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ABSTRACT
Background: Non-small cell lung cancer (NSCLC) is considered to have more 

than 80% of all lung cancer cases, making it the leading cause of cancer-related 
deaths globally. MicroRNA (miRNA) deregulation has been seen often in NSCLC and 
has been linked to the disease’s genesis, progression, and metastasis via affecting 
their target genes.

Materials and Methods: Our study focused on the functionality of down-regulated 
miRNAs in NSCLC. For this study, we used 91 miRNAs reported to be down-regulated 
in NSCLC. The targets of these miRNAs were chosen from miRNA databases with 
functionality in NSCLC, including miRBase, miRDB, miRTV, and others. Inter-regulatory 
miRNA-NSCLC networks were generated. Simulated annealing was used to improve 
the network’s resilience and understandability. GSEA was used to examine 24607 
genes reported experimentally in order to gain physiologically relevant information 
about the target miR-520c-3p. 

Results: The study revealed functional prominence on miR-520c-3p, down-
regulated during NSCLC. The involvement of miR-520c-3p in the PI3K/AKT/mTOR 
signaling pathway was recognized. 

Conclusions: The therapeutic usage by designing a synthetic circuit of miR-520c-
3p was explored, which may help in suppressing tumors in NSCLC. Our study holds 
promise for the successful deployment of currently proposed miRNA-based therapies 
for malignant disorders, which are still in the early pre-clinical stages of development.

INTRODUCTION

Lung cancer is the most frequent cancer globally, 
accounting for more than 1.6 million deaths per year [1, 2]. 
For therapeutic reasons, lung cancer is classified into 
Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung 
Cancer (NSCLC). NSCLC is the most prevalent cancer, 
contributing to around 85% of all cases. It is subdivided 
into three histological subtypes: adenocarcinoma 
(LUAD), squamous cell carcinoma (LUSC), and large-
cell carcinoma [3, 4]. The life expectancy for advanced 
stages with malignant tumors is only 4%. The absence 
of practical techniques and methods for early detection 
of NSCLC and its resistance to most presently available 
medications are serious issues [5]. 

In the case of NSCLC, much of the recent research 
has focused on epidermal growth factor receptor 
(EGFR) mutations and aberrant fusions of the anaplastic 
lymphoma kinase (ALK) or c-ros oncogene 1 (ROS1) 
genes [6, 7]. In contrast, chemotherapy remains the 
gold standard in treating advanced NSCLC patients 
with no druggable genetic abnormalities. The PI3K/
AKT/mTOR pathway and signaling cascade regulates 
cellular growth and metabolism. Increased activation of 
the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR 
pathway results in many cancer hallmarks such as acquired 
growth signal autonomy, apoptosis inhibition, sustained 
angiogenesis, increased tissue invasion, metastasis, and 
anti-growth signal insensitivity. As a result, this route is a 
promising target for new anticancer medicines [8]. 

https://creativecommons.org/licenses/by/3.0/
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The acknowledgment of NSCLC as a disease with 
intricate genetics has made significant progress in the 
last two decades in research on the underlying molecular 
pathways of lung carcinogenesis. This offered reason to 
believe that the notion of personalized medicine might be 
successfully implemented in the treatment of lung cancer 
in the future. 

Identifying reliable biomarkers to guide clinical 
decision-making is one of the prerequisites for developing 
personalized medicine [9]. Small, non-coding microRNA 
(miRNA) molecules’ potential quickly becomes evident 
in this environment. The potential role of miRNA-based 
biomarkers to complement radiographic modalities and 
boosting the total sensitivity and specificity of the lung 
cancer screening process is now being studied in the 
context of personalized medicine [10]. Deregulation in the 
expression of various miRNAs has been observed during 
NSCLC, which aids in tumor growth and progression 
(Figure 1).

Because of the widespread role of miRNAs 
in human diseases, including all cancer types, new 
therapeutic strategies have been developed based 
on the identification and validation of miRNAs that 
are causally involved in the disease process and the 
effective regulation of target-miRNA function by drugs. 
Many researchers have used cell lines, matched tissue 
samples, and blood samples to conduct miRNA profiling 
investigations in NSCLC. miRNA profiling assays based 

on micro-arrays offer a reliable way to screen hundreds of 
miRNAs. Well-documented miRNA signatures have been 
identified in the literature [11]. Several miRNAs have 
recently been discovered to target critical cancer-related 
immunological pathways and immune cell secretion of 
immunosuppressive or immune-stimulatory substances 
[12, 13]. The clinical trial of a synthetic oligonucleotide 
“MiRavirsen” (SPC3649), homologous to miR-122 that 
can sequester and limit the functionality of this miRNA, 
has recently been expanded to a long-term phase 2 study 
for patients with chronic hepatitis C virus genotype-1 
infection [14]. 

Our research focuses on identifying down-regulated 
miRNAs in NSCLC and their role in tumor progression 
inhibition. Due to down-regulation in the expression of 
specific miRNAs, targets such as PI3K/AKT, PDK1, 
PDK2, CDK1, and others are enhanced. It is critical to 
recognize these significant miRNAs if they are to be used 
as therapeutic interventions in the future.

RESULTS

Inter-regulatory miRNA-NSCLC associated 
network construction

A thorough literature review was conducted to 
accumulate a list of chosen miRNAs based on scientific 
literature searches/published miRNA data or a collection 

Figure 1: Representation of deregulation of miRNAs during NSCLC aiding in tumor progression.
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of differentially expressed miRNAs discovered using array 
or sequencing methods [15–17]. In this study, we used 
an enlisted 91 miRNAs reported to be down regulated 
in NSCLC. The targets of these miRNAs were chosen 
from miRNA databases with functionality in NSCLC, and 
subsequently, inter-regulatory miRNA-NSCLC networks 
were generated. Simulated annealing was used to improve 
the network’s resilience and comprehensibility. The 
simulated annealing algorithm analyses and positions each 
node such that the most clustered or weighted nodes on the 
entire network are on the bottom. In contrast, nodes with 
fewer clusters are placed in the upper section in descending 
order. let-7a-2 was placed first and miR-520c-3p was 
placed second most bottom in the simulated annealing 
layout network. The entire network was analyzed using 
parameters like Betweenness Centrality, Degree of Nodes, 
Edge Betweenness, Closeness Centrality, Clustering 
Coefficient, and others to present a condensed and robust 
nature of the inter-regulatory miRNAs network with their 
putative targets (Figure 2A, 2B and Table 1). 

