different tumor tissues.

RESULTS

Cancer-specific data represented as networks

Input for CancerOmicsNet are cancer-specific 
networks assembled from multiple heterogeneous data 
including protein-protein interactions (PPIs), differential 
gene expression (DGE), disease-gene association (DGA) 
scores, kinase inhibitor profiling (KIP), and growth rate 
inhibition (GR). The procedure of data integration is 
schematically presented in Figure 1 for a combination of 
breast adenocarcinoma cell line MDA-MB-468 originated 
from a 51 years old female sample [25], and dasatinib, a 
dual kinase inhibitor against BCR/ABL and SRC families 
of tyrosine kinases [26] primarily used to treat chronic 
myelogenous leukemia and acute lymphoblastic leukemia 
[27]. In this example subnetwork, nodes (circles) are 
proteins and dashed lines represent highly confident PPIs. 
Bold purple circles are kinase nodes and thin blue circles 
are non-kinase proteins.

After the initial network is constructed (Figure 
1A), proteins are annotated with DGE, DGA, and KIP 
scores (Figure 1B). EGFR is a transmembrane receptor 
tyrosine kinase having a critical impact on the regulation 
of apoptosis, cell migration, and cell proliferation. Since 
it is hyper-expressed in MDA-MB-468 cell line [28], node 
1 in Figure 1B is colored green. On the other hand, node i 
is colored red because ubiquitin ligase CBL is deregulated 
in breast cancer [29]. In normal cells, CBL mediated 
ubiquitination negatively regulates EGFR by lysosomal 
degradation [30], however, CBL mutants escape the 

degradation of overexpressed EGFR inducing oncogenesis 
[29]. Next, DGA data for MDA-MB-468 cell line are 
mapped to proteins in the network; kinase nodes 1 and 
4 are assigned DGA scores of 5.2 and 3.4, whereas non-
kinase proteins e, f, and g have DGA scores of 2.6, 1.9, 
and 2.3, respectively. EGFR has the highest DGA score for 
breast adenocarcinoma likely because it is hyper-expressed 
in approximately half of the cases of inflammatory breast 
cancer and triple-negative breast cancer [31].

Subsequently, the inhibition data against dasatinib 
are added to the network. Dasatinib inhibits SRC with an 
IC50 value of 0.8 nM in a cell-free assay [32] and different 
variants of EGFR with IC50 ranging from 21.7 to 138 
nM [33]. Two kinase nodes (1 and 3) are annotated with 
pIC50 values for dasatinib (6.8 and 8.8). Finally, the entire 
graph is assigned a label describing the effectiveness 
of the drug therapy against a given cell line. Since the 
growth of MDA-MB-468 cell line is inhibited by 30% 48 
hrs after the treatment with dasatinib at 3 µm [34] and 
the experimental GRmax value [35] is –0.96, the label of 
the MDA-MB-468-dasatinib combination is a positive 
pharmacotherapeutic effect. 

Network reduction driven by biological 
knowledge

Cancer-specific networks are subsequently 
subjected to a reduction procedure devised to produce 
graphs that are more compact yet richer in the biological 
information. This algorithm is presented in Figure 1C 
for the MDA-MB-468-dasatinib subnetwork. Briefly, a 
group of connected non-kinase proteins having similar 
DGE values and being part of the same biological 
processes according to Gene Ontology [36] are merged 
into a single node. Three such groups are present in the 
example subnetwork, a-b, c-e, and d-f-g (yellow shapes in 
Figure 1C). The first group comprises transcription factor 
P300, a product of EP300 gene, regulating the expression 
of NANOG that is responsible for pluripotency and self-
renewal of stem cells [37]. The second group consists of 
a transcription activator STAT3 regulating the expression 
of IL10 [38]. The last cluster contains HSP90AA1 and 
HIF1A that together regulate the oxygen homeostasis 
[39] and PXN, a multidomain and multifunctional focal 
adhesion adaptor protein playing an essential role in the 
oxidative stress in cells [40]. The resulting virtual nodes 
in the reduced graph (dashed rounded squares in Figure 
1D) representing multiple proteins involved in the same 
biological processes have a similar expression in cancer 
cells and are annotated with a median value of the DGE 
scores of incident nodes. 