Identification of significantly linked regions in 
the miRNAs-target network

The significantly linked regions in the miRNAs-
target network were identified using Cytoscape filters, 

where 1-56 out degree nodes were inclusive and the 
CytoHubba plugin. In Figure 3, the CytoHubba was used 
to find the most valuable modules and top-ranked nodes in 
the entire network. MCC, DMNC, MNC, EPC, Radiality, 
Degree centrality, Closeness centrality, Betweenness 
centrality, Edge Betweenness, Clustering Coefficient, 
and Stress centrality are the 11 scoring methods that 
were utilized to identify the main functional modules 
and top-ranking miRNAs/targets in the network using 
the CytoHubba. Each scoring technique yielded the top 
10 nodes in the network. Based on their occurrence in 
each of the top 10 scoring methods, the top 5 miRNAs 
are represented in Figure 3A and 3B. miR-520c-3p 
was the most prominent in the analysis, as mentioned 
above. The CytoHubba rank table has been provided in 
Supplementary Table 1.

The importance of identified miRNAs on the 
overall network was calculated using an inter-regulatory 
miRNAs hub network (Figure 4). The identified 
miRNAs were miR-520c-3p, miR-493-5p, miR-181b-1, 
miR-30b-5p, miR-30d, miR-125b-15p, miR-9-5p, let-
7a-2. MiR-520c-3p was chosen because it has the most 
prevalence across the entire inter-regulatory miRNAs 
network generated and filtered by the Cytoscape filters 
and the CytoHubba analysis. To be considered for use as 
a therapeutic intervention, miRNAs must be unique and 

Figure 2: (A) The inter-regulatory miRNA network after running simulated annealing algorithm showing placement of highly clustered 
miR-520c-3p. (B) The simulated network in circular layout demonstrating the strength of chosen miRNAs over the whole network.
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have low participation in the cells’ conventional metabolic 
processes.

The various analyses show that the identified 
miRNAs were not chosen at random.

The BiNGO plugin helped to find the GO categories 
significantly over-represented in a collection of genes 
or a biological network sub-graph [18]. The Biological 
Networks Gene Ontology tool (BiNGO, version 3.0.3; 
http://apps.cytoscape.org/apps/bingo) was used to 
investigate and display the biological processes and 
cellular components of identified hub miRNAs and targets. 
As an outcome, a graph depicting the gene ontology 
words overrepresented in the network (Figure 5 and Table 
2) and a table including the data, including the p-value, 
corrected p-value, and cluster frequency, were generated 
(Supplementary Table 2), where the identified miRNAs 
show involvement in various biological pathways which 
are shown in Table 1.

Enrichment map analysis conducted shows the 
pathways sharing several genes are represented as circles 
(nodes) linked by lines (edges). Enrichment Score (ES) 
colors the nodes and the number of genes shared by the 
associated pathways determines the size of the edges. The 
nodes were organized so that substantially comparable 
gene sets were clustered together; these clusters were 
recognized and linked to biological activities. The 
Enrichment Map visualized the gene-set enrichment 
results. Edge thickness was proportional to the overlap 
between gene sets, computed using the Jaccard or overlap 
coefficients. Node size reflected the number of genes in 
the gene set; edge thickness is proportional to the overlap 
between gene sets, determined using the Jaccard or 
overlap coefficients. 

The enrichment map acknowledged the significant 
involvement of identified miRNAs in vital pathways 
such as immune response, cell signaling, cell growth, 
cell proliferation, etc. (Supplementary Table 3). The 
enrichment map is represented in Figure 6 and Table 3 
with their respective p-value validating the contribution of 

identified miRNAs down-regulated during NSCLC aiding 
in tumor progression.

Enrichment analysis of miR-520c-3p via gene-set 
enrichment analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) method 
was used for analysing microarray data at the gene set 
level [19]. Prior biological knowledge, such as published 
information on metabolic pathways or co-expression in 
previous studies, was used to identify the gene sets. We 
considered the GSEA’s capability where 24607 genes 
were analysed to give physiologically relevant insights for 
miR-520c-3p for proportionate background information 
(Supplementary Table 4). We explored the enrichment/
expression of miR-520c-3p in BEAS-2B vs. A549 cells. 
Gene set enrichment analysis for BEAS-2B vs. A549 cells 
shows gradual decrease in expression of miR-520c-3p 
indicating negative correlation with tumor gene expression 
(A549 cells) as it was differentially expressed during 
NSCLC.

The plot’s middle section displayed where the gene 
set’s members appeared in the ranked list of genes. The 
gene set data was only for miR-520c-3p; it appears in 
only one color (black). The ranking metric assesses the 
relationship between a gene and a phenotype—the ranking 
metric’s value shifts from positive to negative as we move 
down the ranked list. A positive value correlates with 
the first phenotype, whereas a negative value indicates 
a correlation with the second phenotype. miR-520c-3p 
appears to be connected in both positive and negative 
correlation as it is involved in both the first and second 
phenotype of genes playing a role in NSCLC (Figure 7).  

Pathway enrichment analysis of identified 
miRNAs

Pathway enrichment analysis is critical in using a 
current understanding of genes and biological processes 

Table 1: Network analysis depicts the network’s resilience depending on various parameters
Statistical Summary
Number of nodes 804
Number of edges 1278
Avg. number of neighbors 3.354
Network diameter 10
Network radius 5
Characteristic path length 4.453
Clustering Coefficient 0.005
Network Density 0.005
Connected Components 28
Network heterogeneity 1.920
Network centralization 0.069

http://apps.cytoscape.org/apps/bingo
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to analyse high-throughput data [20]. The heatmap was 
generated for seeking relationships of identified miRNAs 
with various cellular pathways via DIANA Tools. The 
database utilized for generating the heat map was Gene 
Ontology and micro-TDS. The resulting heatmap depicted 
that the down-regulated miRNAs during NSCLC acted 
primarily on cell death, TLR-Signaling, response towards 
stress, cell cycle regulation, immune response process, 
etc., (Figure 8). The pathway enrichment analysis results 
made the picture clear that differential expression of 
miRNAs plays a significant role in tumor progression in 
NSCLC. If down-regulated miRNAs were expressed in 
normal conditions, cell-cycle regulation, cellular growth 
progression, cell proliferation, etc., would have been 
supervised wisely. 

Mutagenesis during NSCLC

The genes that were mutated the most were crucified 
from TCGA database for NSCLC. The resulting graph 
shows that TP53 (p53) has the most mutations; followed 
by KRAS, FAT4, STK11, EGFR, and others (Figure 9). 

Mutagenesis research was essential for selecting 
therapeutic targets since mutations in targeted genes via 
miRNAs would impair the function of identified miRNAs.

Sequence-based miR-520c-3p target prediction 
analysis

MiR-520c-3p was identified as the most prominent 
down-regulated miRNA in NSCLC based on the studies 
mentioned above. It was essential to search its targets 
since it significantly impacted several immunometabolic 
pathways, which were down-regulated, resulting in 
tumor growth. It was achieved using tools4miR; further, 
TargetScan provided the complementary seed sequences 
of miR-520c-3p and their respective targets, and the 
KMP algorithm validated the results from TargetScan. 
Tools4miR gave comprised assessment of miR-520c-3p 
possible targets via eight databases, including miRanda, 
PITA, MiRmap, MicroTar, etc. (Supplementary Table 5). 

The complementary seed sequences of miRNAs 
with their respective targets and the location where 
complementary base pairing occurred were given by 

Figure 3: (A) Substantial modules based on Betweenness centrality; Closeness centrality; Degree Distribution; Edge percolated 
Component (EPC); Radiality; Maximum Clique Centrality (MCC); and Bottleneck were identified from the leading network. From top to 
bottom, red to light yellow in modules denotes the rank. (B) The top 5 ranked miRNAs are graphically represented based on their frequency 
of occurrence in the 11-scoring method of CytoHubba. 
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TargetScan. The properties of original context scores 
(i.e., site type, 3′-supplementary pairing, local AU 
content, and distance from the nearest 3′-UTR end) are 
taken into account by TargetScan. mRNAs were ranked 
with conventional 7–8nt miRNA sites in their 3′ UTRs. 
TargetScan predictions included both the context++ scores 
and the current isoform information (Table 4). 

KMP algorithm gave positive relation of miR-520c-
3p with respective targets from the AKT/PI3K signaling 
pathway. It was confirmed as in every mRNA transcript 

variant of AKT1, AKT1P, CDK2, FOXO3, CDK19, 
and EGFR, the seed sequence for complementary base 
pairing with miR-520c-3p was present (Supplementary 
Material 1).

The findings strongly suggested miR-520c-3p’s 
participation in the AKT/PI3K signaling pathway. The 
PI3K/AKT/MTOR pathway has been implicated in 
carcinogenesis and disease progression in NSCLC. Up-
regulation of the AKT pathway has also been seen in 
a substantial number of NSCLC patients. In a study of 

Table 2: Identified miRNAs with their respective targets retrieved via BINGO analysis in tabulated 
manner showing involvement of identified miRNAs in inflammatory and immune mechanisms
GO-ID p-value Description
5515 8.97E-11 protein binding
50794 1.01E-10 regulation of cellular process
50789 9.07E-10 regulation of biological process
65007 1.32E-09 biological regulation
51270 3.28E-09 regulation of cellular component movement
1944 8.72E-09 vasculature development
1568 1.03E-07 blood vessel development
30154 5.26E-07 cell differentiation
10646 6.86E-07 regulation of cell communication
2520 7.67E-07 immune system development
35466 9.90E-07 regulation of signaling pathway
30334 1.08E-06 regulation of cell migration
48514 1.44E-06 blood vessel morphogenesis
43068 4.76E-06 positive regulation of programmed cell death
43065 4.43E-06 positive regulation of apoptosis
10942 5.49E-06 positive regulation of cell death
51271 9.87E-06 negative regulation of cellular component movement
70482 3.26E-05 response to oxygen levels
30336 3.88E-05 negative regulation of cell migration
8285 7.93E-05 negative regulation of cell proliferation
7166 9.04E-05 cell surface receptor linked signaling pathway
6917 1.70E-04 induction of apoptosis
12502 1.77E-04 induction of programmed cell death
82 2.56E-04 G1/S transition of mitotic cell cycle
1666 2.78E-04 response to hypoxia
1525 3.42E-04 angiogenesis
10746 2.64E-03 regulation of plasma membrane long-chain fatty acid transport
51329 3.01E-03 interphase of mitotic cell cycle
30308 3.01E-03 negative regulation of cell growth
43029 5.29E-03 T-cell homeostasis
1569 6.09E-03 patterning of blood vessels
31323 6.75E-03 regulation of cellular metabolic process
51726 6.96E-03 regulation of cell cycle
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110 NSCLC tumors, immunohistochemistry indicated 
that 51% had elevated AKT activation. There was also a 
link between AKT activation and enhanced mTOR and 
forkhead activity, key AKT downstream targets.

Survival assessment of down-regulated miRNAs’ 
identified targets

The Kaplan Meier (KM) Plotter was used to 
considerably evaluate the specific gene expression in 
Non-Small Cell Lung Cancer progression to validate 
our results. Briefly, eight genes (AKT1, AKT2, PDPK1, 
PDK2, NF-κB, PI3K, PTEN, and TP53) were uploaded 
into the database, and samples were separated into two 
cohorts based on median gene expression (high vs. low 
expression) to generate Kaplan-Meier survival graphs, 
with the number-at-risk (Figure 10). 

High mRNA levels of AKT1, AKT2, PDPK1, 
PDK2, NFKB, and PI3K predicted poor overall survival 
(OS) in all NSCLC patients, whereas low mRNA levels 
of PTEN and TP53 were found to indicate worse overall 
survival (OS) in all NSCLC patients. With the use of HR 

ratios of certain genes, this may be better understood. 
The hazard ratios of AKT1 = 0.68, AKT2 = 0.76, PDPK1 
= 0.39, PDK2 = 0.46, NFKB = 0.61, and PI3K = 0.54, 
respectively, indicate lower overall survival, but the hazard 
ratios of PTEN and TP53 are 2.14 and 1.25, respectively, 
suggesting worse overall survival. 