Information propagation in CancerOmicsNet

CancerOmicsNet implements a GNN model to 
predict the response of cancer cell lines to a treatment with 
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kinase inhibitors. The GNN employs graph convolutions, 
which are functionally equivalent to matrix convolutions 
in the convolutional neural network (CNN) working with 
images. Similar to the CNN propagating the information 
of a pixel to its neighbor pixels, the GNN propagates the 
information of a node in the graph to its neighbor nodes. 
The architecture of CancerOmicsNet is presented in Figure 
2. An instance consisting of the combination of a cell line 
and a drug is used to create a cancer-specific network, 
which is subsequently subjected to the reduction procedure 
(Figure 2A). The reduced graph is then processed through 
a cascade of graph convolution blocks (Figure 2B). Each 
block contains three components, the attention-based 
propagation, the embedding update, and the generation 
of new embeddings. Although only the information from 
1st order neighbors is passed between nodes in a single 
block, using multiple sequential blocks propagates the 
information from higher order neighbors.

This procedure is illustrated in Figure 3 for a simple 
4-node graph. Initially, each node has its own information 
(color coded in Figure 3A), which is used to generate 
node embeddings. In our model, nodes are proteins 
connected through PPIs and the information comprises 
DGE, DGA, and KIP. During the first propagation step, 
a node of interest, such as node 1 in Figure 3, receives 
information from its 1st order neighbor, node 2 (Figure 
3B). At the same time, node 2 receives information from 
its 1st order neighbors, nodes 3 and 4. Nodes 1 and 2 now 
contain more information to generate new embeddings. In 
the second propagation step, the information from nodes 

3 and 4 already present in node 2 is also passed to node 
1 (Figure 3C). At this point, new embeddings for node 
1 are generated using not only its own information, but 
also the information propagated from its 1st and 2nd order 
neighbors. Three graph convolution blocks are employed 
in our model because we found empirically that adding the 
fourth block does not improve the performance anymore. 
Further, there is no point of using more than four blocks 
because the diameter of the cancer-specific graph is 5, 
so no new information is propagated beyond 4th order 
neighbors.

Graph information extraction

Once all embeddings are generated, the information 
on the entire graph can be extracted with a readout 
mechanism to predict the final drug response (Figure 
2C). Standard readout techniques, such as global pooling, 
are unsuitable for our model comprising multiple 
graph convolutional blocks and learning from highly 
heterogeneous input graphs. In CancerOmicsNet, node 
embeddings generated by consecutive graph convolutional 
blocks contain distinct information. Therefore, a jumping 
knowledge network (JK-Net) is employed to exploit all 
information collected from different blocks. JK-Net 
was specifically developed to efficiently integrate the 
output from different layers into a single representation 
[41]. It is based on the concept of an influence radius 
corresponding to the radius of neighbors whose output 
is to be aggregated. The selection of an optimal radius is 

Figure 1: Example of a cancer-specific subnetwork. The graph shows a portion of protein-protein interaction network for breast 
adenocarcinoma cell line MDA-MB-468 and kinase inhibitor dasatinib. Bold purple circles represent kinase nodes (1 – EGFR, 2 – JAK2, 
3 – JAK1, and 4 – SRC), whereas non-kinase nodes are shown as thin blue circles (a – NANOG, b – EP300, c – IL10RA, d – HIF1A, 
e – STAT3, f – HSP90AA1, g – PXN, h – CRK, and i – CBL). Edge weights are confidence scores for protein-protein interactions with 
a threshold value of ≥500. (A) Initial subnetwork constructed from interactions obtained from the STRING database. (B) Subnetwork 
integrating kinase inhibitor profiling (pIC50, in bold), disease-gene association scores (in italics), and the differential gene expression: up- 
(green), down- (red), and normally (gray) regulated. (C) Graph reduction procedure with orange shapes outlining groups of non-kinase 
nodes that have similar differential gene expression and belong to the same GOGO cluster. (D) Reduced cancer-specific subnetwork with 
merged nodes shown as dashed brown rounded boxes (I – constructed from incident nodes a-b, II – c-e, and III – d-f-g). Node features and 
edge weights for merged nodes are calculated as median values of incident nodes.
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crucial because large radii may cause excessive averaging 
and small radii may result in an insufficient information 
aggregation. JK-Net learns the effective neighborhood size 
for each layer in order to generate the best representation 
of the entire graph.

Global pooling of the embeddings of all nodes is 
appropriate only for homogeneous networks. In contrast, 
cancer-specific networks are highly heterogeneous 
comprising nodes of varying importance to one another 
and to the overall graph. Therefore, we added a mechanism 
to emphasize on important nodes rather than treating all 
nodes equally. Although such techniques have successfully 
been used in the CNN and the RNN [42], unlike images 
or text, graphs are orderless, i.e. an image does not remain 
the same if pixels are rearranged, while a graph remains 
the same if nodes are reordered. To account for the lack 
of order in graphs, we added a Set2Set layer converting 
a set to another set [43]. This model employs a set of 
LSTMs recursively combining the state of the previous 
processing step with the current embeddings to generate 

attention values. These attention values and embeddings 
form new states for the next processing step. By using 
Set2Set, we ensure that any permutation performed on 
the original vector does not affect the final read vector. 
The information summarized by JK-Net and Set2Set for 
the entire graph is then passed to a set of fully connected 
layers to make the final prediction, which is the effect of 
pharmacotherapy on the cancer cell growth.

Performance of CancerOmicsNet compared to 
other methods

In order to properly evaluate the generalizability 
of CancerOmicsNet, we performed a cross-validation 
at the tissue level. The entire dataset was first divided 
into nine groups of different tissues, digestive system, 
respiratory system, haematopoietic and lymphoid tissue, 
breast tissue, female reproductive system, skin, nervous 
system, excretory system, and others. Next, we conducted 
a 9-fold cross-validation, each time using cancer 

Figure 2: CancerOmicsNet architecture. (A) The input is a reduced graph constructed for the combination of a cell line and a small 
molecule inhibitor. (B) The graph is processed through a cascade of three graph convolutional blocks. Within each block, an attention-
based propagation is first utilized to pass the information among nodes, and then a graph isomorphism network is employed to update the 
embeddings for each node. (C) Node embeddings generated by all blocks in B are combined using a JK-Net layer and passed to a Set2Set 
pooling layer serving as the read-out function to acquire the final graph embeddings. At the end, graph embeddings are sent to a fully 
connected layer to predict the drug response.
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cell lines from one tissue as a validation set while the 
remaining cancer cell lines were used for model training. 
Since cell lines collected from different tissues have 
different gene expression patterns, this cross-validation 
scheme eliminates the overlap between training and 
validation data because the reduced graphs have different 
topologies. In addition, there is also a desired variability 

in feature matrices on account of different gene-disease 
associations, which depend on the cell line and tissue 
type. Essentially, each fold has entirely different training 
and validation data. Figure 4 shows a cross-validated 
ROC plot for CancerOmicsNet compared to other graph-
based methods. Indeed, CancerOmicsNet not only gives 
the highest area under the curve (AUC) of 0.83 ± 0.02, 

Figure 3: Schematic of information propagation in a graph. (A) A simple 4-node graph, in which each node contains its own 
information. The information is color coded, node 1 – green, node 2 – orange, node 3 – blue, and node 4 – purple. (B) The distribution 
of information within the graph after the first propagation step. (C) The distribution of information within the graph after the second 
propagation step. Only the information propagation to node 1 is illustrated in order to demonstrate how it receives information from higher 
order neighbors.

Figure 4: Performance of graph-based algorithms to predict the response of cancer cell lines to drugs. The performance 
of each method is cross-validated at the tissue level. CancerOmicsNet (solid blue line) is compared to the graph isomorphism network 
(GIN, dashed red line) utilizing equal propagation, and WL Tree (dotted green line) employing the Weisfeiler-Lehman graph kernel. TPR is 
the true positive rate, FPR is the false positive rate, and the gray area corresponds to the performance of a random predictor.
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but the AUC values do not vary significantly for different 
tissues, digestive system (0.85), respiratory system (0.80), 
haematopoietic and lymphoid tissue (0.81), breast tissue 
(0.82), female reproductive system (0.86), skin (0.85), 
nervous system (0.83), excretory system (0.83), and 
others (0.81).