In Non-Small Cell Lung Cancer, it was discovered 
that the PI3K/AKT signaling pathway promotes cell 
survival, proliferation, and angiogenesis in response to 
extracellular signals. AKT1, AKT2, PDPK1, PDK2, NF-
κB, PI3K, PTEN, and TP53 are all critical components in 
this pathway. The Kaplan Meier Plotter may be used to 
connect the mRNA expression patterns of these genes to 
the course of Non-Small Cell Lung Cancer.
Survival analysis

The Cancer Proteome Atlas (TCPA) created a Kaplan 
Meier (KM) plot for miR-520c-3p targets AKT1, AKT2, 
AKT3, MTOR, NF-κB (RelA), PDK1, PI3K, and PTEN. 
The survival plot analysis revealed that patients with high 
expression of AKT1, AKT2, AKT3, MTOR, PTEN, PI3K, 
and NF-κB (RelA) have a worse survival rate. Patients with 

Table 3: Immune and inflammatory pathways affected due to down-regulation of identified 
miRNAs tabulated
Enrichment 
Map: Name Enrichment Map: GS_DESCR p-value

GO.0045089 positive regulation of innate immune response 0.0021
GO.0045088 regulation of innate immune response 0.0000103
GO.0090087 regulation of peptide transport 6.91E-06
GO.0071347 cellular response to interleukin 1 0.005
GO.0071345 cellular response to cytokine stimulus 0.000000324
GO.0070498 interleukin-1-mediated signaling pathway 0.00082
GO.0002376 immune system process 4.52E-08
GO.2001020 regulation of response to DNA damage stimulus 0.0015
GO.1902882 regulation of response to oxidative stress 4.80E-05
HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 1.55E-05
HSA-176407 Conversion from APC/C: Cdc20 to APC/C:Cdh1 in late anaphase 1.15E-05
GO.0090092 regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 8.12E-06
GO.0070482 response to oxygen levels 4.38E-09
GO.0090090 negative regulation of canonical Wnt signaling pathway 5.60E-04
HSA-198693 AKT phosphorylates targets in the nucleus 0.006
HSA-1257604 PIP3 activates AKT signaling 3.04E-13
GO.1901992 positive regulation of mitotic cell cycle phase transition 9.80E-04
GO.0090068 positive regulation of cell cycle process 3.18E-05
KW-0072 Autophagy 0.0059
GO.0045937 positive regulation of phosphate metabolic process 3.25E-05
GO.0031325 positive regulation of cellular metabolic process 1.43E-39
KW-0043 Tumor suppressor 5.20E-05
KW-0053 Apoptosis 1.52E-08
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high PDK1 expression had a higher survival rate (Figure 11). 
Cox′s proportional hazards (Cox P) value model is similar 
to a multiple regression model. It allows for comparing the 
survival times of different patients while taking other factors 
into account. The log-rank test is used to perceive if there 
is a difference in survival times across groups. However, it 
does not take into account the other explanatory variables. 
A positive coefficient in a Cox regression implies a worse 
prognosis, whereas a negative coefficient suggests a 
protective impact of the linked variable. The Cox-P value of 
PTEN, PI3K, PDK1, AKT1, AKT2 & AKT3 showed low 
hazard value (Table 5). Thus, survival analysis validates 
PI3K/AKT signaling pathway as targets. 
Comparative analysis (normal vs. tumor) of targeted 
genes

A comparative analysis was used to investigate the 
connections between a targeted gene and clinical variables 
within a given dataset. Boxplots depict the expression 
levels of the targeted genes of miRNA in the patient 

groups, with p values for expression differences indicated. 
According to the boxplots analysis, tumor expression of 
AKT1, AKT2, and PDK1 is higher than the normal. There 
are no substantial changes in MTOR, NF-κB (RELA) 
expression. The expression of PDK2 and PTEN is lower 
in tumor than in normal. Because TP53 is mutated, it has a 
high expression level in NSCLC tumors (Figure 12).

Synthetic circuit designed for the controlled 
elevation of expression of miR-520c-3p

The program Tinker cell was used to design 
a synthetic circuit for miR-520c-3p (Figure 13). A 
genetic circuit is made up of a genetic toggle switch 
and a repressilator. The toggle switch’s repressing 
genes encoded the repressor for the gene. The working 
mechanism of the designed circuit was based on the 
Lac operon system, where Lac R remains bonded to the 
operator region in the OFF state, inhibiting miR-520c-3p 

Figure 4: Inter-regulatory miRNA hub network generated which represents significance of identified miRNAs on 
entire network. Yellow colored nodes depict identified miRNAs and Cyan blue colored nodes are its respective targets.
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expression. Lac R binds to the inducer in the presence of 
an inducer (IPTG), putting the circuit in the ON state, 
expressing miR-520c-3p with GFP as the reporter protein 
(Figure 10). The orthogonality and modularity of the 
designed synthetic circuit were examined via Complex 
Pathway Simulator (COPASI), Gene Regulatory Network 
Inference Using Time Series (GRENITS). The Boolean 
technique was used to model qualitative networks using 
BoolNet [21].