Removing the attention mechanism, which detects 
important nodes and puts more weight on them (labeled 
as GIN in Figure 4), decreases the AUC to 0.75 ±0.04 
demonstrating that the propagation attention is an 
important component of CancerOmicsNet. Further, the 
performance of CancerOmicsNet is compared to that 
of the Weisfeiler-Lehman (WL) Tree [44]. Not only the 
AUC for WL Tree of 0.68 ±0.03 is lower than that for 
CancerOmicsNet, but since WL Tree processes one 
graph at a time, its runtimes are much longer than those 
for CancerOmicsNet featuring batch processing. Finally, 
Table 1 reports several performance metrics for two deep 
learning-based methods, CancerOmicsNet and CDRScan 
[23]. The precision quantifies the number of positive 
class predictions actually belonging to the positive class, 
whereas the recall quantifies the number of positive class 
predictions made out of all positive examples in the 
dataset. The balanced accuracy is computed as the average 
recall over all classes to addresses the imbalanced dataset 
problem [45]. The F-measure provides a single score 
balancing the concerns of both precision and recall in 
one number [46]. Encouragingly, using CancerOmicsNet 
yields up to 14% performance improvement over 
CDRScan. Overall, these results demonstrate that 
CancerOmicsNet outperforms other graph kernel and deep 
learning approaches.

DISCUSSION

In this study, we developed CancerOmicsNet, a 
graph neural network model to predict the growth rate of 
a cancer cell line after drug treatment. CancerOmicsNet 
is more advanced than many deep learning techniques 
operating in the Euclidean space [47], because it extracts 
knowledge directly from biological networks providing 
a more adequate representation of complex diseases 
such as cancer. Further, we implemented a sophisticated 
attention mechanism to propagate information more 
efficiently from the most important nodes in the graph 
when generating node embeddings. Attention mechanisms 
assigning trainable weights to nodes during information 
propagation are used to improve not only the classification 
performance [48, 49], but also the capability to generalize 
to larger, more complex, and noisy graphs [50, 51]. In 
our case, this technique allows the GNN model to direct 
more attention to kinase nodes since many of them contain 
valuable information on differential gene expression and 
the level of inhibition by small molecules across different 
cancer cell lines. As a result, the GNN achieves a better 
performance, especially against highly heterogeneous 

networks, such as cancer-specific networks employed in 
this study.

In order to evaluate the performance of 
CancerOmicsNet, we conducted a cross-validation at the 
tissue level by removing from model training all cell lines 
originating from a particular tissue and then analyzing the 
accuracy for these cell lines. We put a special attention 
to design a proper benchmarking protocol since in the 
context of predictive models, misunderstanding cross-
validation very often yields an impressive, yet grossly 
overestimated predictor performance [52]. Numerous 
examples of exaggerated results in biomedical studies due 
to a problematic cross-validation include cancer prediction 
[53], the prediction of cancer cell line sensitivity and 
compound potency [54], the identification of drug-target 
interactions [55], the prediction of optimal drug therapies 
[56], the estimation of drug-target binding affinities [57], 
and virtual screening [58]. Since multiple instances in our 
dataset share cell lines originating from the same tissue, 
employing cross-validation at the tissue level is critical 
because splitting the dataset randomly into folds would 
cause training and validation instances to have a significant 
overlap with respect to graph topology as well as certain 
features such as gene expression and gene-disease 
associations. Encouragingly, the cross-validated accuracy 
of CancerOmicsNet at the tissue level is significantly 
higher than those measured for other approaches on the 
same data. Nonetheless, we note that the applicability of 
CancerOmicsNet is at present limited to kinase inhibitors, 
while alternative methods are applicable to other classes 
of therapeutics as well. Overall, CancerOmicsNet offers a 
high performance and the desired generalizability in the 
prediction of the effect of kinase-targeted therapies on the 
cancer cell growth.

MATERIALS AND METHODS

Cancer-specific molecular networks

Input graphs are constructed by mapping multiple 
heterogeneous data, DGE, KIP, DGA, and GR, on the 
human PPI network. STRING v11 database [59] has been 
used to construct the PPI network with an edge confidence 
threshold of ≥500. The resulting network comprises 19,144 
proteins and 685,198 interactions. The DGE data were 
obtained from the curated Cancer Cell Line Encyclopedia 
(CCLE) containing the information on normally, up- and 
down-regulated genes for 749,551 associations between 
18,022 genes and 1,035 cancer cell lines [21]. The KIP 
data on the half maximal inhibitory concentration (IC50) 
for 49,348 small molecules and 411 kinases were collected 
from Team-SKI [60] and filtered at a minimum threshold 
of pIC50 (the negative logarithm of IC50) of 6.3, which 
is equivalent to 500 nM in terms of IC50. The DGA data 
were obtained from the DISEASE database [61] of 8,330 
diseases and 20,715 genes, and the DisGeNET database  
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[62] of 24,166 diseases and 17,545 genes. The association 
scores range from 1 to 10 in DISEASE and from 0.01 to 1 
in DisGeNET databases.

Growth rate inhibition data

Recent drug response metrics, GR50 and GRmax, 
quantify the proliferation with the value of growth rate 
inhibition (GR) based on time course and endpoint 
assays [35]. GR50 is the concentration of a drug at which 
GR is 0.5, whereas GRmax is the maximum measured 
GR value. Negative GRmax values correspond to the 
cytotoxic response and positive values correspond to 
the cytostatic response. In this study, we employ six 
LINCS-Dose-Response datasets, Broad-HMS LINCS 
Joint Project, LINCS MCF10A Common Project, HMS 
LINCS Seeding Density Project, MEP-HMS LINCS 
Joint Project, Genentech Cell Line Screening Initiative, 
and Cancer Therapeutics Response Portal [35]. The 
original dataset contains 632 cell lines from different 
cancer tissues and 795 small molecules tested against 
those cancer cell lines, totaling 83,162 combinations. 
After mapping the GR data to the constructed cancer-
specific molecular networks and removing those cases 
having either GR50 values set to infinity or multiple 
GR50 values for a particular cell line-drug combination, 
the final dataset comprises 359 cell lines, 29 drugs, 
and 3,549 cell line-drug combinations. The number of 
positive instances (the cytotoxic effects of drugs on cell 
lines) is 2,124, whereas the number of negative instances 
(cytostatic responses) is 1,425.

Graph reduction

A procedure devised to reduce the size of drug-
cell line networks employs the topological information 
and the biological knowledge. Two neighboring nodes 
are merged when the following conditions are met, both 
nodes are kinase proteins, share the same gene expression, 
and belong to the same GOGO [63] cluster representing 
proteins involved in similar biological processes. 
Applying the graph reduction procedure produces smaller 
graphs with the average number of nodes of 1,349 and 
the average number of edges of 12,613. Even though 
the graph sizes are significantly reduced by more than 
90%, the percentage of kinase nodes carrying most 
of the meaningful information increases from 2% to 
30%. Another advantage of reduced graphs over full-

size networks is their topological diversity created by 
differences in the gene expression profiles of various 
cancer cell lines.

Information propagation

The most widely adopted propagation protocol 
transmit the information equally without considering the 
importance of a node to its neighbors and to the graph. 
This protocol can be expressed as

     X D AD Xt t( ) / / ( )= − − −1 2 1 2 1
 Equation 1

where t is the propagation step, D is the degree matrix of 
the adjacency matrix A, and X(t) represents embeddings at 
the propagation step t. Note that the original node features 
can be denoted as the 0-th propagation step, X(0). It is 
obvious that not all nodes have the same importance to their 
neighbors. For instance, many non-kinases in our dataset 
contain no useful information because these proteins are 
normally expressed, have no association with a disease, and 
are not targets for inhibitors. The information propagated 
from such proteins should be less important compared 
to the information transmitted from kinases and other 
proteins differentially expressed and having high disease 
associations. On that account, we added a propagation 
attention mechanism to increase the importance of these 
nodes. Specifically, we implemented a mechanism to learn a 
dynamic and adaptive summary of the local neighborhood, 
which operates only in the feature space [64]. The attention 
from node i to node j, γi,j, is defined as

 γ
β

βi j

x x

x x
k N i i

e
e

i j

i k,

cos( , )

cos( , )

( ) { }

=
∈ ∪∑

 Equation 2

where N (i) denotes the neighbors of node i and β is a 
trainable parameter. Essentially, the attention is the 
softmax of feature cosine similarities between center nodes 
and their neighbors. By utilizing the attention mechanism, 
the original propagation matrix calculated from the 
degree and adjacency matrices shown in Equation 1 can 
be replaced with a new propagation matrix Γ, which 
adaptively adjusts propagation weights based on neighbor 
features. This new propagation scheme addressing the 
problem of equal weights can be expressed as

      X t t( ) ( )= −ΓX 1  Equation 3

Table 1: Performance of CancerOmicsNet and CDRScan in predicting the response of cancer cell 
lines to drugs
Method Balanced accuracy Precision Recall F-measure
CancerOmicsNet 0.781 0.764 0.770 0.766
CDRScan 0.637 0.711 0.637 0.632

Accuracy, precision, recall, and F-score are calculated based on the cross-validation at the tissue level. 