The genetic circuit was simulated for 100-time 
points at different concentrations using deterministic 
simulation. The resulting variations in the protein level 
concerning change in dissociation constant (Kd) are 
addressed in two situations based on the Kd values (cases 
1 and 2). In case 1, where the Kd value of Lac R was 
increased, which decreased the Kd value of miR-520c-3p 
and GFP protein showcasing the OFF state of the system. 
Case 2 is where the Kd value of IPTG was elevated/

Table 4: TargetScan results depicting association of miR-520c-3p with PI3K/AKT signaling 
pathway

Targets of miR-520c-3p Predicted Consequential pairing of Target region 
(top) and miRNA (bottom) Site type Context++  

score
Position 768-774 of AKT 3′ 
UTR

hsa-miR-520c-3p

7 mer-m8 -0.15

Position 415-421 of AKTP 3′ 
UTR

hsa-miR-520c-3p

7 mer-m8 -0.2

Position 205-211 of CDK2 3′ 
UTR

hsa-miR-520c-3p

7 mer-A1 -0.22

Position 4574-4580 of EGFR 
3′ UTR

hsa-miR-520c-3p

7 mer-m8 -0.11

Position 191-198 of FOXO3 
3′ UTR

hsa-miR-520c-3p

8mer -0.03

Position 264-270 of CDK19 
3′ UTR

hsa-miR-520c-3p

7 mer-m8 -0.19

Position 9154-9160 of TLR4 
3′ UTR

hsa-miR-520c-3p

7 mer-m8 -0.15

Table 5: Cox P value and Log-Rank P value of targeted proteins
Target Proteins Cox P value log-Rank P
AKT1, AKT2, AKT3 0.35081 0.49181
MTOR 0.57039 0.64953
NF-κB, Rel A 0.46215 0.60575
PDK1 0.33433 0.87617
PI3K 0.25909 0.093684
PTEN 0.1277 0.17828
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incorporated, which increased the Kd value of miR-520c-
3p, GFP proteins and decreased the Kd value of Lac 
R, showing the ON state of the system. These findings 
suggest that the toggle switch is flipping; indicating that 
the built toggle switch made up of miR-520c-3p is bistable 
and that there is a direct connection between the miR-
520c-3p and the toggle switch repressilator’s LacI. 
Validation of the designed synthetic circuit 

The model was validated using both qualitative 
and quantitative methods. The genetic circuit’s ODE 
model was created, providing insight into the circuit’s 
regulation process. The Bioconductor software created 
a gene regulatory network for the genetic circuit [22]. 
The time-series data for qualitative and quantitative 
network modeling was acquired and simulated using 
COPASI. The circuit model was stable; therefore, the 
linear network was built. The GRENITS software was 
used to do qualitative network modeling, which provided 
the likelihood of each regulator in the regulatory network 
circuit. Using default settings, the posterior probability 
was calculated using a Monte Carlo–Markov chain 

simulation. Two Markov chains were created during the 
simulation, and the network’s connection probability is 
calculated based on their convergence. The regulatory 
network circuit gave a probability matrix, analysis, and 
a convergence graphic. Network inference was observed 
for 10 and 100-time points to understand the regulatory 
mechanism in the circuit, where a probability of 1 
indicates that there is regulation between the respective 
regulators. In contrast, a probability of 0 indicates that 
there is no regulation. 

The connection probability between the Lac I 
belonging to the repressilator and miR-520c-3p of the 
genetic toggle switch was shown in the analysis plot of 
the genetic circuit, which offers insight into the switching 
behaviour. The color blue in the figure represents a 
probability of one. The probability of 1 between the two 
genes miR-520c-3p and Lac R is shown in the analysis 
plot. The Lac R and miR-520c-3p genes were likewise 
found to be related since the probability between them was 
also 1. The marginal network uncertainty graphic shows 
the top regulators in the circuit. The network uncertainty 
plot provides network uncertainty. miR-520c-3p and 

Figure 5: Bingo visualization of identified miRNAs shows significant involvement in protein binding activity, signal 
transduction, GTPase activity, cytokine binding, transforming growth factor beta binding and more which are 
involved in various biological and immunological processes. The darker and larger the size indicates more involvement of 
identified miRNAs.
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Lac R were the major regulators in the network model 
(Figure 13). 

The best-fit method was used to create a Boolean 
network from time-series data. The Boolean network 
developed for miR-520c-3p has a total of two states. 
1 (active state) and 0 (inactive state) symbolize the 2 
states (inactive state). After observing state transitions, 
the network circuit reaches stable states (attractors). 
The bistability of the circuit created was shown by two 
attractors in the genetic circuit. The two stable states 
produced for each gene in the circuit reflects the ON 

and OFF states, with 0 indicating the OFF state and 1 
indicating the ON state. The attractor plot manifests 
that during the OFF state, Lac R presence deprives the 
expression of miR-520c-3p and GFP; however, in the 
ON state, after incorporating IPTG, Lac R binds to IPTG, 
leaving the operator open for RNA polymerase to move 
forward and transcribe the genes ahead, i.e., miR-520c-
3p and GFP (Figure 13). It shows each gene’s active and 
inactive states at various times. Further, the therapeutic 
aspect of the designed genetic circuit can be explored in-
vitro and in-vivo. 

Figure 6: Enrichment map generated for identified miRNAs.
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DISCUSSION

Several studies have reported on the involvement 
of miRNAs in cancer development or regression. The 
results have been acclimatized to the clinical application 
after much effort. The use of miRNA as a therapeutic 
intervention in the treatment of NSCLC might lead to 
innovative therapies for the disease. Therapy based on 
miRNA mimics or miRNA-mediated suppression of 
carcinogenic mRNA should yield promising outcomes 
with minimal side effects. Our study’s significant findings 
suggest and clarify the significance of miR-520c-3p as a 
possible innovative treatment for NSCLC. 

The main advantage of miRNA as a therapeutic 
agent is that it may target many genes in redundant 
pathways to develop Non-Small Cell Lung Cancer. This 
result suggests that miRNA might be utilized to suppress 
pro-tumoral pathways, making it more attractive than a 
combination of siRNAs, which is already being employed 
as a treatment.

Furthermore, because of the small size of the 
miRNA sequence, mutations are sporadic, and resistance 

to miRNA treatments would almost certainly need many 
mutations in various genes. Furthermore, multiple studies 
have shown that even minor changes in the expression of 
miRNAs and their related targets may cause phenotypic 
changes, bolstering the hypothesis that correcting a 
small number of miRNAs might reverse the malignant 
phenotype.