Oncotarget703www.oncotarget.com

where each entry of the propagation matrix Γ is calculated 
using Equation 2.

Node embeddings

After the information is propagated, the embeddings 
of each node need to be updated. Many techniques are 
available to generate node embeddings, and each has 
its advantages and disadvantages. Based on a series of 
preliminary experiments, we decided to implement a model 
inspired by the graph isomorphism network (GIN) [65]. The 
GIN offers an exceptional performance and has a relatively 
simple structure, which is important for our model because 
even after reduction, the cancer input data are much larger 
than typical datasets used in other fields. Briefly, the GIN 
transforms the graph isomorphism to the context of deep 
learning. Nonetheless, it employs a rather basic propagation 
scheme summing up features from all neighbor nodes. In 
order to further increase the performance, we replaced 
this simple propagation step with the attention-based 
propagation scheme shown in Equation 3. Combining the 
GIN update protocol with the propagation attention results 
in a very efficient graph convolution block expressed as

    X I' ( )= + + ⋅( ) ⋅( )Θ Γ 1 ε X  Equation 4

where Θ denotes a neural network, Γ is the propagation 
matrix calculated using Equation 2 and ε is a trainable 
parameter.

Graph readout mechanism

CancerOmicsNet employs JK-Net followed by 
a Set2Set model to generate a global representation of 
the input graph from the node-wise information. JK-Net 
exploits varying influence radii of different layers to learn 
the best representation of the entire graph. This model 
can integrate outputs from individual graph convolutional 
blocks with three strategies, the concatenation, the max-
pooling, and the LSTM attention. Considering the size of 
our data, we decided to employ the max-pooling strategy 
since it does not introduce any additional hyperparameters. 
This particular strategy performs a feature-wise max-
pooling with lower layers favoring the local information 
and higher layers mostly containing the global graph 
information. With the max-pooling scheme, JK-Net 
automatically selects the most informative neighborhood 
size for each feature coordinate. Once the information 
from different layers is aggregated, we adopted the Set2Set 
model [43] as a final attention-based readout mechanism. 
A conventional method to simply flatten all embeddings 
is unsuitable for orderless graphs, which require a 
premutation-invariant readout mechanism instead. Set2Set 
comprises three blocks, a reading block, a process block, 
and a write block. In CancerOmicsNet, the reading block 
generating embeddings for each item in the set is replaced 

by JK-Net aggregating information from multiple graph 
convolutional blocks. The process block is an LSTM that 
reads the embeddings and state generated from the previous 
processing step, and outputs a new hidden state. Finally, the 
write block is also an LSTM, which takes the hidden state 
as a context to generate the attention for each item in the 
set. Subsequently, the attention vector is combined with the 
embedding matrix using a weighted summation to generate 
new, permutation-invariant embeddings. 

Other methods to predict cancer drug response

CancerOmicsNet is compared to several other 
methods to predict the growth rate of cancer cell lines after 
drug treatment against the same dataset and employing the 
same cross-validation protocol. The graph isomorphism 
network (GIN) incorporates the graph isomorphism test to 
generate node embeddings preserving the original graph 
structure at each propagation step [65]. As a result, the 
propagation process contains not only the propagated 
information, but also the node information in the original 
graph as an extra term. The Weisfeiler-Lehman (WL) 
Tree is a widely adopted graph kernel method for graph 
machine learning [44]. This algorithm utilizes kernel 
functions and the WL graph isomorphism test to iteratively 
generate new labels for nodes and new representations for 
graphs. By iteratively propagating the information, the 
final information for each node and the entire graph can 
be extracted.

Cancer Drug Response Profile scan (CDRscan) is a 
deep learning model predicting drug response from cancer 
genomic signature [23]. CDRscan employs two input 
data, the genetic mutation information and the molecular 
profiles of drugs represented by PaDEL-descriptors [66]. 
In order to apply CDRscan to our dataset, the mutation 
information was substituted with the gene expression of 
cancer cell lines. Following the original implementation, 
the input data are passed through CNNs to extract features, 
which are then concatenated to make the final prediction. 
In the original paper, five slightly different models were 
employed in order to create an ensemble model. However, 
since there neither fundamental differences among these 
models nor a significant performance improvement of the 
ensemble model, we implemented the best performing 
single model according to the original benchmarks.

Data availability

CancerOmicsNet is open sourced and freely 
available to the academic community at https://github.
com/pulimeng/CancerOmicsNet.
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