The purpose of the study was to look into the 
functioning of the miRNAs that were down-regulated 
during NSCLC. miR-520c-3p, miR-181b-1, miR-493-5p, 
let-7a-2, miR-92a-1-3p, miR-30b-5p, miR-106-5p, miR-1-
3p, miR-15a, miR-125b-1-5p, miR-30d, miR-17/92, miR-
182-3p, miR-9-5p, and miR-520a-3p were determined to 
be the key miRNAs after generating an inter-regulatory 
miRNA network for NSCLC. Furthermore, literature 
evidence and network processing revealed miR-520c-
3p (downregulated) as the most prominent candidate. 
In other kinds of cancer, miR-520c-3p serves as an 
oncomiR, but it supports tumor suppression in NSCLC. 
Seed sequence analysis confirmed its participation in 
the PI3K/AKT/mTOR signaling pathway, which was 
predicted by pathway enrichment studies. The PI3K/AKT/

Figure 7: The position of the maximum enrichment score (ES) and the leading-edge subset are plotted in the running 
sum for S in the data set. Enrichment analysis of miR-520c-3p in BEAS-2B vs. A549 cells is represented. 
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Figure 8: Heat-map generated for identified down-regulated miRNAs during NSCLC. 

Figure 9: Frequently mutated genes during NSCLC vs. percentage of cases affected.
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mTOR pathway has been implicated in carcinogenesis 
and disease progression in NSCLC (Li X et al., 2019) 
(Figure 14). Another way to treat cancer is to provide 
tumor-suppressive miRNAs to cancer cells. To target 
tumor-promoting mRNAs, synthetic double-stranded 
miRNA mimics, pre-miR, or plasmid-encoded miRNA 
genes substitute for missing tumor-suppressor miRNAs. 
miR-520c-3p, which is aberrant in NSCLC, plays an 
important role in tumor suppression. The administration 
of miR-520c-3p mimics to cancer cells may have a growth 
inhibitory impact; making miRNA mimics a possible 
cancer therapeutic option.

Several miRNA therapeutic techniques, such 
as intratumoral injections and viral vector-mediated 

modulation of miRNA expression as delivery channels, 
are unlikely to be used in a clinical setting. Intratumoral 
injections could only be utilized for a small number of 
easily accessible tumors, as accessing the lungs with 
a tumor in NSCLC may appear hard. Similarly, using 
viral vectors to modulate miRNA expression might have 
some drawbacks to gene therapy, such as low infectivity 
and issues with gene product transcription. Furthermore, 
cancer cells cannot usually mature miRNA precursors, 
making viral vector expression as a less desirable 
option.

However, using mimics as therapy might be 
inconvenient in the future since there will be no way to 
control the expression of the desired miR-520c-3p. We 

Figure 10: Expression Plots of (A) AKT1, (B) AKT2, (C) CDC2, (D) NFKB1, (E) TP53, (F) PDK1, (G) PDK2, (H) PI3K and (I) PTEN, 
respectively. The Kaplan Meier Plotter database evaluated the predictive impact of AKT1, AKT2, CDC2, NF-κB, TP53, PDPK1, PDK2, 
PI3K and PTEN expression NSCLC development. The red line indicates patients with expressions above the median, whereas the black 
line indicates patients below.



Oncotarget739www.oncotarget.com

attempted to leverage the functionality of miR-520c-3p 
as a therapeutic intervention by constructing a synthetic 
genetic circuit of miR-520c-3p that will act in a regulated 
manner. In the future, the developed genetic synthetic 
circuit may aid in tumor suppression by increasing  
miR-520c-3p expression in a controllable way, which will 

then target and block the PI3K/AKT/mTOR signaling 
pathway. The problems of miRNA treatment, on the other 
hand, must be addressed. miRNAs are unstable in the 
body due to numerous ribonucleases and RES clearance, 
as previously stated. Furthermore, their negative charges 
make it difficult for them to cross the cell membrane or 

Figure 11: The plot represents survival probability vs. survival time of patients in days.  Survival Analysis of (A) AKT1, 
AKT2, AKT3; (B) MTOR; (C) NF-κB, RelA; (D) PDK1; (E) PI3K; (F) PTEN with survival time period. Red colored line represents the 
high expression and Blue colored line depicts low expression of the respective genes during NSCLC.
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the vascular endothelium. Even if they reach the interior 
of a cell, they are degraded by endolysosomes. It is critical 
not to damage healthy tissue to enable optimal cancer 
cell-specific delivery. The tumor micro-environment 
acts as a barrier and inhibits effective miRNA transport, 
whereas impaired blood perfusion in tumors reduces 
systemic delivery of miRNAs. Tumor-associated immune 
cells (macrophages, neutrophils, and monocytes) can 

absorb miRNAs encapsulated in the delivery system non-
specifically in the tumor micro-environment. More studies 
will be needed to attempt new techniques in delivering 
therapeutic miRNA-built genetic synthetic circuits to 
solve these issues.

The obstacles to future miRNA therapeutic 
development, such as improving miRNA stability, 
delivery, and regulation of off-target effects, must be 

Figure 12: Comparative analysis plot (Normal vs. Tumor). The differential expression of (A) AKT1, (B) AKT2, (C) mTOR, (D) 
RELA, (E) PDK1, (F) PDK2, (G) PTEN, (H) TP53 targeted genes during NSCLC in different progression states ranging from tumors to 
normal. The statistical significance of differential expression of genes is shown as p-value.
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addressed. We expect some of the miRNA techniques 
mentioned above to be further improved to increase 
specificity and efficacy. These will eventually be utilized 
to treat lung cancer patients, either alone or in conjunction 
with chemotherapy.

MATERIALS AND METHODS

Collection of data

Data on miRNAs linked to NSCLC was gathered 
from publicly available databases such as miRTV, 
miRBase, and scientific literature searches and then 
confirmed using the TCGA database. The literature review 
dataset was created for downregulated miRNAs in NSCLC 
and their corresponding targets [23–25].
Construction of an inter-regulatory miRNA-NSCLC 
associated network

We built the bipartite network in this study by 
mapping pairs of miRNA-NSCLC interactions and 

visualizing it with Cytoscape v3.8.2. The miRNAs with 
their respective target attributes to the nodes and their 
interaction is represented as edges. Consequently, the 
miRNA-NSCLC association network that was created 
offers information on the role of miRNA in NSCLC. 
The network was constructed based on a dataset for 
downregulated miRNAs with targets in NSCLC. 
Cytoscape is modular, and applications may extend 
networks with new features (known as plugins) [26].

Gene ontology, StringApp, enrichment map, and 
CytoHubba plugins

CytoHubba was used to evaluate the created 
networks [27]. The top ten nodes in CytoHubba were 
selected depending on the metrics (local and global). The 
Cytoscape plugin program BiNGO v3.0.3 collected GO 
annotations for the targeted genes identified [28]. BiNGO 
retrieved the overrepresentation of GO categories in 
a subgraph of a biological network, which is displayed 
on Cytoscape, using the input list of targeted genes. The 

Figure 13: (A) Designed synthetic genetic circuit for miR-520c-3p. (B) Deterministic simulation of the designed genetic synthetic circuit. 
(C) Convergence plot of designed genetic synthetic circuit indicating all the parts in the pool is in working mechanistic aspect as all 
variables are on the line; Gamma: indicator variable of Gibbs variable selection, B: coefficient of linear regression, Lambda: precision of 
each regression, Mu: intercept of each regression. (D) Attractor state depicting the ON and OFF state of the synthetic circuit (E) Network 
uncertainty plot of the synthetic circuit depicting connections between the relation between repressor (Lac R) and expression of the genes 
ahead (miR-520c-3p and GFP). (F) Designed genetic synthetic circuit wired in a manner that makes Lac R the central switch.
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Benjamini and Hochberg correction was used to give 
tight control over the false discovery rate under positive 
regression dependence of the test statistics, and the 
hypergeometric test P-value was adjusted at 0.05. The GO 
hierarchy was displayed as overrepresented GO categories 
after statistical analysis. StringApp plugin in Cytoscape 
was used to obtain miRNA–gene interaction data [29]. 
We considered connections with an edge interaction 
confidence cut-off of > 0.4 (medium confidence), as 
indicated by the StringApp, with 1 being the highest 
possible confidence and 0 being the lowest. 

The Enrichment Map Cytoscape plugin loaded 
gene-set definition and enrichment table files, and then 
filtered for significance using the user-defined p-value and 
FDR criteria [30, 31]. The Jaccard coefficient and overlap 
coefficient was used to calculate the overlap between 
important gene sets and miRNAs.  

Cell-line

The BEAS-2B (normal human bronchial epithelial 
cell line) obtained from American Type Culture Collection 
(ATCC) was used in this study. It was maintained in 
BEGM™ Bronchial Epithelial Cell Growth Medium 

BulletKit™. A549 human non-small cell lung carcinoma 
(NSCLC) cell lines obtained from Cell Repository, 
National Centre for Cell Science, Pune. It was cultured 
in Ham’s F-12K (Kaighn’s) Medium, supplemented 
with 10% fetal bovine serum (FBS), penicillin (100 U/
mL), and streptomycin (100 mg/mL). Both the cells 
were maintained and cultured in a humidified incubator 
containing 5% CO2 at 37°C conditions.

Transcriptome sequencing

A549 cells (lung adenoma-carcinoma) and BEAS-
2B cells were used to extract RNA, build a cDNA library, 
and perform whole transcriptome sequencing. For the 
RNA samples’ preparation, 3 μg of RNA per sample was 
utilized as the input material. Illumina Novoseq was used 
to generate the sequencing data. FastQC and MultiQC 
applications were used to assess the data quality.

Gene-set enrichment analysis

GSEA was used to quantify the significance of 
multiple perturbations [32], cell transcriptional responses 
or perturbations, and massive gene expression profiling 

Figure 14: Representation of PI3K/AKT signaling pathway in Non-Small Cell Lung Cancer (NSCLC), where AKT has 
been found to mediate a variety of cellular processes required by tumor cells for survival, including protein synthesis, 
glucose metabolism, cell cycle progression, anti-apoptosis, tumor cell angiogenesis and lymphangiogenesis activity for 
survival, proliferation, metastasis, and invasion. Indirectly, AKT has been found to affect the tumor suppressor function of p53.
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datasets for miR-520c-3p in NSCLC (BEAS-2B vs. A549 
cells). GMT, CLS, and GCT files were created as input 
files for GSEA analysis using gene expression profiles 
of miR-520c-3p in NSCLC (BEAS-2B vs. A549 cells), 
gave information about the expression of miR-520c-3p in 
NSCLC. 

Pathway enrichment analysis

DIANA-miRPath v3.0 package analyzed miRNA 
regulatory functions and identified regulated pathways. 
The DIANA-miRPath v3.0 database and capabilities have 
been greatly expanded to include all KEGG molecular 
pathway studies (http://www.microrna.gr/miRPathv3) 
[33]. The selected miRNAs from network analysis were 
loaded for analyzing their enrichment in the particular 
molecular/signaling pathways. The webserver used 
absolute P-values (option: ‘Significance Clusters’). A heat 
map of miRNAs vs. pathways was generated, representing 
the relationship and pattern between selected miRNAs 
with their involvement in particular pathways examined 
regarding NSCLC. 

Sequence-based miR-520c-3p target prediction 
analysis via TargetScan, KMP algorithm, and 
Tools4miRs

Tools4miRs helped in exploring the provided data 
using designated target prediction algorithms. The server 
was used to check the involvement of miR-520c-3p in 
particular pathways chosen [34]. The TargetScan was 
utilized for the target prediction of miR-520c-3p. The 
locations with a more significant and lower chance of 
targeting miRNAs are shown for each transcript [35]. This 
likelihood was calculated by combining all methods and 
factors for each miRNA candidate (site type, context++ 
score, context++ score percentile, weighted context++ 
score, conserved branch length, and PCT). TargetScan 
was used to calculate the expected frequency of matching 
to the 3′ end of the miRNA, the expected frequency of 
seed matches in the 3′ UTR dataset. An optimized base 
pairing of the remaining 3′ portion of the miRNA to the 
35 bases of the UTR immediately 5′ from the seed match, 
the predicted free energy of a seed: seed match duplex 
(kcal/mol), and the observed count of seed matches in 
the 3′ UTR dataset were also calculated. Complementary 
base-pairing of miR-520c-3p seed sequence with targets 
selected from pathway enrichment was done with 
TargetScan. 

The KMP (Knuth Morris Pratt) matching method 
reduces the worst-case complexity to O(n) by utilizing the 
pattern’s degenerating property (pattern with the same sub-
patterns appearing more than once in the pattern). KMP’s 
method is based on detecting a mismatch (after some 
matches) [21]. For evaluation of the existing sequence 
for base-pairing with seed sequence of miR-520c-3p in 

various variants of transcripts of the targets selected based 
on pathway enrichment analysis, the KMP algorithm was 
utilized. 

Estimation of survival via Kaplan-Meier plot 

Considering censored data, it is critical in clinical 
trials to robustly and adequately assess the proportion 
of patients that survive after a particular period of 
therapy. The prognostic value of mRNA expression of 
topoisomerase family genes in NSCLC was assessed using 
the Kaplan-Meier plotter (https://www.kmplot.com/), 
an online database incorporating gene expression and 
clinical data. This database contains lung cancer, ovarian 
cancer, stomach cancer, and breast cancer statistics. The 
Kaplan-Meier estimate is the simplest and most successful 
method for calculating survival rates in this situation. The 
log-rank test determines the significance of differences 
in survival distributions between two or more groups of 
participants. If the p-value for the log-rank test is less 
than 0.05, the survival outcomes of the two groups are 
regarded as substantially different [36]. To summarize, 
each of the eight genes (AKT1, AKT2, PDK1, PDK2, NF-
κB, PI3K, PTEN & TP53) was entered into the database 
Kaplan-Meier survival graphs were created, with the 
number of persons at risk given underneath the prominent 
figure. The hazard ratio (HR), log-rank p-value, and 95% 
confidence intervals were computed and shown on the 
website. 
Survival analysis

Survival analysis plot was retrieved from online 
database The Cancer Proteome Atlas (TCPA, http://
tcpaportal.org) which consists of independent patient 
cohort dataset. The Cancer Genome Atlas (TCGA) 
describes approximately 8,000 patient samples, and 
the current RPPA platform comprises over 300 protein 
markers that span all main cancer signaling pathways [37].
Comparative analysis

Lung Cancer Explorer (LCE), a web application 
powered by a consolidated lung cancer database (http://
lce.biohpc.swmed.edu/), was used to get the normal vs. 
tumor comparison. The TCGA LUAD 2016 cohort was 
used to examine the expression of miRNA-targeted genes 
in both normal and tumor circumstances during NSCLC 
[38].

Designing the genetic synthetic circuit for PI3K/
AKT signaling network rewiring aiding in tumor 
suppression

Tinker Cell, the computer-aided design software for 
synthetic biology (http://www.tinkercell.com), created 
the genetic circuit. FASTA or Genbank sequences were 
used as inputs. Parts came from the Registry of Biological 

http://www.microrna.gr/miRPathv3
https://www.kmplot.com/
http://tcpaportal.org
http://tcpaportal.org
http://lce.biohpc.swmed.edu/
http://lce.biohpc.swmed.edu/
http://www.tinkercell.com
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Parts (http://parts.igem.org/Main_Page), a database of 
genetic components that may be combined matched to 
create synthetic biology devices and systems. A mature 
miR-520c-3p sequence was retrieved from miRBase. 
Each of the three genes that make up the repressilator 
was given a transcription repression response. Protein 
degradation, promoter strength, transcription rate, 
dissociation constants, Hill’s coefficient, and reaction 
rates were set for the reaction. To examine the behaviour 
of the designed circuit, it was subjected to deterministic 
simulation [39].

Validation of model

The model validation was carried out using the 
Bioconductor package, which comprises two packages: (a) 
Gene Regulatory Network Inference Using Time Series 
(GRENITS) and (b) Boolnet. The validation time-series 
data was collected from the Complex Pathway Simulator 
utilizing the time course approach for deterministic 
simulation. The Boolean technique was used to model 
qualitative networks using BoolNet. BoolNet is a tool for 
integrating synchronous, asynchronous, and probabilistic 
Boolean network techniques. Aside from reconstructing 
networks using time series data, robustness analysis 
may be performed using perturbation and Markov chain 
simulations, identifying and visualizing attractors. The 
Bayesian method was used for quantitative network 
modeling, and the GRENITS package was used to exploit 
the time-series data provided by COPASI. The likelihood 
of the genes included in the circuit, the regulators of the 
circuit, and the network uncertainty were calculated using 
ODE time-series data [40]. 

Statistical analysis

R 3.5.2 (https://www.r-project.org/) and GraphPad 
Prism version 8 for Windows, GraphPad Software (San 
Diego, California USA, https://www.graphpad.com/) were 
used for the statistical analysis. The Kaplan-Meier survival 
analysis was used to determine the prognostic value. 
Both univariate and multivariate Cox regression analyses 
were used to verify independent prognostic factors. The 
differential expression was examined using the Student’s 
t-test.

CONCLUSIONS

In this study, miR-520c-3p was a new tumor 
suppressor miRNA identified in NSCLC. The heatmap 
analysis revealed that it might have a functional role in 
NSCLC by targeting the defective EGFR and PI3K/AKT-
driven signaling pathway. AKT1 and AKT2 were identified 
as possible targets of miR-520c-3p based on target prediction 
and seed sequence analysis. AKT’s promote biological 
activities such as protein synthesis, glucose metabolism, 

cell cycle progression, anti-apoptosis, angiogenesis, and 
lymphangiogenesis, which are necessary for tumor cell 
survival, proliferation, metastasis, and invasion. AKT 
has also been discovered to affect the tumor suppressor 
function of p53 indirectly. miR-520c-3p can regulate 
the overexpression of AKT genes and their downstream 
processing in the EGFR pathway, triggering death in tumor 
cells, restoring the function of tumor suppressor p53, and 
decreasing protein synthesis for cell survival. The Cancer 
Genome Atlas (TCGA) database data revealed a negative 
association between AKT1, AKT2, and miR-520c-3p 
mRNA levels. Elevating the expression of miR-520c-3p in a 
regulated manner using a developed genetic synthetic circuit 
is novel as an RNA therapy might help suppress tumors 
in NSCLC in the future by blocking PI3K/AKT/MTOR 
signaling pathway in a controlled manner.
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